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Abstract—Passive monitoring of network performance pa-

rameters is experiencing a revival due to widespread adoption

of virtualization and software-based implementation of network

functions. Timestamping is one of the most challenging operations

needed for passively monitoring network traffic performance

parameters such as latency and jitter. We develop a setup whereby

functions that monitor the network traffic are deployed in

monitoring containers adjacently to, and interconnected through

a virtual switch with the monitored Virtual Network Function

instance. In this scenario, we evaluate the effects of container

virtualization and virtual switch mirroring of traffic on the

measurement of latency. The evaluation results indicate very

low measurement errors (a few microseconds in our testbed)

which are consistent over different measurement scenarios, thus

validating the feasibility of this technique for passively monitoring

latency.

I. INTRODUCTION

Advances in virtualization have led to the emergence of
network function virtualization (NFV) which decouples net-
work functions from dedicated hardware to software-based ap-
plications that can run on commercial off-the-shelf hardware.
Accurate, timely, and non-intrusive monitoring of network
performance metrics of such virtual network functions (VNFs)
is critical for identifying and avoiding violation of performance
guarantees. In recent years, container-based virtualization has
received considerable attention and has become a candidate
for running VNFs. Container execution environments provide
lightweight virtualization with much lower overhead com-
pared to hypervisor-based virtualization with Virtual Machines
(VMs), since rather than running a full operating system
containers share the same kernel with the operating system of
the host machine [19], [21]. Moreover, containers are created
and removed much faster compared to VMs, and container-
based virtualization provides better resource utilization since
idle containers do not use any resources.

In Linux containers, the kernel-level namespaces are used
for resource isolation and the Control groups (cgroups) [13] are
used for managing and limiting resources. Cgroups also expose
resource usage metrics such as memory, CPU, and block I/O
which can be used for monitoring purposes. Such metrics for
the containers running in a host machine can be collected by
a separate container in the host, e.g., cAdvisor1.

Existing tools for monitoring containers only provide com-
pute resource utilization statistics as well as counters for

1https://github.com/google/cadvisor

packets and bytes on the interfaces of the containers. Network-
related metrics, such as per-flow metrics can be measured
by for example enabling sFlow [16] on the virtual switch
infrastructure that interconnects the containers. SFlow is a
general purpose monitoring tool for sampling packets and
interface counters on packet forwarding devices. However,
sFlow does not provide end-to-end measurements of metrics
such as delay, jitter, and packet loss [2].

End-to-end measurements of network performance can be
performed using active or passive measurement methods. In
active measurements, test packets are injected from a probe
in the network and are received in another probe. In passive
measurements, in contrast, actual network traffic is being
observed without injecting probe packets. In addition to net-
work performance monitoring, passive measurement methods
are also used for example to perform traffic analysis for
traffic profiling, classification, and characterization, anomaly
and intrusion detection, and debugging.

One option for measuring end-to-end network performance
metrics in containers is to run monitoring functions inside
the same container in which the VNF application is being
executed. This requires the monitoring code to be added to
the image of the VNF or executed inside the container after
instantiation of the VNF container. Another option, which we
investigate in this paper, is to execute monitoring functions
in separate and adjacent monitoring containers. The monitor-
ing container receives a copy of packets originated from or
destined to the VNF instance and calculates different network
performance metrics.

Running the monitoring functions in a separate container
instead of running them inside the VNF container has many
advantages. Some of these advantages are as follows:

1) The monitoring can be done transparently without a
need to run any process inside the VNF container or
instrument the VNF image with required software.

2) A single monitoring container can be used to monitor
multiple VNF containers in contrast to running a
monitoring process in each VNF container.

3) Using a monitoring container enables separation of
the monitoring process from the VNF processes by
assigning them to different CPU cores.

4) Monitoring is isolated from VNF so failure of the
monitoring process will not adversely affect the VNF
container.

5) A separate container for monitoring allows more
flexibility in running different monitoring functions
so that they can be updated, re-configured, or changedISBN 978-3-901882-83-8 c� 2016 IFIP
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on-the-fly transparently to the VNFs.
6) Migration of the VNF instance can be done indepen-

dently and without affecting the monitoring.
7) The monitoring container can be controlled and man-

aged by the infrastructure provider who may be
different from the VNF provider.

8) The monitoring container can create log files from
the VNF traffic which can be used for debugging the
application instead of the application itself generating
the logs.

Despite many advantages of running monitoring functions
in separate monitoring containers, the effect of such setup
on the accuracy of timestamps required for passive network
monitoring is not known. Previous studies have shown that
hypervisor-based virtualization affects the timestamping and
performance measurement accuracy [5] [14]. However, none of
the previous studies have looked into the effects of container-
based virtualization on the accuracy of measurements, par-
ticularly the accuracy of the timestamps required for passive
network performance monitoring.

In this paper, our contributions are as follows. We develop a
setup for passive monitoring of network traffic by introducing
standalone monitoring containers which are interconnected
through a virtual switch with the monitored VNF containers.
We study the effect of container virtualization and packet
copying in virtual switches on the accuracy of timestamps
obtained by the monitoring functions running inside the mon-
itoring containers. Moreover, we evaluate the accuracy of
passive latency monitoring using different methods in our
setup. Our measurement results indicate low and consistent
timestamping errors over different measurement scenarios,
therefore confirming that our monitoring setup is suitable for
passive monitoring in container execution environments.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III describes our
measurement system for passive container-based monitoring
and Section IV presents our testbed and experimental settings.
In Section V the evaluation method is described and the exper-
imental results are presented. Section VI presents a discussion
of our findings. Finally, Section VII concludes the paper.

II. RELATED WORK

Existing tools for monitoring containers only gather metrics
such as CPU, memory, and block I/O usage for containers
running in a host machine. These metrics can be obtained from
cgroups in Linux [13]. Network metrics which can be collected
by existing tools are limited to the number of packets and bytes
received/transmitted from an interface. Although sFlow [16]
can be used for sampling packets and interface counters, it
does not provide network metrics such as latency.

Active and passive measurements of network perfor-
mance metrics can be performed using OpenFlow messages
in OpenFlow-enabled virtual and physical switches in the
network. Examples of such methods are latency measure-
ments [17] and link utilization monitoring [23], however these
methods are not in the scope of this paper since they are not
designed for passive measurements for traffic analysis.

The effects of virtualization on network measurements
have been previously studied. In [14] the authors studied how

timestamping variability is affected by hypervisors and showed
that only under certain conditions timestamping performance
in virtualized environments gives good results. In [5] the
effects of Kernel-based Virtual Machine (KVM) virtualization
on active round trip time measurements have been evaluated.
The results show that the measurements are affected by both
CPU load in the host and load in the network. Although
different studies have investigated the effects of virtualization
on timestamp accuracy of measurements, to the best of our
knowledge effects of container-based virtualization on passive
measurements have not been investigated before.

A passive network monitoring function which requires
accurate timestamping is latency. In the rest of this section
we mention some related work for passive latency monitoring.
Note that none of these methods have been designed or
evaluated in virtual platforms such as VMs and containers.

A naı̈ve way to passively measure latency is to store packet
hashes together with timestamps at both the sender and receiver
side and periodically exchange and compare the hash and
timestamp values. However, such an approach enforces high
storage and communication overhead. In order to overcome
the problems of the naı̈ve approach, a variety of efficient
passive latency measurement methods have been proposed in
the literature. These methods can be roughly divided into three
categories: aggregate, per-flow, and per-packet methods.

In [9] an aggregate method has been proposed, where a
Lossy Difference Aggregator (LDA) data structure is created
at both the sender and the receiver side and at the end of each
measurement interval is exchanged for calculating loss and
latency. LDA requires synchronization packets to be sent over
the same channel as the data traffic and makes an assumption
that the packets arrive in FIFO order. FineComb [12] also cal-
culates aggregate latency but rather than making an assumption
about packet ordering proposes a stash data structure to recover
from packet reordering.

Aggregate latency measurements cannot capture the latency
experienced by different flows, therefore more fine-grained
latency measurement methods have been proposed in the
literature. Reference Latency Interpolation (RLI) [10] obtains
per-flow latency measurements, however it requires injecting
reference packets (probe packets). MAPLE [11] presents an
architecture for latency monitoring where the granularity of
the measurements can be selected. In MAPLE the focus is on
delay storage and query and it is assumed that the packets
can carry timestamps. In [18] COLATE, a counter-based
per-flow latency estimation scheme for latency monitoring
without using any probes or timestamps inside packets has
been proposed. COLATE can achieve accurate results with
low overhead compared to previously existing methods. More
details about this method can be found in Section V-B3.

In addition to per-flow measurements more fine-grained
results can be achieved using per-packet methods in exchange
for extra costs. For example, in [22], an approach for per-
packet delay and loss measurements has been proposed which
first uses an order preserving aggregator (OPA) data structure
to transmit ordering information for recovering from packet
reordering and then sends the compressed packet timestamps
to be used for estimating delay.

In this paper, rather than proposing a new latency monitor-
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Fig. 1: Experimental setup with two host machines with Open
vSwitch and Docker containers.

ing algorithm, we investigate how existing methods perform in
a container execution environment. As part of the evaluations
presented in our paper, we use the data structures proposed by
COLATE to implement a passive latency monitoring tool run-
ning inside monitoring containers adjacently to the monitored
VNF container instances.

III. MEASUREMENT SYSTEM AND CHALLENGES

In this section, we present our setup for passive monitoring
of VNFs and applications running in a container execution en-
vironment. In this setup, a monitoring container is instantiated
and attached to the same virtual switch to which the VNF is
connected. The virtual switch is then configured to duplicate
the packets originated within or destined to the VNF container
and send the copies to the monitoring container.

In general, duplicating and copying packets for passive
network monitoring can be performed in two different ways:
in-line mode and mirroring mode [7]. In the in-line mode,
a network tap (a.k.a. Test Access Port (TAP)) is used to
duplicate all traffic passing through it and provide a connection
to the capturing device. In mirroring mode, a network switch
duplicates the packets from one or more ports and sends the
replicates to a single monitoring port (a.k.a. Switched Port
analyzer (SPAN) port) to be captured for analysis.

The monitoring function which is executed inside the
monitor container receives the copy of VNF packets on its
interface. The monitoring function can then perform filtering
and sampling of packets before using them for estimating
different network performance metrics. In our setup, the mon-
itoring functions in different hosts can also communicate with
each other via a separate interface in order to exchange control
and synchronization messages which are required for different
types of measurements such as packet loss and latency.

The copying of packets can affect the accuracy of the
packet timestamps. Our main focus in this paper is to in-
vestigate the accuracy of packet timestamps observed at the
monitoring containers in comparison to what is observed inside
the VNF containers. Therefore, we calculate timestamping
error as the difference of a packet timestamp observed in
the VNF and monitor containers. Figure 2 shows how the
timestamping errors on the sender and the receiver hosts are
calculated. Further, the effect of loading different resources on

the host machines on the accuracy of the timestamps observed
in the monitoring containers is investigated.

Additionally, we evaluate the effect of timestamp accuracy
on latency measurements between different hosts. Latency
can be passively measured by either round trip time (RTT)
or one-way measurements. In passive RTT measurements,
the request and reply packets of a flow are matched with
each other and their timestamps are compared in order to
estimate the RTT. However, passive RTT measurement is not
always possible, e.g., for UDP communications. Passive one-
way latency measurements can be used for any type of traffic
where the timestamps of packets at the sender and the receiver
sides are compared against each other.

A common assumption made by passive one-way latency
measurement methods, is that the clocks at the sender and the
receiver hosts are tightly synchronized, since unsynchronized
clocks lead to errors in the measured values. In this paper we
study the effect of running passive latency functions in separate
containers and compare the results with the latency values
which could be obtained from inside the VNF containers as
shown in Figure 2. Errors caused by synchronization problems
are not part of this study. More information about general
synchronization issues and achieving high precision can be
found in [3] and [20], respectively.

IV. TESTBED SETUP

Figure 1 shows the testbed used for evaluating the
container-based passive monitoring setup presented in this
paper. This testbed is comprised of two physical host machines
that are connected with a physical switch. Each host runs a
VNF container and a monitoring container as well as a number
of background containers. The virtual switches on the host
machines are connected to each other with a Generic Routing
Encapsulation (GRE) tunnel and each switch is responsible
for tapping or mirroring the VNF packets to the SPAN port,
so that a monitoring function which runs in the monitoring
container can capture and analyze the packets. The background
containers are used for testing purposes such as generating
background CPU and network load.

In our measurements, we have used Docker containers2

and Open vSwitch (OVS)3 virtual switches. When a Docker
container is created, a pair of peer interfaces is created where
one peer becomes the interface for the container and the other
one is bound to the virtual switch. OVS is an OpenFlow
switch which uses flow classification and caching techniques
to provide high performance forwarding [15].

In OVS, the data plane is implemented in kernel space
while the control plane is in user space. OVS manages packets
as flows where the first packet of a flow is sent to the controller.
The controller determines how the packet should be handled
and passes the packet back to the data plane. Additionally,
the controller updates the cache in the kernel module so that
the rest of the packets of the flow can only go through the
data plane following the given instruction. This means that
the first packet of a flow which has to cross the boundary
of kernel and user space and be classified by the controller

2https://www.docker.com/
3http://openvswitch.org/
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Fig. 2: Timestamp errors on sender and receiver sides.

experiences longer processing time in the switch compared to
the rest of the packets. The flows in the kernel cache that have
been idle for a configured amount of time are then removed
by the controller [15].

Using OVS allows us to perform both tapping and mir-
roring of traffic. Tapping can be done by adding a flow to
the OpenFlow switch to perform two actions on each packet
coming from the VNF port. One action is to forward the packet
normally, and the second action is to send it to the monitoring
port (e.g., ovs-ofctl in port=1,actions=NORMAL,output:2).
Mirroring is supported by OVS which is implemented in user
space through modification of the same flow table exposed
through OpenFlow and can be used by adding a mirror to the
virtual switch and defining the input and output ports.

In order to evaluate the effects of container-based virtu-
alization and packet duplication on timestamp accuracies, we
have used the tcpdump tool for obtaining packet timestamps
on different capture points. Figure 1 shows the capture points,
i.e., interfaces on which we used tcpdump. On the sender
side, tcpdump is executed inside the VNF container to obtain
timestamp t1, on the host machine to obtain timestamps t2
and t02, and inside the Monitor container to obtain t01. The
timestamps on the receiver side are obtained similarly, i.e., t3
and t03 on the host machine and t4 and t04 in the VNF container
and the monitor container, respectively.

In our experiments, different tools have been used to study
the effects of loading resources on the measurements. The
CPU, I/O, and virtual memory loads are generated using the
stress tool [1], where we start multiple background containers
running the tool. The network load on the virtual switches
has been emulated by using the tcpreplay tool and replaying
random pcap files from inside the background containers. We
have also used tcpreplay to cause network congestion on the
path between the host machines.

V. EVALUATION

In this section we present our evaluation method and the
experimental results. The measurements are divided into two
subsections: (V-A) Timestamping errors, and (V-B) Passive
latency measurements. In subsection V-A we present mea-
surement results for three scenarios: (1) measurements with
no background load, (2) measurements with loading different
resources such as CPU, I/O, and virtual memory, and (3)
measurements with network load on the virtual switch. In
subsection V-B results for (1) passive round trip time mea-
surements, (2) passive one-way measurements, and (3) passive
one-way measurements using COLATE [18] are presented.

A. Timestamping errors

In this section we present our measurement results on
comparing the timestamps of packets sent by a VNF container
with the timestamps of the copy of the packets captured in the
corresponding monitor container. The goal is to investigate the
effects of container-based virtualization as well as switch pro-
cessing and packet copying on the accuracy of the timestamps.

For each measurement, we emulate the VNF traffic by
running the ICMP ping tool with different frequencies inside
the sender VNF container which allows us to also measure
RTT between the VNFs. The tcpdump tool is used both in the
VNF and in the monitor container to capture the echo request
messages. In our experiments, the main focus is on measuring
the errors caused by container and switch virtualization, which
are not dependent on the type of VNF traffic. For each packet,
we calculate and report the timestamping errors. During our
measurements we observed that when ping is running with
higher packet send rates, it returns lower RTT values regardless
of where it is running, i.e., inside the host or inside a container.
For example, we observed that pinging the receiver VNF
container from inside the sender VNF container with frequency
of one packet per second with packet size of 64 bytes returns
an average RTT of 485 µs compared to 331 µs for 1000 packet
per second rate. This is in line with results observed in [5].

1) Measurements with no load:

The first set of experiments is performed with no back-
ground container and no extra network load. The main goal
of these measurements is to study the errors caused by the
container virtualization and virtual switch processing including
packet mirroring/tapping.

Figure 3 shows the timestamping errors on the sender
host comparing tapping and mirroring. The y-axis shows the
measurement error, where for each packet we calculated the
error as the difference between the timestamps reported by
tcpdump in the VNF and in the monitor, i.e., t01� t1 as shown
in Figure 2. The x-axis shows the send rates given as input
to the ping tool running inside the VNF container. We have
observed that the ping does not send the exact number of
packets with the input send rate, e.g., for input send rates
100 and 10000 packets per second, ping sent around 84 and
27000 packets per second, respectively. However, in the figures
the input parameter for ping is shown, indicating the order of
magnitude for the send rates.

It can be seen that the time it takes for the first packet
(Figure 3a) to be received by the monitoring container is
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Fig. 3: Comparison of the error caused by tapping versus
mirroring packets to the monitoring container on the sender
side for different send rates with no background load (t01� t1).

significantly higher than the average value for the rest of the
packets (Figure 3b). On average the error was 328 µs and 375
µs for the first packet using tapping and mirroring respectively,
with standard deviation of 28 µs and 25 µs. For the rest of
the packets in each flow the error was on average 16 µs and
26 µs with standard deviation of 2 µs and 4 µs using tapping
and mirroring respectively. As mentioned in Section IV, for
each new flow OVS sends the first packet to the controller
in the user space and the rest of the packets are forwarded
in the data plane in the kernel space. Moreover, it can be
seen that the timestamps obtained from tapping of packets
are slightly closer to the timestamps perceived by the VNF
container compared to mirroring, i.e., smaller error values. In
the rest of our measurements we only use tapping because of
the lower error rate. The figure also shows that the error for
lower send rates, particularly one packet per second, is higher
than the measurements with higher send rates. As mentioned
above, ping returns higher RTT values for low send rates which
also affects the measurement results and is the reason for
higher errors shown in the figure.

Figure 4 shows the timestamping error on the sender and
the receiver hosts for different send rates. It can be seen that
the errors on the sender side are much higher than the errors
on the receiver side. The main reason for the differences, as
shown in Figure 2, is that on the sender side each packet
is first observed in the VNF (t1) and then enters the switch
(t2) where it is processed and then is duplicated and its copy
is sent to the monitor interface (t02) and is observed by the
monitoring function (t01), while on the receiver side the switch
processing time affects each packet and its copy similarly.
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Fig. 4: Comparison of the error on sender and receiver side
for different send rates (excluding the first flow packet).

Additionally, in the receiver the time it takes for the packets
to be observed inside the VNF (from t3 to t4) and the receiver
monitor container (from t03 to t04) are equal, and the main factor
that causes errors is the packet duplication time in the switch
which is required for both tapping and mirroring.

In our measurements, we observed that running tcpdump in
all the four capture points inside the sender host increases the
errors compared to the experiments where tcpdump was only
executed inside the containers. For example, we observed that
when tcpdump was capturing traffic on all the measurement
points on the sender side, the total timestamping error was
around 14 µs higher than the measurements where tcpdump
was only running inside the containers. This observation shows
that tcpdump also affects the accuracy of our measurements.

In order to estimate the time it takes for packets to reach
the OVS interface from the interface inside the container and
vice versa without running tcpdump in all four capture points,
we performed the following measurements. We calculated the
values for t02� t2 when tcpdump was only running on the host
as well as the values for t01�t1 when tcpdump was only running
inside the containers. The values obtained from the capture
points in the host were subtracted from the values obtained
from the containers to estimate the time (t2 � t1) + (t01 � t02).
The results indicate that the time it takes for packets to arrive
from the VNF container to the OVS and from the OVS to the
monitor container is less than 0.8 µs in average with standard
deviation 0.5.

2) Effect of Resource load:

In this section we study the effect of loading physical
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Fig. 5: The effect of high loads on host resources on per-packet
timestamping errors excluding the first packet.

resources on the host machines on the accuracy of the packet
timestamps obtained by the monitoring containers. In order
to load the resources on the host machine, we started eight
background containers running the stress tool to load different
resources. We used the stress tool to spawn a given number
of workers spinning on sqrt() to load the CPU, sync() to load
I/O, and malloc()/free() to load the virtual memory.

Figure 5 shows the results of loading CPU, I/O, and virtual
memory. It can be seen that loading memory increases the error
caused by copying packets on both the sender and the receiver
sides, while loading CPU or I/O in average reduces the time
compared to measurements with no background load.

The main reason for reduced error when physical resources
including CPU are loaded is due to CPU auto scaling which
happens when the system is under load. By default the CPU
governor is set to “ondemand” which allows CPU to achieve
maximum clock frequency when the load is high and achieve
minimum frequency when the system is idle which allows the
system to adjust power consumption according to system load.

3) Effect of network load in virtual switch:

In this section we study the effect of network load in the
virtual switch on the accuracy of the packet timestamps. We
used the tcpreplay tool to load the virtual switch with network
traffic. In the measurements, eight background containers were
attached to the OVS and replayed traffic from a given pcap file
with maximum possible speed. The traffic was forwarded to a
9th background container by the OVS in the host where the
packets were received and dropped. During these experiments,
the CPU on the host machine also reached maximum load but
we did not observe any ICMP packet loss.

Figure 5 shows the results for this scenario with network
load in the virtual switch (OVS). It can be seen that the error
caused by copying packets is very similar to the experiments
with CPU loading.

B. Passive latency measurements

Latency monitoring requires accurate timestamping. In this
section we evaluate the effect of our passive container-based
monitoring setup on the accuracy of round trip time (RTT)
measurements and one-way latency measurements.

For RTT measurements, we use the values obtained from
ICMP pings, which were sent from inside the sender VNF
container to the receiver VNF container, as the ground truth
since it is the actual RTT experienced by the VNFs. Then
we evaluate the measurement results from both inside the
VNF container and the monitor container on the sender side.
For passive latency measurements, we use the latency values
perceived by VNF containers as the ground truth and evaluate
the accuracy of the latency values reported by the monitoring
containers. Even though the ground truth one-way latency
values are affected by the precision of time synchroniza-
tion, the synchronization affects the latency calculated by the
monitor containers similarly, and therefore it does not affect
the reported error values. Moreover, we compare the values
obtained from the above naı̈ve approach with the latency values
measured by a state-of-the-art passive monitoring algorithm
which is implemented by using the data structures and the
average latency estimation method presented in [18].

The measurements are done for two scenarios: with no
background traffic and with network load which causes con-
gestion on the path between the host machines. In these
measurements a background container in the sender host sends
packets with a high rate and the traffic is received and dropped
by the receiver host. The high send rate causes network
congestion and leads to VNF packet loss. However, the loss
rates did not change with different VNF send rates.

1) Passive Round Trip Time:

The RTT for each packet as perceived by the VNF contain-
ers is calculated by comparing the timestamps of each echo
request and echo reply packets with the same sequence number,
(i.e., RTTVNF = t1(reply) � t1(request)) where t1(request)
is the time when an echo request packet was sent from the
sender VNF container and t1(reply) is the time that the
echo reply packet corresponding to that request is received
by the sender VNF container. Similarly the RTT values as
perceived by the sender monitor container are calculated as
RTTMon = t01(reply)� t01(request). In our measurements, the
average RTT reported by ping for different send rates was
359.8 µs compared to 346.8 µs and 334.2 µs as reported by
the VNF and the monitor containers, respectively.

Figure 6 shows the measurement errors of the RTT mea-
surements for VNF and monitor container versus the ground
truth, i.e., values returned by ping. It can be seen that even
the RTT values reported by the VNF container using tcpdump
are underestimated compared to the ground truth. The reason
for underestimation is the delay for the request packet to be
sent from the ping application to the interface where tcpdump
records a timestamp, as well as the delay for the arriving reply
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Fig. 6: Error of RTT measurements calculated from inside the
VNF and monitor containers compared to the ground truth
values reported by ping, i.e., VNF error (RTTping�RTTVNF)
and monitor error (RTTping � RTTMon).

that is first timestamped by tcpdump and then by the ping tool.
It should be noted that the errors of the values reported by the
monitoring container compared to the ground truth also include
the VNF errors. Overall, it can be seen that the errors of the
measurements in the monitoring container are consistent for
different measurements. Moreover, even though in experiments
with network congestion 63% of packets were lost and the RTT
reported by ping was increased to 28.5 ms, the error values
were only slightly increased.

2) Passive latency:

The one-way latency for each packet as perceived by the
VNF containers is calculated as LVNF = t4 � t1 and is
used as the ground truth. The latency values as perceived by
the monitor containers are calculated as L

Mon

= t04 � t01.
The actual values reported by one-way latency measurements
are not accurate due to drifting clocks (we have used NTP
for time synchronization which does not provide the required
microsecond synchronization precision for our measurements).
Nevertheless, the obtained passive one-way measurement val-
ues can be used for identifying latency changes over time and
detecting congestion in the network.

Figure 7 shows the error values for one-way latency
measurements. Our measurements show that the latency values
calculated from inside the VNF containers and from inside
the monitor containers are very close to each other and the
measured latency is only slightly underestimated, in average
around 15 µs. These results are in line with what was observed
for RTT measurements, where the absolute average error for
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Fig. 7: Error of latency measurements calculated from inside
the VNF containers and from inside the monitor containers
(LVNF � LMon) in comparison with the timestamping errors
on the sender side (t01 � t1) and the receiver side (t04 � t4).

values reported from the monitor and the VNF was around
13 µs. The figure also shows the sender and the receiver side
timestamping errors. It can be seen that the errors on the sender
side are much higher than the errors on the receiver side. As
depicted in Figure 2, the total error of monitored one-way
latency values are caused by the error which happens due
to packets arriving in the sender monitor after the copying
and processing times on the sender side and the error which
happens due to packets arriving in the receiver monitor after
being copied in the switch.

In the measurements with network overload, the heavy load
on the link caused in average 62% packet loss for the VNF
traffic in our measurements. The loss rates were caused by the
background traffic and did not change for different VNF send
rates. Figure 7 shows that the increase in network load causes
the average per packet latency error to only slightly increase
compared to the tests with no background network load.

3) Passive latency measurements with COLATE:

In the measurements presented in the previous sections,
every single packet has been compared on the sender and
receiver side. However, such naı̈ve approach is not suitable
for automatic and continuous passive latency measurements
due to high storage and communication cost.

COLATE [18] is a counter-based per-flow latency esti-
mation scheme which “allows noise in recording times for
minimizing storage space, and then statically de-noises the
recorded information for obtaining accurate latency estimates”.
The COLATE scheme consists of two phases: recording and
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querying. In the recording phase, for each packet at the
measurement point, a timestamp is recorded using a vector
called counter vector. Moreover, each unique flow is mapped
to a unique subset of these counters called counter subvectors.
In other words, each packet is first mapped randomly to a
counter in the counter subvector of its corresponding flow, and
then the current time is added to that counter.

The average latency for flow f in COLATE is esti-
mated as µ̃

f

= 1/p
f

(t̃
f,R

� t̃
f,S

), where t̃
f,X

= 1/(n �
m){n⌃m

j=1S
f

X

[j] � mt
X

} is the estimated sum of all times-
tamps of the packets in flow f which is calculated both at the
sender (t̃

f,S

) and the receiver (t̃
f,R

). In these equations, Sf

X

denotes the counter subvector of flow f , n denotes the number
of counters in the counter vector C

X

, m denotes the number
of counters in Sf

X

, t
X

denotes the sum of all counters in C
X

,
and p

f

denotes the number of packets in flow f .

In [18], it is shown that COLATE achieves high accuracy
compared to other existing methods using simulations and real
network traffic. In this study we use COLATE as an example
of an accurate and low-overhead passive latency measurement
method and investigate the effect of our monitoring setup on
its accuracy.

We have implemented the COLATE method to be executed
in measurement sessions instead of the original design with
two separate recording and querying phases. In the start of each
session, the sender monitor function sends a start message to
the receiver and starts collecting packets using libpcap library.
The receiver side similarly starts passive data collection after
receiving the start message. At the end of the interval, the
sender sends a stop message, together with the estimated sum
of all timestamps t̃

f,S

. Upon arrival of the stop message, the re-
ceiver compares its estimated sum of all timestamps t̃

f,R

with
the value received in the message. The difference gives us the
estimated average latency over the measurement session. In our
experiments we only run tests for a single flow measurement in
the container-based setup. In the original design of COLATE,
the number of packets per flow p

f

is obtained from a separate
tool. In our implementation this value is also calculated by
the monitor function itself. Moreover, in our implementation
the stop message also carries an incremental stream digest
value, i.e., a hash value created from all the packets in the
measurement session, which allows us to make sure that the
same set of packets are being compared in each session.

Figure 8 shows the one-way latency errors for different
measurements with different session lengths. The x-axis shows
the number of packets that were collected in each session. The
bars in the figure show the errors between the average latency
value calculated by COLATE and the average latency from
per-packet measurements from inside the monitor container
(LCOL�LMon). It can be seen that the error of measurements
performed by COLATE depends on the number of packets
in each measurement session. Our measurements show that
COLATE slightly overestimates the latency values compared
to per-packet values obtained from the monitoring container.
Overall, one should take into consideration that the total error
of measurements using this algorithm is the sum of the over-
estimation of COLATE and underestimation caused by using
our monitoring setup with adjacent monitoring containers.
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Fig. 8: Error values for average latency by using COLATE
compared to a naı̈ve method with different session lengths.

VI. DISCUSSION

The monitoring setup presented in this paper can be used
for different types of measurements. Some measurements such
as packet loss detection do not require accurate timestamping.
Other types of measurements such as available capacity mea-
surements [4] require calculating the time difference between
packets. Further, passive latency calculation is a challenging
problem which also requires accurate timestamping. In this
study we have evaluated a container-based measurement setup
and how it affects the accuracy of passive latency estimation.

In this paper, we have performed different measurement
experiments to evaluate the accuracy of measurements in a
setup corresponding to real-world deployment of VNFs. In
the measurements, ICMP ping was used to emulate VNF
traffic. We also observed similar measurement results when the
VNF containers where sending UDP traffic. This observation
confirms that the type of traffic being passively monitored does
not affect the accuracy of the timestamps in our monitoring
setup. A future study could be performed with different packet
sizes and random send intervals to get a more detailed view
on the impact from packet size and send patterns on the
timestamping accuracy. We have also shown that the main
cause of error in timestamping information is due to switch
packet processing on the sender side. It is expected that by
continuous enhancement and optimization of virtual switch
implementations, these errors caused by switch processing
will be reduced. Our measurements have also shown that
under heavy CPU loads, the timestamping errors caused by
both container and switch virtualization are reduced. The load
on the CPU has also caused the ping tool to report lower
RTT values compared to experiments with no background
load. These observations are due to CPU auto scaling which
increases the clock frequency of CPU on the host machine.
This means that by increasing the clock frequency of CPU,
it is possible to reduce the timestamping errors and achieve
more accurate results in expense of losing power saving
benefits. Additionally, we observed that pinning the monitoring
container to a CPU core can reduce the measurement errors,
particularly in measurement scenarios where virtual memory
is loaded.

In previous studies it has been shown that port mirroring
has a number of drawbacks such as adding additional burden
on the CPU of the switch [8]. In our experiments the extra CPU
burden added by packet duplication was negligible. Moreover,
it was shown in [24] that mirroring may introduce delay, loss,
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and reordering of packets due to buffering of packets before
forwarding them. In our measurements we did not observe any
packet loss due to mirroring or tapping. However, we observed
re-ordering of the packets received by the monitoring container
compared to the packets sent from a VNF container both
for the tapping and mirroring experiments. The re-ordering
happens among the packets that belong to different flows and
not the packets that belong to the same flow. Therefore, if
the monitoring function or the traffic analysis tool requires
accurate ordering of the packets for different flows, using
mirroring/tapping in OVS can lead to inaccurate results.

An interesting future direction would be to evaluate the
performance of different types of virtual switches. Initial
experiments comparing OVS with original Docker bridge has
shown that although the time it takes for the first packet to be
processed is higher than the rest of the packets in both of the
switches, the processing time for OVS is much higher. Overall,
the average processing time it takes for all packets of a flow
to be processed by the Docker bridge is lower that the OVS.
Additionally, Docker allows a container to share the network
stack of another container instead of directly connecting to the
bridge. This means that a monitoring container can be con-
nected to the network stack of a VNF container and perform
passive measurements. The advantage of such implementation
is that the errors caused by processing and copying packets
by virtual switch are eliminated. However, this approach to
implementation has many disadvantages including violating
isolation and separation of containers.

Overall, the timestamping error caused by our setup is
very low compared to the latency values reported in real
datacenters. The latency values reported in [6] show that in
a normal working day without any network incidents, the
50th percentile intra-pod and inter-pod round-trip latencies
(from physical servers and not through virtualization layers)
are around 216 µs and 268 µs, respectively. These observations
also confirm the feasibility of using our setup for passive
latency monitoring.

VII. CONCLUSIONS

In this paper we presented and evaluated a container-based
monitoring setup for passive monitoring of VNF traffic. Our
main focus has been on the timestamping accuracy which is re-
quired for passive monitoring of different network performance
metrics such as latency. The key finding of our study is that the
main source of error for passive container-based monitoring
is caused by the switch processing time on the sender side.
Moreover, we observed that the errors are quite stable and are
not affected much by the load on the host machines and by
congestion on the network. The results indicate that by doing
initial tests and obtaining error estimates, one can calibrate a
monitoring system.
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