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Abstract—Modern Industrial Control Systems (ICS) integrate
advanced solutions from the field of traditional IP networks,
i.e., Software-Defined Networks (SDN), in order to increase the
security and resilience of communication infrastructures. Despite
their clear advantages, such solutions also expose ICS to common
cyber threats that may have a dramatic impact on the functioning
of critical infrastructures, e.g., the power grid. As a response
to these issues, this work develops a novel hierarchical SDN
control plane for ICS. The approach builds on the features
of a novel SDN controller named OptimalFlow that redesigns
the network according to the solutions delivered by an integer
linear programming (ILP) optimization problem. The developed
ILP problem encapsulates a shortest path routing objective
and harmonizes ICS flow requirements including quality of
service, security of communications, and reliability. OptimalFlow
exposes two communication interfaces to enable a hierarchical
control plane. Its northbound interface reduces a complete
switch infrastructure to an emulated (software) switch, while
its southbound interface connects to an OpenFlow controller to
enable the monitoring and control of real/emulated switches.
Extensive experimental and numerical results demonstrate the
effectiveness of the developed scheme.

Index Terms—Industrial Control Systems, Software-Defined
Networks, Resilience, Security, Reliability.

I. INTRODUCTION

HE massive proliferation of traditional Information and

Communication Technologies (ICT) into the architecture
of Industrial Control Systems (ICS) will constitute a turning
point in the operation and functioning of modern ICS. This
will provide the building blocks for novel infrastructural
paradigms, and will facilitate innovative applications such
as robust voltage control, renewable energy programs, and
electric vehicles. Despite these clear advantages, however, the
pervasive integration of commodity off the shelf ICT hardware
and software will also expose ICS to new threats [1], [2], [3].
These may have a significant impact on the functioning of
critical infrastructures, e.g., the power grid, and may lead to the
failure of services, to economic and, possibly, to human losses.
As a response, several recently developed techniques address
the security of ICS. Furthermore, the NIST Guide to Industrial
Control Systems Security [4] recommends integrating different
solutions into a defense-in-depth security strategy. On the
other hand, ICS require communication resilience solutions
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that ensure their normal functioning even in the presence of
disturbances such as failure and disruptive cyber attacks.

To alleviate the aforementioned issues we develop a novel
hierarchical SDN control plane for ICS. The proposed scheme
provides a scalable solution for ICS distributed across large
geographical areas. The approach builds on the features of a
novel SDN controller named OptimalFlow, which monitors a
single SDN domain, and redesigns the network according to
the solutions delivered by an integer linear programming (ILP)
optimization problem. The developed ILP problem encapsu-
lates a shortest path routing objective and harmonizes ICS flow
requirements including quality of service, security, and relia-
bility. OptimalFlow exposes two communication interfaces to
enable a hierarchical control plane. Its northbound interface
reduces a complete switch infrastructure to an emulated (soft-
ware) SDN switch, which exposes the domain’s edge ports to
the upper tiers and can be monitored and controlled through
the OpenFlow protocol. We believe that this is a salient feature
of the developed scheme, since it facilitates OptimalFlow’s
adoption in any installation supporting the OpenFlow protocol.
OptimalFlow’s southbound interface connects to an OpenFlow
controller, to monitor and control a network of emulated or real
SDN switches. In order to minimize the impact of network
updates on ICS flows we further propose two algorithms.
Algorithm 1 dynamically reduces the set of variables in the
optimization problem such that only the flows that are affected
by a disturbance are optimally redistributed. Algorithm 2
constructs a dependency graph for network updates in order
to avoid link congestion. OptimalFlow is implemented in the
Python language and its effectiveness is verified through
experiments conducted with Mininet [5] and with the AIMMS
optimization software [6].

The rest of this paper is organized as follows. Related Work
is briefly discussed in Section II, while the proposed scheme
is presented in Section III. Experimental results are detailed
in Section IV and the paper concludes in Section V.

II. RELATED WORK

Several recent studies demonstrated the benefits of SDN-
enabled communication infrastructures and identified key chal-
lenges in adopting this emerging technology. Yonghong Fu
et al. [7] developed Orion, a hybrid hierarchical control
plane for large-scale networks. Orion defines three planes: the



domain physical network, the tier 0 control plane consisting
of area controllers, and the tier 1 control plane consisting of
a distributed set of domain controllers. While Orion addresses
the routing problem in large-scale multi-domain SDN infras-
tructures, OptimalFlow focuses on the requirements of ICS
communications including security, reliability and resilience
to disturbances. Therefore, similarly to Orion, OptimalFlow
proposes a hierarchical control plane architecture, but expands
the routing criteria from traditional ICT with those specific to
ICS. Tuncer et al. [8] developed an SDN-based management
and control framework for backbone networks. The approach
followed a hierarchical and modular structure to support
large-scale topologies and the simple integration of various
management applications. The work of Tuncer also proposed a
network planning algorithm based on the uncapacitated facility
location problem. In [9] the authors developed Dionysus, a sys-
tem for consistent network updates in SDN. Dionysus builds
the graph of network update dependencies and schedules these
updates by taking into account the performances of network
switches. To eliminate packet losses [10] proposed zUpdate,
a solution that uses packet labeling for zero packet losses
during network updates. In comparison to these works, we
believe that OptimalFlow, on one hand, and Dionysus and
zUpdate on the other hand expose complementary features.
Particularly, the hierarchical control plane and the network
optimization problem proposed in this work could be extended
with Dionysus and zUpdate and their ability to provision
network updates with minimum (zero) packet losses.

In the industrial sector, Goodney, et al. [11] showed the high
degree of network flexibility that can be achieved by adopting
SDN for phasor measurement unit (PMU) communications.
The benefits of industrial SDN were further demonstrated
in a test infrastructure comprising IEC61850-based electrical
system [12]. Finally, the work of Dorsch, er al. [13] analyzed
the advantages and the possible disadvantages of adopting
SDN in industrial networks. The authors of [13] acknowledge
the benefits of network management applications, quality of
service optimization and the enhancement in the system’s re-
silience, but raise serious concerns pertaining to the increased
risks of cyber attacks against SDN’s centralized controllers.

III. PROPOSED APPROACH
A. Architectural Overview

Nowadays, industrial operators are moving towards the
adoption of advanced networking solutions from the field of
traditional IP networking in order to increase the security
and resilience of communication infrastructures. Solutions
including Multi Protocol Label Switching (MPLS) [14] and
Software-Defined Networks (SDN) [15] have recently been
integrated into ICS and have replaced older implementations
based on Frame Relay and Asynchronous Transfer Mode
(ATM). Nevertheless, communications in large-scale ICS usu-
ally cross the boundaries of one administrative domain. In
fact, in order to deliver fault-tolerant communications, several
lines may be leased from different Internet Service Providers
(ISP). Traffic crossing an ISP’s networking infrastructure will
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Fig. 1. Architectural overview of the proposed scheme.

therefore be subject to the constraints and routing decision
specific to each domain. Based on these assumptions we
propose a hierarchical SDN controller scheme that embraces
the multi-domain characteristic of ICS networks by means
of an n-Tier controller architecture, as shown in Fig. 1. The
bottom tier represents the physical infrastructure and consists
of network switches and links. This represents the data for-
warding plane and can be structured in several domains. Each
SDN domain includes a FlowControl unit that: (i) monitors the
underlying domain for changes in network parameter values,
e.g., the status of switch ports; (ii) changes the set of installed
flows according to the solutions delivered by an optimization
problem aimed to preserve critical communication parameters;
and (iii) transparently exposes the edge ports of an entire SDN
domain to the upper tiers by means of an emulated SDN switch
accessible through the OpenFlow protocol.

B. The FlowControl Unit

The FlowControl unit (depicted in Fig. 2) includes two
software controllers: OpenFlow and OptimalFlow. The Open-
Flow controller is a traditional SDN controller that monitors
and controls an underlying SDN network using the OpenFlow
protocol. The OpenFlow controller configures the forwarding
plane of SDN switches and exposes a communication interface
that may be used to implement specially-tailored network
traffic control strategies. The main contribution of this work,
however, lies in the architecture and in the features exposed
by the OptimalFlow controller. OptimalFlow implements a
novel network traffic optimization problem that, as a response
to disturbances, computes a new optimal distribution of the
affected flows, while preserving the requirements of ICS
flows, e.g., security, reliability. Architecturally, it implements
four main modules: SDNStateHandler, OF ControllerCommu-
nication, OptimalSolver, and OpenFlowSwitchEmulator. Its
main module is the SDNStateHandler, which maintains an
in-memory representation of the underlying SDN network
and repeatedly issues calls to the OF ControllerCommunication
module to update its internal state. In the case a change
is detected, it issues a call to the OptimalSolver module
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TABLE I
KEY NOTATIONS
Symbol Description
z I,J,B Flows, SDN switches, and links.
3 Security features.
d; Demand of flow 7.
. uby Capacity of link (4,1, b).
S zfj, ﬁ Access and egress flow connectivity.
N pz Security property requirements for flow <.
§ yii Security properties of link (4,1, b).
& Qi Minimum reliability requirement for flow 4.
r Link failure probability.
a; Penalty value for disconnected flow 7.
3 t;’% Selection of flow ¢ for routing on link (7,1, b).
S . . . . .
S w;‘},wﬁ Selection of flow % for routing betw. acc./egr. switch j.
~ . - . .
S o Selection of flow 4 for disconnection.

to compute the optimal distribution of the flows affected
by the disturbance. The new network configuration is then
transmitted by the OFControllerCommunication module to
the OpenFlow controller via a set of static flows that are
installed in the SDN switches. The OptimalFlow controller
exposes an OpenFlow northbound communication interface
via its OpenFlowSwitchEmulator module. By doing so, the
OptimalFlow controller is connected to upper tiers as a regular
SDN switch that can be monitored and controlled via the
OpenFlow protocol. This represents an effective strategy to
build a hierarchical SDN network, where each tier adopts the
same FlowControl software units. Furthermore, we believe
that this is a salient feature of the proposed scheme, since
it facilitates the provisioning of FlowControl without the need
to change the OpenFlow protocol and the implementation of
SDN switches/controllers.

C. Network Model and Optimization Problem

We assume a demand matrix of flows routed between access
and egress switches. The routing needs to be performed in
such a way to reduce communication delays by means of
selecting the shortest paths and the largest capacity links.
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Flows are assumed to be non-bifurcated multicommodity flows
such that each flow can only be routed on one path. This is
a fundamental requirement to ensure that flows may cross the
boundaries of one administrative domain. A summary of key
notations is tabulated in Table I.

We define I to be the set of flows and J to be the set of
switches. Network devices, especially in the industrial sector,
are usually connected by more than one link, i.e., by primary
and back-up links. Therefore, we define B to be the set of
possible links that may connect two switches, and we use
(4,1, b) to denote link b between switches j and [, where b € B
and j,! € J. Links between switches may implement various
security features such as basic packet filtering (traditional
firewalls), encrypted communication links, signature/anomaly
detection systems. At the same time, flows may require packets
to be forwarded on links with specific security features in
place. Therefore, we define S as the set of security features
and we use s € S to denote a specific security feature.

Next, we define the ILP problem’s parameters. Let d; denote
the demand of flow ¢ and ugl the capacity of link (j,1,b).
We assume that if switches j and [ are not connected, then
ub; = 0,¥b € B. Then, let z;; be a binary parameter with
value 1 if the access end-point of flow ¢ is connected to switch
7, and xfl a binary parameter with value 1 if the egress end-
point of flow 7 is connected to switch j.

The security requirements of flow ¢ are configured with
the help of the binary parameter p;. This is 1 if flow ¢
may be routed on a link with security property s, and is
0, otherwise. On the other hand, the security properties that
are actually installed on a particular link are defined with the
binary parameter yé’f which is 1 if link (j,,b) implements
the security property s, and is 0, otherwise. In the problem at
hand we assume that flow ¢ can be routed on link (j,,b)
only if at least one of the security properties configured
for flow 4 is implemented on link (j4,7,b). This means that,
for instance, a flow that requires only the integrity security
property (s1), may also be routed on a link that implements
other properties as well (s3, where s; is included in s9), such
as integrity, confidentiality. The minimum required reliability
of a forwarding path for flow 7 is defined as parameter
qi» which is a real number bounded between O and 1. The
probability of link failure is defined as parameter r;?l, which
is a real number bounded between 0 and 1. Finally, we define
the «; parameter as a penalty associated with disconnecting
flows. In the problem at hand flows may be disconnected and
not routed in the case of significant network failures, which
effectively reduce the network’s resources and its ability to
route flows. The choice of a; values will lead to a ranking in
the significance of flows and it should be chosen significantly
larger than the maximum possible value of the objective
function’s first part, as discussed later in this section.

Next, we define the problem’s variables. Let t% be a binary
variable with value 1 if flow ¢ is routed on link (j,,b). Let
w{} be a binary variable with value 1 if the access end-point of
flow 4 is routed by switch 7, and O otherwise, and the binary

variable wﬁ with value 1 if the egress end-point of flow ¢



is routed by switch j, and 0 otherwise. We further define the
binary variable o; with value 1 if flow 7 is not routed due to the
unavailability of communication resources, e.g., unavailable
bandwidth, and 0, otherwise.

The objective of the optimization is to select the shortest
routing path for each flow, while selecting the links with
the largest capacities. On one hand, this is accomplished by
adopting a minimization objective that selects the minimum
number of communication links needed to route flows across
an SDN domain, i.e., minimize _ d; (t’" + tl") On the other
hand, we assume the relative load on a partlcular link given by

> di(t%-f—ti’;)
ub

the formula , which will ensure that the solution

includes the links with the maximum capacity. The objective
function’s second part controls the activation of penalty values
in the case of disconnected flows. Therefore, if o, = 1, it
activates the penalty value «; within the objective function.
Since «; is configured as a large integer, the minimization
objective will set 0o; = 1 only if flow ¢ can no longer be
routed due to insufficient resources. The objective function is
thus defined as follows:
i)

min ) (F(j, 1,0) > di(

JleJbeB iel
where F(j,1,0) is 0 if uf, = 0, and is b , otherwise. For the

+ ) aioi, (1)

el

LP at hand the following constraints are deﬁned

w <w”,w <xﬂ, Viel,jeld 2)

szjg,zwﬁgl, Viel (3)

jeJ jeJ

wa}zl—oi,wel 4)

jeJ

wi —wh =Y (-1 =0, Vjediel (5
leJ,beB

S di(th ) <uy, VileJbeB (6)

el

prygfnﬂ, Viel,jleJbeB (7)

seS

[[a=r5th) > q, vier (8)

J,leJ,beB

Constraints (2) enforce that access and egress end-points
are only routed by the possible switches, while constraints (3)
enforce that each flow end-point is routed by only one switch.
Constraints (4) ensure that in the case of insufficient resources
flows are disconnected, i.e., w =0, 0, = 1. Constraints (5)
denote classical multlcommodlty flow conservation constraints
[16], which impose the selection of a continuous path between
access and egress connection endpoints. Constraints (6) im-
pose that the bandwidth required to route flows on link (7,1, b)
does not exceed the link capacity. Constraints (7) ensure that
flow ¢ is only routed on link (j, [, b) if there exists at least one
security property s configured in p; that is implemented on
link (j,1,b) and is configured in parameter yé’f
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Constraints (8) are classical (serial) reliability conditions
imposing that the reliability of communication links on a
particular path satisfy the minimum reliability requirement ¢;.
However, we note that the multiplication of several ¢ variables
in the reliability constraint (8) will yield a non-linear problem.
Therefore, we apply the transformations proposed in [17] to

derive a linear set of equations. We observe that since tbf is a
. . y . b7
binary variable, then (1—7?,¢%) can be rewritten as (1—7?,)"

As a result, constraint (8) is redefined as:

H(l — r?l)t% >q, Viel

j,leJ,beB

©))

By applying the natural logarithm function on both sides
of inequality (9) we obtain the following linear reliability
constraints, which are adopted in the proposed ILP problem:

Z [In(1 — r?l)t?-f] > 1n(gq), Viel (10)
j,leJ,beB

D. Flow Migration Reduction Algorithm

When first launched, OptimalFlow computes the optimal
mapping of flows on the complete network topology and
it configures these flows through an OpenFlow controller.
However, subsequent runs and most importantly, responses to
disturbances might yield a complete network reconfiguration.
In fact, such solutions would introduce significant communi-
cation disturbances and delays that might disrupt time-critical
services and could be easily exploited by attackers. To avoid
such scenarios, OptimalFlow solves the same optimization
problem with a reduced set of variables pertaining to the
affected flows. As such, OptimalFlow implements Algorithm
1 to reduce the set of variables to those that are affected by
disturbances. Initially, the algorithm assumes that all variables
are parameters with the value computed in the previous run.
Then, for a specific link (j’,1’,b") on which a disturbance is
detected, OptimalFlow computes the set of flows AF' that are
routed on (5,1, b"). For each flow i € AF' OptimalFlow adds
to the new subset (SV') the variables for the flow’s access and
egress switches (wg‘}, wﬁ), and for the flow’s disconnection
(0;). Then, the algorithm identifies all the communication
paths between the flow’s access and egress switches. The
switches from all the paths SW; will identify the t% variables,
which are added to SV'.

While following the above procedure will significantly
reduce the impact on communications, after a number of exe-
cutions the network might require a complete re-organization
in order to accommodate all flows and to satisfy the problem’s
constraints. Therefore, Algorithm 1 is extended with the func-
tion CompleteOptimNeeded(sol) that verifies if a complete
network reconfiguration is needed. If so, then OptimalFlow
changes the status of all wlj, wﬁ, 0;, and tg’} parameters
to variables and solves the complete network reconfiguration
optimization problem. The CompleteOptimNeeded(sol) may
be implemented in various ways. For instance, the function
might check if ) .0, > 0, or if > ,0,a; > [, where
£ is a predefined limit above which a complete network
reconfiguration is executed.



Algorithm 1 Flow Migration Reduction

Algorithm 2 Dependency Graph Construction

Let (j/,1',') be a failed link.

ChangeOptimizationAllParameters();

AF = GetAffectedFlows(j’,1’,b');

for each i € AF do
AddAccessVariable(7);
AddEgressVariable(7);
AddDisconnectVariable(7);
SW,; = GetAccessEgressPaths(z);
AddSwitchVariables(SW;);

end for

sol = SolveOptimizationProblem();

if CompleteOptimNeeded(sol) then
ChangeOptimizationAll Variables();
sol = SolveOptimizationProblem();

end if

Overloaded link (u; = 100Mbps)

2l {3 s e e (3 el s g
40Mbps — flow,
flow;

40Mbps
BOMb Efl&wz 8;:\‘;-‘5:!"' IE‘
(a) Initial topology.

(b) Intermediate topology.

Fig. 3. SDN topology reconfiguration with an overloaded link.

E. Network Update Dependency Graph Construction

The proposed optimization problem generates a new flow
configuration that must be provisioned across an SDN installa-
tion by the OptimalFlow controller. However, the migration of
flows from one path to another needs to be carefully planned
to ensure that the procedure does not introduce additional
disturbances. For example, let us assume the migration of two
flows, flow; and flows, with demands of df;o,, = 40Mbps
and d o, = 80Mbps, as depicted in Fig. 3. Let us further
assume that the capacity of links between switches is of
u?l =100Mbps, where the number of possible links between
switches is equal to one. Initially, the optimization problem
routes flow; on links (1,3,1), (3,5,1), and flows on links (2,4,1),
(4,6,1). In the case of a disturbance, however, the migration
of any of the two flows before the other is removed may
overload links (see Fig. 3 (b)). As a solution, this work adopts
a flow migration strategy that relies on the assumption of
prioritized flows, which is particularly specific to ICS. For
instance, communications in the core of ICS encompassing
control hardware connected to critical physical processes may
have a higher priority than the communication between hu-
man machine interfaces and data servers. The proposed link
overload avoidance algorithm, therefore, adopts a priority-
based flow migration strategy and builds a network update
dependency graph according to the priority of flows. For each
flow the algorithm identifies the sequence of flows that need to
be deleted before this update can be performed. For instance,
by further expanding the previous illustrative scenario, we
assume that the priority of flow; is higher than the priority
of flows. As a result, before migrating flow;, flows needs to
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for each j,l € J,b € B do
rescap? ; = GetLinkResidualCapacity(j, I, b);
rem J’-’f = GetLinkRemoveFlows(j, [, b);
addfjl-’i = GetLinkAddFlows(j, [, b);
if rescap?l <D ier addfﬁdi then
dep;iv =1,Vi € I : addf]}-’f =1,vi'el: remfjbfl =1
end if
end for
DEPG = InitializeGraph();
OI = GetOrderedFlows();
for each i € OI do
if IsNotMigrated(z) then
@StepToNextFlow
end if
for each i’ € I do
if dep;iy = 1 and (¢/,“REMOVE”) ¢ DEPG then
AddToGraph(DE PG, (i’ ,“REMOVE"));
end if
end for
if ({,“REMOVE”) ¢ DEPG then
AddToGraph(DE PG (i,“REMOVE”));
end if
AddToGraph(D E PG, (i,“ADD”));
end for

be removed, since flow; has a higher priority. Then, the new
paths of flow; and finally of flows’s can be configured in the
network switches.

A formal description of the above steps is given in Al-
gorithm 2. At first, the algorithm computes the residual link
capacity rescap?l, it stores in the binary parameter rem f;’f
the flows that will be removed from link (j, [, b), and it stores
in the binary parameter addf]l?f the new flows that will be
routed on link (j,1,b). For each link (j,1,b), if the residual
capacity rescapz’-l is lower than the sum of flow demands d; to
be routed on this link, the algorithm adds to the dependency
matrix dep;; of each newly added flow ¢ the flows ¢’ that will
be removed from this link. Based on the dependency matrix
dep;;’, the algorithm then proceeds with the construction of
the dependency graph DEPG by first ordering the flows
descendingly according to their priorities (set O7). Then, for
each ¢ € OI if i needs to be migrated and a dependency is
found with flow 7', a REMOVE network update is added for
flow i to DEPG. Finally, a REMOVE update is added for
flow ¢ and an ADD network update is inserted into DEPG.

F. Implementation Details

A prototype of the OptimalFlow controller was imple-
mented in the Python language. OptimalFlow integrates
part of the POX OpenFlow controller’s code [18] for emu-
lating an SDN switch. OptimalFlow extends three functions
in POX’s code: _rx_feature_request () sends back
to the OpenFlow controller the status of edge switch ports
from an underlying SDN domain; _flow_mod_add () calls
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Fig. 4. Network topology and flow routing in the single domain experimental
scenario. Switches are connected to the same Floodlight controller and are
controlled by one OptimalFlow controller (not shown in figure).

OptimalFlow’s internal functions to add a new flow; and
_flow_mod_delete () calls OptimalFlow’s internal func-
tions to delete a flow. The OptimalSolver module generates an
ILP description of the optimization problem and calls the ex-
ternal SCIP (Solving Constraint Integer Programs) solver [19].
Finally, the OFControllerCommunication module uses
pycurl to communicate with the Floodlight [20] controller
via its REST API. OptimalFlow’s source code is available at
http://upm.ro/sereniti/optimalflow.html.

IV. EXPERIMENTAL RESULTS

In order to assess the performance of OptimalFlow in
various scenarios and problem sizes, we conduct a series of
tests including real and simulated settings. First, we perform
a qualitative assessment in a scenario with a single SDN
domain, which is followed by a scenario with two SDN
domains connected in a hierarchical controller scheme. Then,
we perform extensive simulations to evaluate the main fea-
tures and the solutions of the proposed optimization problem.
The qualitative tests are performed on an emulated network
topology recreated with the Mininet network emulator [5]
on Ubuntu LTS 14.04.3 64-bit OS, and a host with Pentium
Dual Core 3.00GHz CPU and 4GB of memory. Simulation
experiments are performed with the AIMMS software [6].

A. Single Domain Scenario

In the single domain scenario (see Fig. 4) we use Mininet
to create a topology of four SDN switches (s/, s2, s3, s4)
connected to one Floodlight controller. The network topology
is monitored and controlled by one OptimalFlow controller.
We assume that switches are inter-connected by two types
of links: 600Kbps (denoted by thicker links in Fig. 4) and
300Kbps (denoted by thinner links Fig. 4). We further assume
twelve hosts (denoted by &1, h2, ..., h12) and a total of twelve
ARP and TCP flows generated with the iperf tool. In Fig.
4 flows are numbered from 1 to 12 and are written on the
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Fig. 5. A selection of flows in the single domain experimental scenario. Link4
is disabled at 46s, Link5 is disabled at 92s, and Link6 is disabled at 148s.

links on which they are routed. Even numbers denote ARP
flows, while odd numbers denote TCP flows. OptimalFlow is
configured to route twelve flows, where TCP flows have a
demand of 100Kbps and ARP flows have a demand of 1Kbps.
For the sake of simplicity we assume the same security and
reliability values on all links. We assume that flows 1, 2, 7 and
8 have a higher priority (200.000) than the others (100.000).

Based on the above-defined setting, OptimalFlow configures
the network with the routing paths depicted in Fig. 4a. Then,
at 46s we disable Link4 (Fig. 4b). OptimalFlow solves the
network optimization problem by using the variables associ-
ated to flows 1, 4 and 6 and by changing the status of the
remaining flow’s variables to parameters. Since the TCP flow
1 is routed on Link4, despite its high priority, flow 1 is briefly
interrupted (for approx. 1s), an effect, which is shown in Fig.
5a. In the next phase we disable Link5 at 92s (see Fig. 4c) and
then Link6 at 148s (see Fig. 4d). As shown in Fig. 5 when
Link5 is disabled flow 7 is successfully re-routed. However,
by further disabling Link6 OptimalFlow concludes that the
network does not have the capacity to route all flows. As a
result, a low priority flow, i.e., flow 5, is disconnected from
the network (Fig. 5c). It should be noted that in this scenario
Algorithm 1 reduced the number of re-routed flows since the
Link5 down event caused only flows 7, 10, and 12 to be re-
routed, while the path of the remaining flows was not affected.
On the other hand, the adoption of priority-based provisioning
of flows disconnected a low priority flow, preserving thus the
state of critical communication flows.

B. Multi-Domain Scenario

In the multi-domain scenario we create two SDN domains
(DomainA and DomainB) configured identically as the single-
domain scenario from the previous section (see Fig. 6). In
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Fig. 6. Network topology and flow routing in the multi-domain experimental scenario.

3
3
4

Throughput (Kbps)
Throughput (Kbps)

2
3

w
S

N
S

——50% probability
- 8- 60% probability
70% probability
-+ ~80% probability
—6—90% probability

: - ©-100%
. 2 + [}

=

The number of disconnected flows

0 50 100 150 200 250 0 50 100 150 200 250
Time (seconds) Time (seconds)

(a) Flowl (high priority). (b) Flow3 (low priority).

Throughput (Kbps)
2
3
Throughput (Kbps)

0 50 100 150 200 250 0 50 100 150 200 250
Time (seconds) Time (seconds)

(c) Flow5 (low priority). (d) Flow7 (high priority).

Fig. 7. Multi-domain experimental scenario: flow throughput. Link3’ is
disabled at 108s and Link9 is disabled at 155s.

each domain we configure one Floodlight controller and one
OptimalFlow controller. Each OptimalFlow controller starts an
emulated switch at Tier-2, exposing ten emulated switch (edge)
ports to the FlowControl3 at Tier-3. FlowControl3 includes
one Floodlight controller and one OptimalFlow controller. The
OptimalFlow controller’s configuration at Tier-3 includes two
switches interconnected by four virtual links. The mapping
of virtual links at Tier-2 to the real physical links at Tier-
1 is described in each FlowControl’s configuration file. Each
FlowControl unit is configured to route the twelve flows as
defined in the previous scenario.

First, we start FlowControll and FlowControl2. In the initial
configuration flows 7, 8, 9, 10 are routed from DomainA
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Fig. 8. Link load distribution and disconnected flows in the case of equal
link capacity (1000Mbps).

to DomainB via Link9, flows 11, 12 via Linkl0, flows 5,
6 via LinklI, and flows 1, 2, 3, 4 via LinkI2. Next, we
start FlowControl3 to compute a new multi-domain optimal
solution. As depicted in Fig. 6, this results in significant
changes of routing decisions in the two domains. To start with,
flows 2, 7, 12 are migrated to Link9, flow 6 is migrated to
Linkl0, while flows 1, 3, 8, 9, 11 are migrated to Linkl]I.
Next, we create two disturbances in the network topology.
At 108s we disable Link3’ in DomainB. Since the disturbance
does not affect the domain’s edge ports, the change is detected
by FlowControl2, which calculates a new optimal distribution
of the affected flows. The disruption is clearly visible in
Fig. 7, and more specifically on flow 3 (Fig. 7b), flow 5
(Fig. 7¢) and flow 7 (Fig. 7b), which are briefly interrupted.
Nevertheless, since flow 1 is routed on Link4’, the disturbance
does not affect its throughput (see Fig. 7a). Finally, at 155s
we disable the inter-domain Link9, which briefly interrupts the
TCP flow 7 and the ARP flows 2, 10, and 12. The network
change is detected by FlowControl3, which solves a new
optimization problem and issues inter-domain routing changes.
These are received by FlowControll and FlowControl2, which
also compute a new optimal solution for the affected flows.
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Fig. 9. Link load distribution and disconnected flows in the case of uniformly
distributed link capacity (200Mbps, 500Mbps, and 1000Mbps).

Nevertheless, despite the two-Tier decision-making process, as
depicted in Fig. 7, this does not have a significant impact on
flows, which successfully recover after only a brief, e.g., 1-2
second, interruption interval.

C. Quantitative Assessment

By using the AIMMS software we evaluate the solutions of
the proposed optimization problem. We assume a large-scale
network topology including 50 SDN switches and 100 flows.
Switches are structured sequentially in columns of 5; each
set of 5 switches is connected to the next set of 5 switches
with a certain probability. Flows are routed between the first
and the last set of 5 switches. In the first case we assume
that d; = 50Mbps, Vi € I, |B| = 1 (one possible link), and
ué’-l = 1000Mbps. Links and flows are configured with the
same security and reliability properties. We test the impact of
switch connection probability on the link utilization rate and
on the number of disconnected flows. Each configuration is
run 50 times and average values are calculated. As shown by
results (see Fig. 8a), almost 60% of links are loaded less than
10%. This is a significant aspect in the proposed optimization
problem and in the design of a resilient infrastructure where
the availability of bandwidth provides the opportunity to
migrate flows. Nevertheless, the successful routing of flows
also depends on the number of links between switches. As
shown in Fig. 8b, with a 50% switch connection probability, on
average, we measure 20 disconnected flows (out of 100 flows).
However, by increasing the connection probability, at 90%
the average disconnected number of flows reduces to 0. Next,
we change the scenario and assume a uniform distribution of
link capacities of 200Mbps, 500Mbps, and of 1000Mbps. In
essence, compared to the first case, we decrease the overall
capacity of the communication infrastructure. This effect is
visible in Fig. 9a, where in approximately 70% of the cases
links are loaded less than 10%. Apparently, in this case only
10% of links exhibit a load higher than 50%, while in the
previous case links 15% showed a load higher than 50%.
This is explained by the results in Fig. 9b, where the average
number of disconnected flows increases to 60 for a 50% switch
connection probability, as opposed to the average of 20 in the
previous case. Furthermore, despite increasing the connection
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migrated flows, disconnected flows and the average link load.

probability to 100%, there are still flows that cannot be routed
due to the decrease in the capacity of paths.

Finally, by using the first configuration as described in this
section, we measure the number of migrated flows in the case
of randomly disabled links. As shown by the results in Fig.
10a, the number of migrated flows, that is, the number of
flows for which a new optimal solution is computed, exhibits
a slight increase from 1 to 20 for up to 80 disabled links.
This means that OptimalFlow only needs to solve the opti-
mization problem for a reduced set of variables, e.g., for the
affected flows and for the switches on the paths of access and
egress end-points. Nevertheless, after disconnecting 85 links
OptimalFlow determines that a number of 19 flows cannot
be routed, which triggers the execution of the optimization
problem on the complete network topology, as described in
Algorithm 1. As a result, this increases the number of migrated
flows to 80, but keeps the number of disconnected flows at 19,
which later increases to 22. By sequentially disabling links
we also measure an increase in the average link load. As
shown in Fig. 10b the average link load increases up to 40%
for 84 disabled links, and decreases down to 35% when the
optimization is executed on the complete network topology.
Inevitably, by further disabling links, the average link load
continues to increase up to 43% for 100 disabled links.

D. Execution Time

The execution time of OptimalFlow’s network reconfigura-
tion procedure depends on the size of the network. This trans-
lates to the number of variables in the network optimization
problem and the number of flows that need to be installed. We
generated several network topologies with a different number
of flows (INy), switches (IV,), possible links between switches
(Np), and switch connection probabilities. We measured the
time in which OptimalFlow solves the complete optimization
problem for each of these settings. As denoted by the results
in Table II, for Ny = 20, Ny = 30, N, = 1 and a connec-
tion probability of 50% OptimalFlow solves the optimization
problem in 0.34s. However, by increasing N, to 3, the solve
time also increases to 1.06s. A connection probability of 100%
further increases the solve time to 1.28s. At the other end, for
Ny =100, N, = 50, N, = 3 and a connection probability of
100% the solver needs 20.20s to generate a solution. These



TABLE 11
OPTIMIZATION PROBLEM SOLVE TIME.

Switch conn. probab=50%  Switch conn. probab=100%

Ny Ns Ny=1 N, =3 N, =1 Ny, =3
20 30 0.34s 1.06s 0.39s 1.28s

50 30 0.95s 2.85s 1.16s 3.59s
100 30 2.35s 6.53s 2.72s 7.48s

20 50 0.94s 2.92s 1.1s 347s

50 50 2.67s 7.79s 3.00s 9.69s
100 50 6.33s 17.25s 7.15s 20.20s

TABLE III
FLOW INSTALLATION TIME.

5 flows 20 flows 40 flows 80 flows 160 flows 240 flows
16.9ms 52.9ms 129.6ms 176.3ms 372.9ms 528.5ms

high execution times, however, are addressed by OptimalFlow
in several ways: (i) the full network optimization is only solved
at network start-up; (ii) a change in the network topology will
reduce the set of variables used in the optimization problem to
the affected flows and switches; and (iii) OptimalFlow’s hierar-
chical structure specifically targets large-scale infrastructures,
in which case network planning techniques [21], [22] may be
used to optimize the placement of OptimalFlow controllers.
Finally, we measured the time in which OptimalFlow builds
the dependency graph and pushes static flows to the Flood-
light controller. We assumed the single-domain scenario, as
presented in the previous sections, and that each flow is
configured on four switches. As denoted by the results in
Table III for 20 flows OptimalFlow runs the flow installation
procedure in 52.9ms, which increases to 176.3ms for 80 flows
and up to 528.5ms for 240 flows. It should be noted, however,
that the execution time is linear and can be further decreased
by a careful network planning strategy, as described earlier.

V. CONCLUSIONS

We developed a novel hierarchical SDN control plane for
ICS. The approach builds on the features of an SDN controller
named OptimalFlow that addresses various requirements of a
modern ICS communication infrastructure including scalabil-
ity, dynamic network redesign as a response to failure or cyber
attacks, harmonized routing decisions that encapsulate quality
of service, security and reliability properties of communica-
tions. The effectiveness of the developed scheme was tested
in various experimental and simulation-based scenarios. As
shown by results, OptimalFlow can be adopted in single and
in multi-domain SDN scenarios. To ensure a high performance,
however, the parameters of OptimalFlow need to be integrated
into network planning solutions, which would yield an optimal
distribution of OptimalFlow controllers.
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