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Abstract—Mobile data traffic is increasing rapidly and wire-
less spectrum is becoming a more and more scarce resource.
This makes it highly important to operate the mobile network
efficiently. In this paper we are proposing a novel lightweight
measurement technique that can be used as a basis for advanced
resource optimization algorithms to be run on mobile phones.
Our main idea leverages an original packet dispersion based,
technique to estimate both per user capacity and asymptotic
dispersion rate. This allows passive measurements using only
existing mobile traffic. Our technique is able to efficiently filter
outliers introduced by mobile network schedulers. In order to
verify the feasibility of our measurement technique, we run a
week-long measurement campaign spanning two cities in two
countries, different radio technologies, and covering all times
of the day. The campaign demonstrates that our technique is
effective even if it is provided only with a small fraction of the
exchanged packets of a flow. The only requirement for the input
data is that it should consist of a few consecutive packets that are
gathered periodically. This makes the measurement algorithm a
good candidate for inclusion in OS libraries to allow for advanced
resource optimization and application-level traffic scheduling,
based on current and predicted future user capacity.
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I. INTRODUCTION

Even though spectrum efficiency is improving thanks to
the fifth generation [17] of mobile networks, the wireless
medium is becoming a scarcer and scarcer resource, due to the
ever increasing demand for mobile communication. Recently,
a number of papers addressed improved resource allocation
mechanisms based on bandwidth availability prediction tech-
niques. For instance, [11], [1], [3] propose to use resources
when they are more abundant and cheap, and to refrain from
or to limit communication when it is more expensive (e.g.,
lower spectral efficiency, higher congestion, etc.) by exploiting
perfect knowledge of the future bandwidth.

Recently [2], we surveyed the state of the art on mobile
bandwidth prediction techniques and built a model for both
short and medium to long term prediction errors in order to
be able to quantify the impact of prediction uncertainties in
resource allocation. By developing this model, we noticed
that most short term prediction techniques [13], [15] rely
on time series filtering solutions, such as moving average
and autoregressive (ARMA) or autoregressive conditional het-
eroskedasticity (ARCH) modeling. Thus, in order to allocate

resources on a given time granularity, prediction must be
available with the same granularity and, consequently, mobiles
must be able to measure bandwidth availability with the same
granularity.

Mobile bandwidth measurement is a well investigated
topic in the literature, but, to the best of our knowledge,
no lightweight or passive technique allows mobiles to collect
frequent measures of their available bandwidth. To fill this
gap, this paper proposes a simple technique which is able
to measure the fast variations of the per user capacity and,
from those, the expected end-to-end throughput. In order to
do so we adapt packet train dispersion techniques by applying
an adaptive filtering mechanism, which we show is effective
in removing the impact of outliers due to bursty arrival and
jitter, which are very prevalent in mobile environments. We
validate the effectiveness of the solution through an extensive
measurement campaign: our technique can achieve an accurate
throughput estimate with as few as 5 % of the packets needed
by other solutions, while making an error smaller than 20 %.

Our goal is to provide a simple tool that evaluates passively
or with minimum impact the per user capacity variations over
time in a mobile environment. This enables filter based predic-
tion techniques and, consequently, prediction based resource
allocation optimization. Source code for the tool can be found
in the repository of the EU project eCOUSIN1.

In the following sections we propose a lightweight mea-
surement technique of the per user cell capacity. Our proposal
adapts earlier packet train dispersion techniques and allows
to collect reliable measurements on a mobile device despite
the complexities introduced by the wireless link. Also, we
have evaluated our technique on actual mobile network data
collected during a measurement campaign.

The rest of the paper is structured as follows: related
work and some mobile network fundamentals are discussed in
Sections II and III respectively, we present our measurement
technique in Section IV, while in Section V we describe how
we collected the data needed to validate this technique. The
obtained results and their discussion are in Section VI. Finally,
Section VII summarizes our conclusions.

1https://ecousin.cms.orange-labs.fr/sites/ecousin/files/lightmeasure.zipISBN 978-3-901882-68-5 c© 2015 IFIP



II. RELATED WORK

A number of approaches exist to estimate mobile band-
width. The most popular of which is Ookla’s mobile applica-
tion, Speedtest [12], which computes the maximum end-to-end
throughput achievable by a single long lived TCP connection
(according to our tests the measurement lasts for either 20
seconds or after 30 MB have been downloaded, whichever
happens first) with the closest measurement server. Then,
it derives throughput samples and aggregates them into 20
bins (each one has about 5% of the samples), applies some
post processing to remove measurement artifacts and, finally,
estimates the average of the bins. Huang et al. [6] proposed
to use 3 parallel TCP connections in order to remove the
effects of packet losses, TCP receive window limitations and
overloaded servers, while ignoring any data collected during
the slow-start phase of TCP. The calculated throughput is given
by the median of the collected samples, in order to reduce
the effect of outliers. Recently, Xu et al. [19] analyzed the
use of UDP to compute the end-to-end throughput availability,
also accounting for packet interarrival times and the impact of
mobile scheduling. All these techniques are active, use long
data transfers and thus, incur a high overhead.

Conversely, passive monitoring techniques aim at estimat-
ing similar information by analyzing ongoing mobile com-
munications, without triggering any dedicated activity. Gerber
et al. [5] achieved quite accurate results just by relying on
selected types of applications (i.e., video streaming), which
provide more reliable throughput measurements as they are
more likely to exploit the full cell capacity. In order to study
transport protocols in LTE, [7] developed a passive measure-
ment scheme, which monitors the sending rate over a given
time window that ensures the full exploitation of the available
bandwidth. PROTEUS [18] combines passive monitoring with
linear prediction to estimate the achievable throughput. Other
worth mentioning solutions in this category are [14], where
the authors try to identify bottleneck links in the core network
of an operator by conducting large scale passive measurements
of TCP performance parameters and citesvoboda2008analysis,
where network “footprints” (generated by counting the number
of packets and the number of retransmissions of all the users
of a network) were used to identify capacity bottleneck links.
However, these solutions cannot be directly applied to mobiles.

We conclude that none of the aforementioned solutions
allow for frequent throughput measurements, nor do they
provide estimates of the per user cell bandwidth availability on
the client side (mobile device) to allow for effective bandwidth
prediction and resource allocation.

Lai [10] attempts to actively measure link bandwidths of a
path by taking advantage of the packet pair property of FIFO-
queuing networks. Dovrolis [4] further refines the packet pair
technique and demonstrates that packet pair dispersion rate has
a multimodal distribution, whose modes in turn depend on the
capacity and the cross traffic at each of the links composing
the sender-receiver path. Also, the authors devise a method to
estimate the capacity of the bottleneck link in the path, based
on the fact that the average throughput measured by packet
trains converges to the asymptotic dispersion rate, from which
an estimate of the bottleneck capacity can be computed. As we
will discuss later though, it is unsuitable for use over mobile
networks. CapProbe [8] proposed a technique based on packet
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Fig. 1: Some of the LTE network components that a file has
to traverse in order to reach a mobile client.

pairs dispersion and delays to devise a reliable bandwidth esti-
mation technique, aimed at mobile networks. Both techniques
are meant to measure the capacity of the bottleneck link of
a path. Instead, we are interested in measuring the per user
available bandwidth at a given moment.

In this paper we use the relationship between the per user
capacity CU , and the end-to-end throughput R, to get an
estimate of the latter using sparse samples of the former, which
is measured using our proposed packet dispersion technique.

III. MOBILE NETWORKS CHARACTERISTICS

In this section we provide a brief overview of the com-
ponents and characteristics of mobile networks that have an
effect on bandwidth measurement. In the rest of the paper, we
will use terminology and network architecture components of
LTE, but the ideas and the algorithm can be applied to any
recent mobile network technology like 3G.

The user equipment (UE), which can be any device with
mobile communication capabilities, connects to the operator
network through any of the multiple base stations (BS) that the
operator controls, as shown in Fig. 1. BSs are in turn connected
to the core network (CN) of the operator. This set of antennas
can be collectively called Radio Access Network (RAN) and
are the interface between the UE and the operator.

The transmission of data from the BS to the multiple UEs
connected to it, is regulated by a scheduler, which allocates
resources and periodically transmits packets to the associated
UEs. This period, called Transmission Time Interval, (TTI)
largely differs among mobile telecommunications systems,
with more recent technologies having lower values. It can
be as short as 1 ms for LTE or at least 10 ms for UMTS.
Thus, the UEs receive data in a way such that a burst of
data is transmitted to them, during TTIs that they have been
allocated resources and receive nothing during TTIs that they
have not been allocated resources. The scheduling process is
usually based on a fairness scheme that takes into account the
data needs and channel quality of all the UEs served by the
same BS. A very popular such scheme is the “proportionally
fair” [9]. It tries to weight the past allocation of resources
and the current potential throughput of all the competing
users. That way it finds a balance between providing adequate
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(a) Link saturation traffic over LTE during the
steady state of a TCP flow.
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(b) Arrival of the first packets of a TCP flow
over LTE.
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(c) Some packets may be registered with a
noticeable delay.

Fig. 2: Time-sequence graphs presenting the arrival of packets to a smartphone, as they were captured by the traffic sniffing tool
tcpdump. The time values represent time since the first packet of the download arrived and represent when the related packets
were captured by tcpdump, not their actual arrival time at the device.

resources to all users, regardless of their channel quality, and
maximizing the overall throughput of the base station.

When a packet is transmitted to a UE, it travels from the
Internet to the operator’s core network which forwards it to
the base station that the UE is connected to. The packet is
then stored at the base station in a buffer dedicated to the
recipient UE. The packet remains to the dedicated buffer until
the scheduler decides to allocate resources to the recipient
UE. Upon allocation and depending on the signal quality, it is
either grouped alongside other packets present in the buffer
to a Transport Block (TB) or, in cases of very bad signal
and/or small amount of allocated resources, a segment of it
is encapsulated in a TB. The TB is then sent to the UE.

The above are illustrated in Fig. 2a, which shows the arrival
of packets to an LTE smartphone, as it was captured by the
sniffing tool tcpdump. In this experiment we are saturating
the link and observe its behavior during TCP steady state.
Note that the TTI of LTE is fixed to 1 millisecond. It is easily
observable that the packets arrive in groups that have about the
same duration as the TTI. Between these groups of packets, the
smartphone is not allocated resources, thus nothing is received.
The size and time spacing of the groups depend on the the
channel quality of the UE and the congestion of the BS.

A. Packet pairs issue

The previous characteristics of the mobile networks make
the use of traditional packet pair techniques unfeasible. Any
two packets that would make a packet pair are in either of the
following cases.

Transmitted in the same TB. In this case the packets
arrive more or less at the same time to the UE, since all the
information included in the TB is transmitted in parallel using
multiple carrier frequencies. The lower protocol layers of the
UE ensure that they are delivered to the higher layers in the
right order. Consequently, sniffing tools like tcpdump perceive
them as arriving with a tiny time difference, in the order of a
few hundreds of microseconds. A bandwidth estimation based
on these packet pairs would greatly over-estimate the real value
of the bandwidth.

Transmitted in different TBs. In this case, the packet
pair consists of the last packet of a TB and the first packet
of the following TB. Thus, the bandwidth value is greatly
underestimated, since the measured dispersion is the dispersion
between the TBs and based on our experiments allocation
of consecutive TBs to the same UE is infrequent. If there
is exactly one packet per TB, then an accurate estimation is
possible, but we observed that in the majority of the cases each
TB contains multiple packets.

B. Measurement artifacts

In our traces we frequently observed measurement artifacts
that are unrelated to the scheduler and can are due to following
reasons.

Small congestion window values during the slow start:
the servers that transmit data over TCP send bursts of packets
to the client and wait for the related acknowledgments before
sending more. This behavior is very prominent during the slow
start phase of the transmission when the congestion window
has small values. The gap in the transmission at the server
side may cause an analogous gap in the transmission at the
base station. During this time, the base station is not sending
data to the recipient UE, because there are not data in the
dedicated buffer. This is visible in Fig. 2b, which illustrates
the delivery of the first packets of a TCP flow over LTE. In
two occasions, consecutive TBs are received with a delay in
the order of tens of ms. We also observe in this example, that
the total number of packets delivered in the groups that arrive
at about 75 ms is bigger than the number of packets in the
first set of groups (the second group has just one packet) at 0
ms. This is caused by the exponential growth of the congestion
window. Eventually, the congestion window is big enough that
the we observe a continuous stream of incoming packets and
this effect diminishes. Since the Round Trip Time is bigger in
3G networks, the impact of this TCP behavior is slightly more
pronounced.

Weak or busy phone hardware: we observed that the
exact timing of packet arrival is affected by the capabilities



of the phone and the capture software2. Usually packets are
registered in the trace with a delay in the range of a few
ms. More powerful phones are a bit less affected, but even
in this case, the delay shows slight variations. Since this delay
is very small, it is not significantly affecting our technique,
whose adaptive and statistical nature tries to countermeasure
it. The same effect is reported in [19], where it is attributed to
the polling frequency of the OS to the NIC driver. Also, it is
quite common for packets to be delivered to the phone but not
delivered to the higher layers until several milliseconds later,
alongside all the other packets that have been received in the
meantime. This is usually observed in cases of high available
bandwidth and/or high CPU utilization. This behavior is very
evident in Fig. 2c, which depicts the TCP steady state of a 3G
download. According to the server side trace of this download,
the server transmitted all the packets that are visible in the
figure almost “back-to-back”. Also, the phone trace showed a
steady rate in the delivery of packets. But at times 5175 and
5215 ms we observe a gap in the delivery of packets and then
the delivery of an impossibly big group. Packets were actually
delivered during these gaps were registered all together when
the CPU was able to process them.

C. Packet trains issue

Packet trains are also problematic for the following reasons.
They can not be used in a passive scenarios because the server
transmits packets on the receipt of ACKs and the application
requirements, so the trains will have variable length.
The number of packets in each TB may be different, which
results in similar problems to the ones described in the
“packet pair” scenario. On one occasion all the packets will
be transfered in the same TB and on another in multiple TBs.

It is clear that long-established packet dispersion tech-
niques that were developed to detect the bottleneck link ca-
pacity at wired networks are not suitable for mobile networks,
especially in regards to detecting the per user capacity. In the
sequel, we will present the necessary modifications to this
approach to make it provide bandwidth estimations in mobile
scenarios.

IV. MOBILE BANDWIDTH ESTIMATION

In a mobile network, CU is the per user capacity of the
link between the BS and the UE. This is the last hop of
the downlink path and its capacity is dependent on the cell
congestion and the channel quality. Consequently, it is usually
the link of a path with the lowest available bandwidth, that
also contributes the most to the delay. With R we denote the
end-to-end TCP throughput achieved by mobile applications,
which depends on the capacities and the cross traffic of all the
links in the downlink path. The end-to-end TCP throughput is
primarily determined by the link with the minimum available
bandwidth, which in a mobile scenario is usually the RAN.

Fig. 3 illustrates the packet dispersion due to the trans-
mission over links with different capacities. Initially, (1) the
server sends a burst of IP packets (A-H in the example) back
to back. The number of packets in the burst varies since
it depends on a number of factors like the state of TCP
connection and the specifics of the application and the server

2http://www.tcpdump.org/faq.html#q8 [Last access: 2015-03-24]
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Fig. 3: Dispersion of IP packets over the Internet. First, they
are sent back-to-back from the server (1). After experiencing
disperion on the Internet, they arrive on the BS (eNodeB)
(2). Finally, they are received in groups by the UE (3). The
timelines (1-3) in the figure happen sequentially, one after the
other, not in parallel. The horizontal arrows represent a TB
allocated to the recipient UE.

that generates it. Subsequently, (2) the base station (eNodeB)
receives the packets, which have suffered variable delays due
to the different link capacities and cross traffic encountered
along the path. When the scheduler allocates a TB (marked
with horizontal arrows in the plot) to the receiving UE (3), as
many packets as possible are encapsulated in it. Therefore, all
the packets that are scheduled together arrive within the same
TTI at the UE. In fact, the inter-packet interval can be greatly
reduced (packets A and B) or greatly magnified (packets B and
C). Similar effects are observed in various mobile technologies.

Considering the set of “back-to-back” transmitted packets
crossing the two-link path in Fig. 3, the first link (backhaul)
and the second link (cellular) are characterized by bandwidth
CB and CU respectively. If CB > CU , the set of packets
arrives at the second link with a delay which is inversely
proportional to CB and shorter than the average time needed
for the second link to serve all but the last packet. In other
words, the arrival rate is higher than the departing rate at the
base station, thus the dispersion of the set is caused by the last
link. Also, depending on the scheduling strategy, the set may
be served within the same transport block or multiple transport
blocks by the BS. Conversely, if CB < CU the set of packets
arrives to the second link separated by a delay which is longer
than the average serving time of the BS. We thus have three
cases (excluding the problematic cases of section III): i) bursty
arrival [7], [19] (e.g.: set of packets E-F), if CB > CU and
packets are in the same transport block, ii) last hop capacity if
CB > CU and packets are in different transport blocks (e.g.:
set of packets A-D), or iii) lowest hop capacity if CB < CU .

In order to estimate CU , we have to filter both i) and iii)
cases, as well as take into account the behavior of sets of
packets when transmitted over mobile networks as presented
in section III. In brief, our approach has two components: a)
generating bandwidth estimation samples which are not signif-
icantly affected by the above and b) the statistical processing
of those samples in order obtain a CU value. A high level
overview of the technique is presented in Table I.
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Fig. 4: Scatterplots of cŴ (left of each pair) and histograms of γŴ (right of each pair) computed for tT = {1, 5, 10, 20, 30}
ms from left to right. When the dispersion time is computed on windows larger than the TTI, tT > tS , the dispersion time
distribution gets more stable.

Description of step Related metrics Notes
Choice of parame-
ters.

tT , bin size and f
(if applicable) are
chosen.

The optimal tT for various Technolo-
gies can be found at Table II.

Generation of esti-
mation samples that
are not affected by
type i) arrivals.

For each captured
packet i, we define
a dispersion time
dW (i) and then a
per user dispersion
rate cW (i).

The duration of the dW (i) is different
per packet. The minimum duration is
given by Eq. (6), which ensures that at
least two packets belonging to different
TBs are taken into account. For some
packets towards the end of a flow (or
bin) it is impossible to generate those
metrics, since the minimum dW (i) is
bigger than the time between their ar-
rival and the end of the flow (or bin).

Selection of sam-
ples that are not af-
fected by type iii)
arrivals.

Generation of the
dispersion rate dis-
tribution. Its max-
imum reflects the
per user capacity.

Values smaller than the maximum can
be attributed to bottleneck links other
than the BS-UE link. Asymptotic dis-
persion rate is given by the average of
the distribution [4].

TABLE I: The different steps of the technique

A. Bandwidth Estimation Samples

The input data for our passive measurement tool are
the timestamps and sizes of all the received packets of a

smartphone. This information can be collected on the OS level
by monitoring the stack. In our experiments, we used rooted
Android smartphones and tcpdump to capture all the incoming
traffic. Ultimately this functionality could be included in the
mobile OS as an on-demand lightweight measurement service.

We consider a set of N packets sent back-to-back from a
server and received at the UE so that the i-th packet is received
at time ti, with i = {1, . . . , N}. A key metric used by our
algorithm is the “inter-packet interval”, the time difference
between the arrival of two consecutive packets (ti+1 − ti).
Obviously, in a group containing N packets, there are N − 1
intervals. W represents the number of such intervals that we
take into account when we generate the bandwidth estimation
samples. For each packet in the set we define the dispersion
time dW (i) = ti+W − ti, and the per user dispersion rate
cW (i) = (

∑i+W−1
j=i Lj)/dW (i), for a given value of W , where

Li is the length of i-th packet.

In detail, the cW (i) value of packet i is derived by adding
the sizes of W consecutive packets, starting from i and then
dividing by the time duration of W consecutive inter-packet



intervals, starting from [ti+1 − ti]. Packet i + W contributes
only to the denominator. For example, in Fig. 3, cW=2(A) is
computed by dividing the sum of sizes of the packets A and
B by the dispersion time dW=2(A) = tC − tA.

Subsequently, we define δW (d) and γW (c) as the statistical
distributions of the packet dispersion time and the dispersion
rate, respectively. Note that the three arrival cases above
contribute to those distributions in different ways: arrivals of
type i) cause a tiny dW (i) and, thus, influencing the right
part γW (c) (over-estimation of CU ), while the left part of it
is influenced mostly from type iii) events, which show larger
dW (i) (under-estimation of CU ). To better visualize what is
discussed next, Fig. 4 shows a set of scatterplots of cW (i)
and their related histograms of γW (c) computed on a single
download performed using the Speedtest application [12] over
a HSPA connection.

First, we may want to try to limit the impact of type i)
arrivals by setting W appropriately: the idea is to include
in each measurement packets belonging to different TBs in
order to make sure that the highest throughput cW (i), we can
measure is only related to the cell capacity and not to bursty
packet arrivals, as it would have happened had we chosen
W = 1 in the example of Fig. 3. In order to achieve that,
it is sufficient to study groups that contain Ŵ (i) intervals so
that the minimum dispersion time is longer than the maximum
TTI, abbreviated tS :

Ŵ (i) = {min(W )|min(dW (i)) > tS}; (1)

in fact, this guarantees that at least two packets within the Ŵ (i)
window are scheduled in two different transport blocks since
ti+Ŵ (i)−ti = dŴ (i)(i) > tS . In other words, we are averaging
the burstiness over two transport blocks. An effect of Eq. (1),
is that each packet i has a different W value, depending on
the spacing of packets that were received after it.

It is important to select the minimum value of W for the
creation of the cW (i) value for packet i that has the property
min(dW (i)) > tS . As discussed in section III, the “slow start”
behavior of TCP introduces noticeable gaps in packet delivery.
Thus, samples that include these gaps in their calculation of
dW (i), generate cW (i) values that are significantly smaller and
not representative of the CU . A high value of W increases the
probability of a sample to include such gaps.

B. Statistical Processing Of The Samples

Now that type i) events are filtered, the minimum disper-
sion time min dŴ (i) cannot be smaller than the minimum time
needed for the set of packets to cross the last link, which
corresponds to the maximum per user cell capacity. Thus, CU

can be found as the maximum of the distribution γŴ (c):

CU = max
c
γŴ (c), (2)

note that, with Eq. (1) we are filtering the effect of type i)
arrivals (min) and with Eq. (2) the delays introduced by type
iii) arrivals (max) and server behavior.

Ideally, we would like to sample cŴ until the γŴ (c) is
stable, but CU is varying because of both user movements
and fast fading, hence we can only obtain an estimate c̃
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Fig. 5: Ratio ∆(tT ), varying tT ∈ [2, . . . , 50] ms. The
measurements get stable from tT > tS = 10 ms.

of it from a set of K consecutive dispersion time samples.
Although estimating the distribution from a limited number of
samples reduces the accuracy of our measurement, we can at
least guarantee that we are not overestimating CU :

C̃U
(K)

= max
c
γ̃
(K)

Ŵ
(c) ≤ max

c
γŴ (c) = CU , (3)

where γ̃
(K)

Ŵ
(c) is the distribution of c̃

(K)

Ŵ
obtained using

K dispersion samples. This follows from the probability of
the distribution of a sampled random process to contain the
maximum of the theoretical distribution of the process, which
is increasing with the number of collected samples:

lim
K→∞

C̃(K) = CU . (4)

Finally, with similar reasoning, the asymptotic dispersion rate,
R = E[cW ] [4] and its sampled version R̃(K), tends to the
actual value when the number samples tends to infinity:

lim
K→∞

R̃(K) = R. (5)

C. Bandwidth Measurement

This section describes the feasibility of lightweight ac-
tive and passive measurements of per user capacity CU and
asymptotic dispersion rate R based on dispersion samples of
packet sets. It also explores the effect different values of some
parameters have on our technique. We compute the dispersion
time by using an adaptive window Ŵ (i) intervals such that:

Ŵ (tT ) = arg min
W

(ti+W − ti > tT ), (6)

where tT ∈ [1, . . . , 50] ms, for all the values of tT . So, each
sample i is composed of all packets following i until the first
packet which arrived after more than tT ms after i. This allows
to satisfy Eq. (1) a posteriori if the TTI duration is not known.

We exemplify the dispersion time in Fig. 4, based on data
obtained by time-stamping the arrival time of the packets of
a 6-MB HSPA download. This figure presents the evolution
of the scatterplots of cŴ and histograms of γŴ for various
characteristic values of tT .

During the slow start phase of a TCP connection an
increasing number of packets are sent back to back from the
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Fig. 6: Normalized root mean square error εC of the capacity
estimate computed over a fraction f = K/N of continuous
samples for varying bin sizes ({0.1s, 0.2s, 0.5s, 1s}).

server, and after a few round trip times (RTT) the congestion
window is large enough to allow the transmission of packet
trains long enough to measure capacity as high as 100 Mbps.
In fact, CU should be proportional to the maximum number
of packets that got scheduled in a single transport block and,
if Eq. (1) is satisfied and tT > tS , the impact of outliers
due to bursty arrivals is removed. With reference to Fig. 4, it
can be seen that the maximum of the capacity distribution
maxc γŴ (tT )(c) is approaching a stable value of about 10
Mbps when tT ≥ 15 ms. Due to limited space, we can not
present the related plots of other downloads. Based on the
rest of our dataset, a stable value is reached for values of tT
between 10 and 20 ms.

Moreover, Fig. 5 shows the stability of the maximum of
the capacity distribution by plotting the ratio ∆(tT ), computed
between the maximum of the distributions obtained with
windows of tT and tT−1:

∆(tT ) =
|CŴ |tT − CŴ |tT−1|

CŴ |tT−1
. (7)

Ideally, the ratio ∆(tT ) should stabilize to 0 as soon the
scheduling outliers are filtered (tT > tS) and further increasing
tT should only make the distribution smoother. However, in
actual experiments increasing tT makes it more difficult to
obtain a sample of the maximum capacity which is consistent
over different transport blocks. In this preliminary example,
we can see that ∆(tT ) becomes stable for tT > 20 ms, which
is in line with the HSPA TTI of 2− 10 ms.

Next, we divide the time duration of a download into fixed
sized bins and we apply the above method taking into account
only a percentage f = K/N of consecutive capacity samples
in each bin. Fig. 6 shows the normalized root mean square
error, εC of the estimate by varying f :

εC =

√∑
bins(C̃

(K) − C̃)2

NbE[C̃]2
, (8)

where Nb is the number of bins in a flow. The compu-
tations have been repeated for different bin sizes varying
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Fig. 7: Time plot of the capacity variation CU (t) computed
every 500 ms and its different estimates computed with f =
{10, 20, 50, 100} %.

in {1, 0.5, 0.2, 0.1} seconds (dotted, dash-dotted, dashed and
solid lines, respectively). It can be seen that the error decreases
below 20 % when more than 20 % of the samples are used.

Also, Fig. 6 can be interpreted as the width of the distri-
bution of the probability of an exact measurement using f %
samples. In particular, it is easy to see that, if we use all the
samples, the distribution should collapse into a delta function
(zero width), while the fewer sample we use, the larger the
distribution bell. Notably, this distribution should be positive
for values larger than the actual measurement only, due to
Eq. (3) that shows maxc γ̃

(K)

Ŵ
(c) ≤ maxc γŴ (c). Thus, the

real value can only be larger than the measured one. Since our
technique estimates the maximum of the user capacity, it can
be seen within the framework of extreme value theory [16]. We
left the refinement of our technique according to this theory
for future work.

To complete this preliminary evaluation of our measure-
ment technique, Fig. 7 shows the variation of the per user ca-
pacity CU (t) measured every 500 ms and its estimates C̃(K)(t)
computed with f = K/N = {10, 20, 50, 100}% (dotted, dash-
dotted, dashed and solid lines, respectively). Although with 10
% of samples the estimates are quite different from the actual
capacity values, we will be showing next that it is possible to
exploit these coarse estimates to obtain a sufficiently accurate
asymptotic throughput estimate.

V. MEASUREMENT CAMPAIGN

In order to validate our measurement technique over many
different scenarios and configurations, we organized a mea-
surement campaign that covers two cities in two different
countries, Madrid (Spain) and Darmstadt (Germany), for 24
hours a day lasting 7 days. During this time, 5 people per city
moved around as they normally do, carrying one measuring
device each and performing their usual tasks involving mobile
networking on the measuring devices. In order to be able to
compare results of both passive and active measurements, we
also perform automated periodic file downloads.
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Fig. 8: Scatterplot of the average estimate of per user capacity
E[C̃(K)] computed over 5 % of the available information
(K = 5 % ∗ N ) against the estimated end-to-end throughput
measured using all available information. The dashed line
shows the linear regression between the two quantities.

All the devices were running a simple Android application,
which was periodically sampling the available capacity by
starting two download types: short downloads of 500 KB to
study the TCP slow start phases and long downloads of 2
MB to measure TCP steady state throughput. The two types
were organized in a sequence with a long download, preceded
by two small downloads and later succeeded by another two.
We use tcpdump on the measurement devices to monitor the
arrival time and size of all incoming packets. The download
sequence was repeated every 50 minutes. Additionally, we
log other related phone parameters: GPS, cell ID, Channel
Quality Indicators (ASU, dBm) and network technology (2G,
3G, LTE).

The phones used in the campaign were the following: 5
Nexus 5, located in Germany, and 4 Sony Xperia Miro and 1
Samsung Galaxy S3, located in Spain. Also, while the Nexus
5 phones are LTE capable, the other phones only support radio
technologies up to HSPA.

VI. RESULTS AND DISCUSSION

We verified our measurement technique by analyzing more
than 3000 unique TCP flows extracted from the communication
of the phones participating in the campaign. For each flow we
compute the asymptotic dispersion rate R̃, using Eq. (5) ac-
counting for the whole information available, and the per user
capacity C̃(K) for different percentages of used information
f ∈ [1− 100] % and different bin sizes (from 0.1 to 2 s).

The first and most important result, Fig. 8, shows a
scatterplot where each point is obtained from a different flow
for which the estimated average per user capacity is used as
the abscissa and the end-to-end throughput as the ordinate. We
also plot the linear regression between the two quantities as
a dashed line in order to show that one is a good predictor
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Fig. 9: Contour graph of εC varying tT and f for a bin size
of 200 ms.

of the other. We compute the per user capacity in each bin
of the flow by using 5 % of the samples of the bin and we
average over the bins, while the throughput is obtained using
all the available information and therefore is considered to be
the ground-truth for this comparison.

The figure is plotted in double logarithmic scale in order
to emphasize that the relationship between R and CU can
be observed over all the measured connection rates. Although
outliers are visible, we can obtain quite an accurate estimate of
the end-to-end throughput by exploiting as few as 5 % of the
packets sent during a TCP connection. This allows for quite an
effective passive monitoring technique as, even by monitoring
small data exchanges, it is possible to obtain frequent and
accurate mobile bandwidth availability measure necessary for
user throughput prediction and resource allocation.

Unfortunately, using low rate background traffic is impossi-
ble, because either the rate is incredibly low (about 4 packets
over 100ms) or the APPs use the Google Cloud Messaging
(GCM) service. In the case of GCM, if there is an update
a couple of packets are sent just to generate a notification.
When the user interacts with the notification, a larger number
of packets are downloaded. In this scenario, we can use that
download to get and estimation.

As a side note, our technique is also able to estimate
fast per user capacity variations. However, it obtains a lower
accuracy since a larger fraction of samples are needed to
estimate the maximum of the distribution γW (c). Nonetheless,
it is often sufficient to use 20 % of the samples collected in a
bin to achieve a reasonable estimate of CU . In fact, with the
smallest bin size and as few as 20 % of the samples εC < 0.2,
which means the actual capacity should not be larger than 120
% of the estimated value. Another strength of this measurement
technique is that errors are one sided (the actual value can only
be larger than the measured), thus this measurement can be
safely used as lower bound in resource optimization problems.

In addition, tT must be taken slightly longer than the TTI
to avoid the measurement being impacted by many bursty
arrivals. In line with Eq. (1) of Section IV, ∆(tT ) approaches



zero for tT > 15 ms for most of the recorded flows.

Fig. 9, shows the normalized RMSE for various combi-
nations of tT and f . The bin size is set to 200 ms to give
an example of this technique’s results when it collects very
frequent measurements. As expected εC decreases when tT
and f increase. For values of tT ≥ 15 ms and f ≥ 20 %, the
error is small enough for the model to give trustworthy results
(εC ≤ 15 %).

Finally, Table II shows some of the overall evaluation of
the traces obtained with f = 25 % averaging over the bin size
and using the optimal tT (min tT |∆(tT )→ 0). Optimal tT and
average asymptotic dispersion rate are computed mimicking
the Speedtest method [12]. While some of the flows are
transmitted using 2G EDGE data, the results are not included
since there are too few such flows for statistical significance.

Technology UMTS HSPA HSPA+ LTE
ADR (Mbps) 10.83 1.4 10.74 24.3
Optimal tT (ms) 19 23 17 16

TABLE II: Average asymptotic dispersion rate and average
optimal tT per technology.

VII. CONCLUSIONS

We presented a lightweight measurement technique that
leverages adaptive filtering over the packet dispersion time.
This allows to estimate the available bandwidth in mobile
cellular networks. Accurate estimates can be achieved ex-
ploiting as few as 5 % of the information obtained from
TCP data flows. Given that this solution can support dense
throughput sampling, it is ideal for bandwidth prediction and
optimized resource allocation. In fact, if the future bandwidth
availability is known, it is possible to predict when it is
best to communicate by doing so when it is cheaper (i.e.,
more bandwidth available). In addition, our solution is able
to estimate the fast capacity variations from a mobile terminal
by monitoring the traffic generated under normal daily usage.

We validated our technique over a week-long measurement
campaign spanning different locations, devices and commu-
nication technologies. We achieved good estimation accuracy
even when using only short lived TCP connections. Since our
technique is based on simple post-processing operations on
the packet timestamps, it is possible to easily integrate it in
background processes or OS routines.

We are planning to extend our measurement application
with filter based prediction capabilities in order to provide
mobile phones with a complete bandwidth forecasting tool,
which, in turn, will allow for advanced resource allocation
mechanisms. Finally, we are planning additional measurement
campaigns in order further extend these encouraging results on
passive and lightweight measurement tools.
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