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Abstract—Nodes in a sensor network are traditionally used for
sensing and data forwarding. However, with the increase of their
computational capability, they can be used for in-network data
processing, leading to a potential increase of the quality of the
networked applications as well as the network lifetime. Visual
analysis in sensor networks is a prominent example where the
processing power of the network nodes needs to be leveraged to
meet the frame rate and the processing delay requirements of
common visual analysis applications. The modeling of the end-
to-end performance for such networks is, however, challenging,
because in-network processing violates the flow conservation
law, which is the basis for most queuing analysis. In this
work we propose to solve this methodological challenge through
appropriately scaling the arrival and the service processes, and
we develop probabilistic performance bounds using stochastic
network calculus. We use the developed model to determine the
main performance bottlenecks of networked visual processing.
Our numerical results show that an end-to-end delay of 2-3
frame length is obtained with violation probability in the order of
10−6. Simulation shows that the obtained bounds overestimates
the end-to-end delay by no more than 10%.

I. INTRODUCTION

Due to the advances of hardware design, the memory and

the computational capability of wireless sensor nodes has in-

creased significantly in recent years. As a consequence, cheap

sensors are not only capable of sensing and of information

transmission, but can contribute to the processing of sensed

data. The resulting in-network data processing is a promising

approach for extending the network lifetime and for improving

application performance, optimizing not only the path of data

transmission across the network, but also the location of data

processing.

Wireless visual sensor networks (VSNs) give a prominent

example where in-network processing can have significant

advantage. VSNs are built from low–cost, battery operated

cameras and sensor nodes, and capture and process visual

information from the surrounding environment to support

applications like surveillance, tracking and traffic monitoring.

They differ from traditional sensor networks considering both

the amount of collected and transmitted information and

the computational complexity of processing the information.

Visual sensors capture visual information, e.g., images or

sequences of video frames. This rich information should be

collected and processed, usually within a delay limit, to allow

timely visual analysis. As collecting the raw image data would
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Fig. 1. Wireless visual sensor network with distributed image processing.

require too high transmission rates, recent works propose to

perform the processing at the nodes of the sensor network,

such that only the information required for decision making, a

so called set of visual features, is sent to the intended receiver,

the sink node of the sensor network [1] [2]. Performing the

processing at the sensor nodes results in a major reduction in

the dimensionality of the data to be transmitted and hence the

required transmission resources.

Extracting features from images requires, however, complex

computations, and consequently feature extraction at the low–

cost camera nodes would lead both to high processing delays

and to fast depletion of the energy resources of the camera

nodes. As camera nodes need to be parameterized and cali-

brated in situ in order to serve complex analysis tasks, it is

advisable to decrease their energy consumption and thus the

frequency of replacement, and utilize the energy resources of

the easy to deploy network nodes, as shown in Fig. 1 [3] [4].

While in-network processing seems to be a promising

solution, it still requires the camera node to transmit the image

content and it introduces processing delay at the network

nodes. If transmission and processing need to be finished

within a delay limit, the sensor network needs to be appro-

priately dimensioned, and dimensioning requires simple yet

powerful system performance models.

The main methodological challenge when modeling in-

network processing systems is traffic morphism at the im-

age processing nodes: the departing traffic from an image

processing node is a fraction of the traffic arriving at that

node. This violates the premise for any traditional stable

queuing system analysis based on the flow conservation law,

and thus it requires adaptation and extension of the existing

performance evaluation methodology in order to model in-

network processing.

In this paper we show that stochastic network calculus [5]

can be used to address this challenge by appropriately scaling

the arrival and service processes. We provide a methodologyISBN 978-3-901882-68-5 c© 2015 IFIP



to compute end–to–end probabilistic performance bounds for

visual sensor networks with intermediate processing nodes. We

adopt a system–theoretic stochastic network calculus approach

[6], developed to model the end-to-end performance of data

transmission over multiple network nodes and capitalize on

recent results [7] that provide a service model for wireless

fading channels. Based on the analytic model we evaluate

how the networking environment and the transmission and

processing resources affect the end–to–end performance of

networked visual processing. The proposed approach provides

analytically quantifiable performance that exposes trends and

trade-offs of the investigated wireless VSN. The analyzed

model is suitable to study other emerging systems, e.g.,

measure-analyze-control in cyber-physical systems.

The rest of the paper is organized as follows. Sec. II

presents related work. Sec. III presents background regarding

the problem and the methodology used. Sec. IV presents

our model. The main results are given in Sec. V. Numerical

examples are discussed in Sec. VI. Sec. VII concludes the

paper.

II. RELATED WORK

The challenge of networked visual analysis is addressed

in [8], [9], defining feature extraction schemes with low

computational complexity. To decrease the transmission band-

width requirements, [10], [11] propose lossy image coding

schemes optimized for descriptor extraction, while [12]–[14]

give solutions to decrease the number and the size of the

descriptors to be transmitted. In [15] the number and the

quantization level of the considered descriptors are jointly

optimized to maximize the accuracy of the recognition, subject

to energy and bandwidth constraints. In [16], the authors

suggest that, in the case of video sequences, the candidate

descriptor locations be chosen based on motion prediction and

only these areas are processed and transmitted, in order to

decrease the transmission requirements of feature extraction.

In [17], [18] intra- and inter-frame coding of descriptors is

proposed to decrease the transmission requirements.

Our work is motivated by recent results on the expected

transmission and processing load of visual analysis in sensor

networks [2], [15]. Measurements in [2] demonstrate that

processing at the camera or at the sink node of the VSN

leads to significant delays, and thus distributed processing is

necessary for real-time applications. The experiments in [3]

and [15] determined the characteristics of the processing delay

in the processing nodes. Their experimental results show that

the delay grows linearly as the image size as well as the

number of detected descriptors increase.

Since its conception, (min,+) network calculus has been

successfully applied to provide deterministic, and later on

probabilistic performance bounds for wired networks. Re-

cently, there have been many attempts to use a similar

approach to analyze the performance of wireless networks,

e.g., [19]–[22]. These efforts highlighted the difficulties of

modeling and analyzing wireless networks. The communica-

tion link in wireless networks is prone to noise and fading

which results in randomly varying received SNR, and hence

randomly varying channel capacity. This proved to be the

single most challenging aspect of developing wireless network

calculus. Most of the existing work in this area work around

this difficulty by assuming an abstracted finite-state Markov

channel (FSMC) model of the underlying fading channel

[24]. However, the complexity of the Markov channel model

analysis limits the applicability of this approach in multi–hop

wireless networks analysis with more than few state FSMC

model and more than two hops. Flow transformation due to

loss, dynamic routing or retransmissions was studied in [25]

by defining a (virtual) scaling element to compensate for the

lost/added traffic to the original flow. This technique is based

on an earlier work [26] that provided such scaling element in

deterministic settings.

In this work, we follow an alternative approach that was

proposed by Al-Zubaidy et al [7], where a wireless network

calculus based on the (min,×) dioid algebra was developed.

The main premise for this approach is that the channel

capacity, and hence the offered service, of fading channels

is related to the instantaneous received SNR through the log-

arithmic function as given by the Shannon capacity function,

C(γ) = log(1+γ). Hence, an equivalent representation of the

channel capacity in an isomorphic transform domain, obtained

using the exponential function, would be eC(γ) = 1+ γ. This

simplifies the otherwise cumbersome computations of the end–

to–end performance bounds.

III. BACKGROUND

A. Visual Feature Extraction

Visual feature descriptor computation for an image involves

two major processing steps: feature detection and feature

descriptor extraction. First, a blob or an edge detector is

used to identify features, which are regions in the image for

which the filter response exceeds a pre-specified detection

threshold [8], [9]. The desirable number of features is defined

by the image processing application. As it is shown in [27],

the number of detected features can be kept nearly constant

by tuning the detection threshold dynamically according to

the image content. After all features are detected, a fixed size

feature descriptor is extracted for each of them from the image

patches.

The time required for the feature detection is linear to the

image size and to the number of features detected [15] [3].

The time for the extraction of a feature descriptor is roughly

constant, which again gives a linear increase of the extraction

time in the number of features.

B. (min,×) Network Calculus

Network calculus in general aims at deriving end-to-end

performance bounds in terms of backlog (that is, data waiting

or under transmission in the network) and end–to–end delay,

based on cumulative functions of arrivals, services and depar-

tures. The methodology we use considers fluid–flow traffic that

is infinitely divisible, and operates in discrete–time domain,

where time slots are denoted by t ∈ {0, 1, . . .} and slot



duration Δt = 1. Let the cumulative arrivals, service and

departures to a node k during the time interval [τ, t) be

denoted by the real–valued non–negative bivariate processes

Ak(τ, t), Sk(τ, t) and Dk(τ, t) respectively. These processes

are non-decreasing in t with Ak(t, t) = Sk(t, t) = Dk(t, t) =
0 and Ak(0, t) ≤ Dk(0, t) for all t.

Different from the typical (min,+) network calculus,

(min,×) network calculus transforms the problem into an al-

ternative domain, called SNR domain, where the SNR service

process1 (Si) is obtained by taking the exponent of the original

service process, i.e., Si = eSi . A network element i is referred

to as dynamic SNR server, if it offers a service Si that satisfies

the following input–output inequality [6]

D(0, t) ≥ A⊗ Si(0, t) . (1)

The (min,×) convolution and deconvolution are respectively

defined for any two SNR processes X1(τ, t) and X2(τ, t) as

X1 ⊗X2(τ, t)
�
= inf

τ≤u≤t

{X1(τ, u) · X2(u, t)
}
,

X1 �X2(τ, t)
�
= sup

u≤τ

{ X1(u, t)

X2(u, τ)

}
.

The total network backlog in the SNR domain at any time

t ≥ 0 is given by

B(t) = eB(t) =
A(0, t)

D(0, t)
(2)

and the end–to–end delay is given by

W(t) = W (t) = inf

{
w ≥ 0 :

A(0, t)

D(0, t+ w)
≤ 1

}
. (3)

A main advantage of using network calculus is that one

can obtain the network service process by concatenating the

service processes for all nodes along a path. The network SNR

service process Snet is given by [7]

Snet(τ, t) = S1 ⊗ S2 ⊗ S3(τ, t) . (4)

The computation of the (min,×) convolution and decon-

volution operation is not straight forward since they involve

product and quotients of random processes. Thus, an exact

solution for Eq. (4) may not be feasible. However, bounds

on these operations are possible. Probabilistic performance

bounds for a multi-hop wireless network are then given by

the following theorem, due to [7].

Theorem 1. For a multi–hop wireless network with an SNR
arrival process A and a network SNR service process Snet, the
end–to–end probabilistic performance bounds for a violation
probability ε > 0 are given by

• OUTPUT BURSTINESS: Pr
(
D(τ, t) > dεnet

) ≤ ε, where

dεnet(τ, t) = inf
s>0

{1

s

(
logMnet(s, τ, t)− log ε

)}
;

1We use the calligraphic upper–case letters to represent traffic and service
processes in the SNR domain and to distinguish them from their bit domain
(where traffic and service are measured in bits) counterparts.

• BACKLOG: Pr
(
B(t) > bεnet

) ≤ ε, where

bεnet = inf
s>0

{1

s

(
logMnet(s, t, t)− log ε

)}
;

• DELAY: Pr
(
W (t) > wε

net

) ≤ ε, where wε
net is the smallest

w satisfying

inf
s>0

{
Mnet(s, t+ w, t)

}
≤ ε ,

where the function Mnet(s, τ, t) is given by

Mnet(s, τ, t) =

min(τ,t)∑
u=0

MA(1+s, u, t)MSnet(1−s, u, τ) (5)

and MZ(s) = E[Zs−1] is the Mellin transform of the
nonnegative random variable Z, for any complex valued s
and when the expectation exists [23].

Theorem 1 states that probabilistic performance bounds can

be obtained in terms of the Mellin transforms of the SNR

arrival and the network SNR service processes. However, the

network SNR service process is given by the (min,×) con-

volution of all the SNR service processes along the multi–

hop path as given by Eq. (4). Computing the exact Mellin

transform for Snet may not be possible. Instead, we will use

the following lemma to obtain a bound on the Mellin transform

of the network SNR service process when the SNR servers are

independent.

Lemma 1. For s < 1, let S1(τ, t) and S2(τ, t) be two
independent SNR service processes. The Mellin transform of
S1 ⊗ S2(τ, t) is bounded by

MS1⊗S2
(s, τ, t) ≤

t∑
u=τ

MS1
(s, τ, u) · MS2

(s, u, t) . (6)

Lemma 1 suggests that the Mellin transform of the

(min,×) convolution of two independent service processes is

bounded by a function of their Mellin transforms. Analogous

bound can be obtained for the (min,×) deconvolution. The

proof of Lemma 1 can be found in [7].

The above results can be extended for the case when the two

SNR service processes are dependent. Then Lemma 2 below

can be used to obtain a bound on the (min,×) convolution.

Lemma 2. Let S1(τ, t) and S2(τ, t) be two dependent SNR
service processes. The Mellin transform of S1 ⊗ S2(τ, t) for
any s < 1 and any p > 1 and 1/p+ 1/q = 1, is bounded by

MS1⊗S2
(s, τ, t) ≤

t∑
u=τ

(
MS1

(1−p+sp, τ, u)
) 1

p·
(
MS2

(1−q+sq, u, t)
) 1

q

.

(7)

Proof. We use the fact that the function f(x) = xs−1 is

decreasing for s < 1. Using the definition of the Mellin
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Fig. 2. System model description.

transform, for any s < 1, we have

MS1⊗S2
(s, τ, t) = E

[(
inf

τ≤u≤t
{S1(τ, u) · S2(u, t)}

)s−1]

= E
[

sup
τ≤u≤t

{
(S1(τ, u))

s−1 · (S2(u, t))
s−1

}]

≤
t∑

u=τ

(
E
[
(S1(τ, u))

(s−1)p
]) 1

p
(
E
[
(S2(u, t))

(s−1)q
]) 1

q

.

In the last step, we used the union bound and non-negativity

of the service processes S1 and S2, then applied Hölder’s

inequality to bound the expectation of the products. The

Lemma then follows from the Mellin transform definition.

It is worth noting that due to applying Hölder’s inequality,

the bound obtained in Lemma 2 may be loose, but this

may be the best possible bound one can get without further

information regarding the correlation of the two SNR service

processes. The bound can be tightened by optimizing over the

value of p.

IV. SYSTEM MODEL

We consider a visual sensor network as shown in Fig. 1,

consisting of a single camera node, a processing node and a

sink node, which is the destination of the information trans-

mission. The camera node captures a sequence of frames, and

sends the frames to the image processing node in the network.

Once a frame is completely received by the processing node,

it computes a constant N feature descriptors. The feature

descriptor data (not the original image) are then forwarded

to the sink via a wireless channel. The computational power

and energy resources of all nodes are limited as well as their

communication bandwidth.

Fig. 2 shows a queuing model for the wireless visual

sensor network. Server S1 represents the wireless channel

from the camera to the processing node, S2 represents the

image processing, and S3 the wireless transmission from the

image processor to the destination We assume that the servers

have infinite buffer. In this paper we consider the specific case

with one image processor. The extension of several parallel

processors is possible in the same framework and will be the

topic of our future work. The extension for multihop wireless

transmission follows directly from [7].

A. Arrival and Service Curves

The model we develop is a discrete–time fluid model. We

denote time slots by t ∈ {0, 1, . . .} and the slot duration is Δt.
The slot duration is chosen small enough that block fading

is a reasonable model for the wireless channels. We denote

by γt the instantaneous SNR during slot t, which remains

unchanged during a time slot and changes independently in

subsequent time slots. This is a reasonable fading model that

is used extensively in the literature to model many systems

including orthogonal frequency division multiplexing (OFDM)

and frequency hopping spread spectrum (FHSS) systems. In

this work we consider a Rayleigh fading model for the wireless

channels in the system, but the approach works for other fading

models as well. In the following we describe the arrival and

service curves at the three servers.

Server 1: We denote by n the number of frames per time

slot generated by the camera, and by r the number of bits per

frame. This corresponds to a periodic source with period 1
n .

Then the cumulative arrival process is bounded by

A1(τ, t) ≤ �n(t− τ)�r ≤ r + nr(t− τ) := E1(t− τ) , (8)

where �x� is the smallest integer larger than x. Eq. (8) states

that the camera output is bounded by an affine arrival envelope

E1 with a burst of size r bits and a rate nr bits per second.

This arrival process is transmitted over the first wireless

fading channel. The wireless channel provides time varying

service equivalent to the instantaneous channel capacity, which

can be determined as a function of the instantaneous signal–to–

noise ratio (SNR) at the receiver. Using the block fading model

and the instantaneous SNR γt at the receiver, the instantaneous

channel capacity is given by C(γt) = W log(1+γt) bits/s/Hz,

where W is the channel bandwidth, and the cumulative service

offered to the incoming traffic is given by

S1(τ, t) = S(τ, t) = W

t−1∑
u=τ

log(1 + γu) . (9)

Server 2: The arrival process to Server 2, the image

processing node, is the departure process of Server 1, i.e.,

A2 = D1. The image processing node processes the frames

in order, and it only starts feature detection on a frame once

the frame is completely received. It thus introduces a latency,

denoted by Tc which is the time required for a transmitted

frame to be received successfully by the image processing

node. Recall that the channel gain varies randomly and hence

it offers randomly varying service, thus Tc is also random.

Recalling that r bits per frame are generated by the camera,

transmitting a single frame at the channel capacity rate, when

the instantaneous SNR at the receiver is given by γi, will take

Tc = min{x ≥ 0 :

x∑
i=1

C(γi) ≥ r} (10)

seconds, where C(γ) is the Shannon channel capacity limit,

γi = γ̄|h+ i|2, γ̄ is the average received SNR and |hi| is the

instantaneous fading channel gain at time slot i. Then we have

Pr(Tc ≤ x) = Pr(

x∑
i=1

C(γi) ≥ r)

which can be approximated using the central limit theorem by

a Gaussian distribution, N (μCx, σC
√
x), where μC and σC

are the mean and standard deviation of the channel capacity



respectively. The probability mass function for Tc is then

estimated as follows

fTc
(t)=FN (r, μC(t−1), σC

√
t−1)−FN (r, μCt, σC

√
t), (11)

where FN (y, μ, σ) is the distribution function for a Gaussian

random variable with mean μ and a standard deviation σ
evaluated at y.

Once a frame is received, the image processing node starts

feature detection. The data remains in the buffer during

detection and does not depart the node until feature extraction

begins. The detection time θ depends on the input image size,

on the number N of detected features per frame and on the

processing speed. As all these parameters are constant, we can

model the feature detection time θ as deterministic.

Detection is followed by feature extraction, which produces

N descriptors, one at a time, and a total of r∗ bits per frame.

The feature extraction service rate ρ, measured in frames per

time slot, depends on the processing speed and on N , the

number of detected features per frame, and therefore can be

considered constant. Observe that while the feature detection

time θ is constant, in case of feature extraction it is the rate

ρ that is constant.

Consequently, the image processing node offers a rate–

latency service curve to the incoming traffic A2 with rate ρr∗

and latency Tc + θ

S∗
2 (τ, t) = ρr∗ · (t− τ − (Tc + θ)) · 1{t−τ≥Tc+θ} , (12)

where, 1{·} is the indicator function.

Server 3: The arrival to Server 3, the second wireless link,

is A3 = D2. The service curve of Server 3 is similar to that

of Server 1,

S3(τ, t) = S(τ, t), (13)

and the departure process of this server is the departure process

of the system.

B. Scaling for Flow Conservation

It is important to observe that due to in-network processing

the flow conservation law does not hold: the image processor

receives r bits per frame, but after feature extraction it trans-

mits N feature descriptors per frame only, at a total rate of r∗

bits per frame. Therefore,

A3(τ, t) = D2(τ, t) ≤ E∗
3 (t− τ) = φE3(t− τ) ,

where φ = r∗/r is the scaling factor, E3 is an envelope for

the arrivals at server 3 if the frame size remain unchanged

(i.e., r bits per frame) and the asterisk denote the new frame

size r∗ after feature extraction by server 2.

As Network Calculus builds on the flow conservation law,

we need to ensure that flow is conserved in the model of

the VSN despite scaling. Therefore, we have to scale down

the traffic at the ingress A1, together with the servers that

operate on it (S1 and S2) by the scaling factor φ. The arrival

function to the scaled version of the system is A∗
1 = φA1 and

the service at Servers 1 and 2 is S∗
1 = φS1 and S∗

2 = φS2,

respectively. For Server 3 we have S∗
3 = S3.

The implication of scaling is that the backlog bound ob-

tained for the scaled model has to be scaled back to get

the actual backlog for the real system. The delay bound

computation is, however, not affected by scaling since both

the arrival and service are scaled by the same factor.

V. PERFORMANCE BOUNDS FOR WIRELESS VISUAL

SENSOR NETWORKS

In this section, we will apply results from (min,×) network

calculus to obtain probabilistic bounds, considering the scaled

version of the model. While scaling does not affect the delay

bound, we scale then back the final results to derive the

backlog bound of the original system.

A. SNR Arrival and Service Processes

To proceed with the analysis we have to transform the arrival

and service processes presented in Section IV to the SNR

domain. Recall that the service process for Server 1 in the

bit domain in the scaled version of the model is S∗
1 = φS1,

where S1 is described by Eq. 9. Its SNR domain counterpart

is described by the logarithm–free form

S1(τ, t) =

t−1∏
u=τ

(1 + γu)
φW . (14)

Let g1(γu) = (1+ γu)
φW = (1+ γ̄u|hu|2)φW , where |hu|2

is the fading channel gain. Then

Pr(g1(γ) ≤ x) = Pr(|h|2 ≤ x
1

φW − 1

γ̄
) .

Assuming Rayleigh fading, i.e., |h|2 ∼ Exp(1) we have

Pr(g1(γ) ≤ x) = 1− e−( x
1

φW −1
γ̄ ) . (15)

Similarly, from Eq. (9) we obtain for server 3

S3(τ, t) =

t−1∏
u=τ

g3(γu) =

t−1∏
u=τ

(1 + γu)
1
W , (16)

where g3(γu) has the distribution

Pr(g3(γ) ≤ x) = 1− e−( x
1
W −1
γ̄ ) .

For the image processing server with service process S∗
2

given by Eq. (12) we obtain

S2(τ, t) = eS
∗
2 (τ,t) = eφρr·(t−τ−(Tc+θ))·1{t−τ≥Tc+θ} . (17)

For the traffic characterization, from Eq. (8), the scaled version

of the arrival is given by A∗
1 = φA1. Then the SNR arrival

process A is characterized by

A(τ, t) ≤ eφE1(τ,t) = eφr+φnr(t−τ) . (18)

Note that an upper bound on the SNR arrival process is suffi-

cient to obtain an upper bound on the network performance.



B. Mellin Transforms for the Arrival and Service Elements
In order to compute the desired probabilistic performance

bounds in Theorem 1 we need to obtain the Mellin transform

for the relevant SNR arrival and service process in the network.
Using the SNR arrival process description from Eq. (18),

we have for any s > 1

MA(s, τ, t) ≤ e(s−1)(φr+φnr(t−τ)) . (19)

1) Mellin transform for Si: From Eq. (14), the SNR service

process for server 1 is given in terms of the function g1(γ) as

S1(τ, t) =

t−1∏
u=τ

g1(γ) ,

where the distribution of g1(γ), assuming i.i.d. Rayleigh

fading, is given by Eq. (15). Hence, the Mellin transform of

g1(γ) is given by

Mg1(γ)(s) = E[(g1(γ))
s−1]

= e
1
γ̄ γ̄φW (s−1)Γ(1 + φW (s− 1),

1

γ̄
) , (20)

where, Γ(a, b) is the incomplete Gamma function, i.e.,

Γ(a, b) =
∫∞
b

xa−1e−xdx. Then using the i.i.d. assumption

and the product property of the Mellin transform [23] we

obtain

MS1
(s, τ, t)=

(
e

1
γ̄ γ̄φW (s−1)Γ

(
1+φW (s−1),

1

γ̄

)
︸ ︷︷ ︸

α1(s−1)

)t−τ
. (21)

The SNR service process for server 2 is given by Eq. (17).

For a fixed sample value tc of the random variable Tc the

Mellin transform for the conditional SNR service is given by

MS2
(s, τ, t) = eφρr(s−1)(t−τ−(tc+θ))+ , (22)

where, (X)+ = max(0, X).
The Mellin transform for S3 can be computed similarly to

S1 and is given by

MS3
(s, τ, t)=

(
e

1
γ̄ γ̄W (s−1)Γ

(
1+W (s− 1),

1

γ̄

)
︸ ︷︷ ︸

α2(s−1)

)t−τ

, (23)

where we omit the other arguments of αi to simplify notation.
Now that we have a complete description of all service pro-

cesses, we can compute a bound on the Mellin transform of the

network SNR service process using the server concatenation

property, Eq. (4), and Lemma 1 as follows

MSnet(s, τ, t) ≤
t∑

u1=τ

MS1(s, τ, u1)MS2⊗S3(s, u1, t)

=
t∑

u1=τ

MS1
(s, τ, u1)

t∑
u2=u1

MS2
(s, u1, u2)MS3

(s, u2, t)

=

t∑
u1=τ

t∑
u2=u1

MS1(s, τ, u1)MS2(s, u1, u2)MS3(s, u2, t) .

(24)

Next we apply Theorem 1 to compute probabilistic delay

and backlog bounds for the developed model.

C. Probabilistic Delay Bound

To compute a probabilistic delay bound for the system under

investigation, we first evaluate the function Mnet(s, t + w, t)
from Eq. (5) for s ≥ 0, as given by the following lemma. We

let αi = αi(−s) to improve readability.

Lemma 3. For the network in Fig. 2 and s ≥ 0, the function
Mnet(s, t+ w, t), conditional on Tc = tc, as t → ∞ satisfies
the following inequality

Mnet(s, t+ w, t) ≤
αw
1 e

sφr

(
1−(

α2
α1

)tc+θ+1

1−α2
α1

− 1−( 1
α1

)tc+θ+1

α2(1− 1
α1

)

)

(1− α−1
2 )(1− α1e−sφnr)

+

esφr
(

1
1−α1esφnr − α2

α1(1−α2esφnr)

)(
αtc+θ+1

2 −1

1− 1
α2

+ e−sφρr

1− e−sφρr

α2

)

(1− α2

α1
)e−sφnr(tc+θ−w+1)

−
esφre−sφr(ρ−n)(tc+θ−w+1)

(
1

1−α1esφnr − e−sφρr

α1(1−e−sφr(ρ−n))

)
α2(1− e−sφρr

α1
)(1− e−sφρr

α2
)e−sφρr(tc+θ−w−1)

whenever the following conditions are met

α1 · esφnr < 1, α2 · esφnr < 1 ,

e−sφr(ρ−n) < 1 =⇒ n < ρ . (25)

Proof. Using Theorem 1 we compute

Mnet(s, t+ w, t) =

t∑
v=0

MA(1+s, v, t)MSnet(1−s, v, t+ w)

≤ esφr
t∑

v=0

t+w∑
u1=v

t+w∑
u2=u1

esφrn(t−v)αu1−v
1

· e−sφρr(u2−u1−(tc+θ))+αt+w−u2
2 .

Letting v = t − v, u1 = t − u1, u2 = t − u2 then letting

u2 = u1 − u2 and after rearranging the product, we arrive at

Mnet(s, t+ w, t) ≤ esφr
t∑

v=0

v∑
u1=−w

u1+w∑
u2=0

esφnrvαv−u1
1

· e−sφρr(u2−(tc+θ))+αu1+w−u2
2

= αw
2 e

sφr
t∑

v=0

v∑
u1=−w

(α1e
sφnr)v

(
α2

α1

)u1

·
⎡
⎣min(u1+w,tc+θ)∑

u2=0

(
1

α2

)u2

+esφρr(tc+θ)
u1+w∑

u2=tc+θ+1

(
e−sφρr

α2

)u2

⎤
⎦

≤ αw
2 e

sφr

[
t∑

v=0

tc+θ−w∑
u1=−w

(α1e
sφnr)v

(
α2

α1

)u1 u1+w∑
u2=0

(
1

α2

)u2

+

t∑
v=tc+θ−w+1

v∑
u1=tc+θ−w+1

(
α1e

sφnr
)v (α2

α1

)u1

·
(

tc+θ∑
u2=0

(
1

α2

)u2

+ esφρr(tc+θ)
u1+w∑

u2=tc+θ+1

(
e−sφρr

α2

)u2
)]

,



where in the second step of the derivation, we use the

fact that e−sφρr(u2−(tc+θ))+ = 1, when u2 ≤ tc + θ and

e−sφρr(u2−(tc+θ)), otherwise. In the last step, we decompose

the three sums and bound the first resulting term by extending

the sum over u2 to tc + θ − w to simplify the resulting

expression. This may loosen the obtained upper bound by a

small margin.

Lemma 3 follows by letting t → ∞ and evaluating the ge-

ometric sums successively. When the convergence conditions

in Eq. 25 are satisfied, then the geometric progressions above

converge as t → ∞.

The three convergence conditions in Eq. 25 define condi-

tions for stable operation of the system. Indeed, the first two

conditions are satisfied if the service provided by the two

wireless channels, at the first hop and last hop respectively,

is higher than the offered load. The last condition reduces to

n < ρ, i.e., the frame rate is less than the intermediate image

processor service rate (in frames per second).

The function Mnet(s, t + w, t) in Lemma 3 above2 is ob-

tained conditional on Tc = tc and for any s > 0. Marginalizing

over Tc gives the desired delay bound violation probability

according to Theorem 1.

The marginal delay bound violation probability is given by

Pr
(
W (t)>wε

net

)
=

∫ ∞

0

Pr
(
W (t)>wε

net|Tc=x
)
Pr(Tc=x)dx

≤
∫ ∞

0

inf
s>0

{Mnet(s, t+ wε
net, t)}Pr(Tc = x) dx .

(26)

The desired probabilistic delay bound is obtained by equat-

ing the right hand side of Eq. (26) to εwnet and optimizing

over s. As a result, a bound on the violation probability of the

end-to-end delay is given by

εwnet = min
(
1,

∫ ∞

0

inf
s>0

{Mnet(s, t+ wε
net, t)}Pr(Tc = x)dx

)
,

(27)

where we used the fact that a probability is always bounded

by 1.

Eq. (27) can be solved numerically to obtain the desired

delay bound for a given violation probability εwnet.

D. Probabilistic Backlog Bound

According to Theorem 1, the probabilistic backlog bound

can be obtained by computing the function Mnet(s, t, t). This

function is given by Lemma 3 when substituting w = 0 as

2Here, for simplicity, we do not show explicitly the dependence of the
function Mnet on Tc.

follows

Mnet(s, t, t) ≤
esφr

(
1−(

α2
α1

)tc+θ+1

1−α2
α1

− 1−( 1
α1

)tc+θ+1

α2(1− 1
α1

)

)

(1− 1
α2

)(1− α1e−sφnr)

+

esφr
(

1
1−α1esφnr − α2

α1(1−α2esφnr)

)(
αtc+θ+1

2 −1

1− 1
α2

+ e−sφρr

1− e−sφρr

α2

)

(1− α2

α1
)e−sφnr(tc+θ+1)

−
esφre−sφr(ρ−n)(tc+θ+1)

(
1

1−α1esφnr − e−sφρr

α1(1−e−sφr(ρ−n))

)
α2(1− e−sφρr

α1
)(1− e−sφρr

α2
)e−sφρr(tc+θ−1)

.

(28)

The probabilistic backlog bound bε, conditioned on Tc = tc
is given by

Pr
(
B(t) > bnet|Tc = tc

) ≤ e−s bnetMnet(s, t, t)

where Mnet(s, t, t) is given by Eq. (28). Then the marginal

violation probability is given by

Pr
(
B(t)>bεnet

)
=

∫ ∞

0

Pr
(
B(t)>bεnet|Tc=x

)
Pr(Tc=x) dx

≤ e−s bnet

∫ ∞

0

Mnet(s, t, t) · Pr(Tc=x) dx , (29)

for all s > 0, where the distribution of Tc is given by Eq.

(11). For a given violation probability εbnet, equating the right

hand side of Eq. (29) to εbnet and optimizing over s > 0, the

backlog bound is obtained as follows

bεnet= inf
s>0

{1
s

[
log

∫ ∞

0

Mnet(s, t, t)Pr(Tc=x) dx−log εbnet

]}
.

(30)

By substituting Eq. (28) in Eq. (29), one can obtain the

desired tail distribution for any backlog bound bεnet, or in Eq.

(30) to obtain the backlog bound for any violation probability

εbnet. However, this step may only be performed numerically

due to the complexity of this expression. Note that this is

the backlog bound for the scaled (by a factor of φ) model as

we discussed in Sec. IV. The backlog bound for the original

system is given by bεnet/φ for φ ≤ 1. When φ << 1,

one expects most of the backlog to be at the first or the

second server. The third server will see traffic that is reduced

(significantly when φ << 1) in intensity, and thus it will have

a small backlog compared to the other two servers.

VI. RESULTS AND DISCUSSION

In this section we evaluate the performance of wireless

sensor network with in-network visual processing based on the

analytic model that we derived and compare these results to

simulation. We consider the three hop wireless visual sensor

network with an intermediate image processing node as in

Fig. 2. For this example, we assume a constant frame rate n
and image size of r = 1.6 Mb/frame generated by the visual

sensor node. Pixel information and descriptors are transmitted

over wireless links. The bandwidth of the wireless channel is
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Fig. 3. End-to-end delay bound (wε
net) vs. average SNR (γ̄) of wireless visual

sensor network, for different image processing service rates (ρ) and different
bound violation probability (εwnet), with W = 22 MHz, r = 1.6 Mb/frame,
φ = 0.25 and n = 25 frames/s.
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sensor network, for different image processing service rate (ρ), with W =
22 MHz, r = 1.6 Mb/frame, φ = 0.25, γ̄ = 8 dB and n = 25 frames/s.

W = 22 MHz, which is typical of the IEEE 802.11 standard,

and the average received SNR is γ̄. For the intermediate image

processor, the extraction ratio is chosen to be φ = r∗/r = 0.25
and the detection time θ = 10 ms. The probabilistic bounds are

obtained for violation probabilities between 10−2 to 10−12.

We direct our attention to the delay bound since the two

computed bounds have similar characteristics and will result

in similar conclusions.

We also present simulation results for the network in Fig. 2.

For the simulation, we model the arrival by a periodic source

with period 1
n seconds and average r

n bits/seconds. The service

offered by the wireless channels is equal to their instantaneous

channel capacity. We use a fluid flow arrival and service model.

Time is slotted with intervals of 1 millisecond and we run the

simulation for 1010 time slots.

Fig. 3 shows the analytic delay bound for increasing average
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Fig. 5. Violation probability (εwnet) vs. delay bound (wnet) of wireless visual
sensor network, for different average SNR (γ̄), with W = 22 MHz, r =
1.6 Mb/frame, φ = 0.25, ρ = 26 frames/s and n = 25 frames/s.

SNR of the wireless channel, for n = 25 frames/s, for different

values of the feature extraction rate ρ at the intermediate

image processing node and different delay bound violation

probability εwnet. The graph shows that for higher γ̄ the delay

decreases slightly with increasing γ̄, but the delay bound

increases significantly at low SNR values, between 6 and 8

dB, where the system stability limit is reached. The system

stability limit is reached also at ρ = 25.01f/s, but the effect

of low ρ value is less prominent compared to that of low γ̄.

The figure also shows that a smaller delay can be achieved if

larger violation probability is tolerated. In any case, however,

the delay bound stays at around 2 frame lengths even when

the channel quality is good and the processing speed is high,

which shows a significant effect of the in-network processing

on the end-to-end performance.

Fig. 4 and Fig. 5 show the delay bound violation probability

versus the delay bound for different values of image processing

rate ρ and average SNR γ̄ respectively, for n = 25, and

compares these bounds to simulation results. The results show

that the violation probability decays exponentially in wnet, and

can be decreased significantly even with a limited increase of

the delay. The quantitative result gives useful insight into the

quality of service expected of this network, as it shows that a

violation probability in the order of 10−6 can be achieved for

a delay of 2-3 frame interarrival times even for low γ̄.

The simulation results show that the obtained delay bounds

reflect the general trends of the simulated system, for all ρ
and γ̄ values. They also show that the bounds overestimate

the simulated end-to-end delay by at most 10% which is very

reasonable considering the complexity of the problem, the

analytic complexity in obtaining these performance measures

using other methods, e.g., queuing theory and the required

simulation time when evaluating rare violation events.

Fig. 6 shows the delay bound violation probability versus

the feature detection time θ for different values of γ̄, ρ
and wnet. The results show that under stable operation the
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violation probability increases almost exponentially in θ, and

the rate depends mainly on γ̄. It also shows similar trends for

increasing γ̄ as well as ρ. The relative position of the different

curves in Fig. 6 suggests that once in a stable operation regime,

increasing one of the service element’s average service rate,

e.g., γ̄ or ρ, may efficiently compensate for the degradation in

the other one.

VII. CONCLUSION

We presented a performance analysis for wireless sensor

networks with in-network image processing capability that

takes into consideration wireless fading channel properties as

well as the in-network image processor’s properties. The anal-

ysis extends a newly developed stochastic network calculus for

wireless fading channels with the ability to model processing

nodes, through appropriate scaling of the arrival processes and

the service times. Our analysis highlights various trends and

tradeoffs in the performance of visual sensor networks, which

can be used to enhance quality of service and mitigate network

variability. Most importantly, the analysis shows that for a

reasonable set of network parameters, a moderate end-to-end

delay can be achieved with very low violation probability. The

model can be extended to capture processing nodes in series

and in parallel, this subject of our ongoing work. The proposed

method could be utilized to model other in-network processing

systems with distributed computing, sensing or control.
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