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Abstract—The Border Gateway Protocol (BGP) was not de-
signed with security in mind and is vulnerable to many attacks,
including prefix/subprefix hijacks, interception attacks, and im-
posture attacks. Despite many protocols having been proposed
to detect or prevent such attacks, no solution has been widely
deployed. Yet, the effectiveness of most proposals relies on large-
scale adoption and cooperation between many large Autonomous
Systems (AS). In this paper we use measurement data to evaluate
some promising, previously proposed techniques in cases where
they are implemented by different subsets of ASes, and answer
questions regarding which ASes need to collaborate, the impor-
tance of the locality and size of the participating ASes, and how
many ASes are needed to achieve good efficiency when different
subsets of ASes collaborate. For our evaluation we use topologies
and routing information derived from real measurement data.
We consider collaborative detection and prevention techniques
that use (i) prefix origin information, (ii) route path updates,
or (iii) passively collected round-trip time (RTT) information.
Our results and answers to the above questions help determine
the effectiveness of potential incremental rollouts, incentivized or
required by regional legislation, for example. While there are
differences between the techniques and two of the three classes
see the biggest benefits when detection/prevention is performed
close to the source of an attack, the results show that significant
gains can be achieved even with only regional collaboration.

I. INTRODUCTION

The Internet is highly susceptible to routing attacks [4],
[12]. In almost all types of routing attacks, the attackers rely on
vulnerabilities in the Border Gateway Protocol (BGP) to attract
traffic that was not intended for them. Often this is achieved
through a prefix attack or subprefix attack, in which the attacker
announces itself as the origin of a prefix with the intention
of attracting some of the traffic intended for IP addresses
belonging to this prefix. Sub-prefix attacks are particularly
dangerous as the longest-prefix routing rules implemented on
routers always route to the most specific (sub)prefix.

An attack’s severity and the complexity of detecting the
attack is, to a large extent, determined by the attacker’s actions
when receiving the hijacked traffic. For example, black-holing
attacks in which the traffic terminates at the attacker network
are relatively easy to detect, as the traffic source may not obtain
expected end-to-end responses. In contrast, imposture attacks,
in which the attacker also impersonates the destination, or
interception attacks, in which the attacker re-routes the traffic
to the destination, are much more difficult to detect.

Unfortunately, despite an increasing number of observed
routing attack occurrences [1], [6], [12], [13], it has proven dif-
ficult to incentivize operators to invest in existing solutions [4],

TABLE I. EXAMPLES OF SYSTEMS, THE INFORMATION THEY

SHARE/USE, AND THE ATTACKS THEY CAN HELP DETECT/PREVENT.

Information Prefix Subprefix Inter- Impos- Example
shared hijack hijack ception ture solutions
Prefix
origin

✓ ✓ ✗ ✗ Route filtering [3],
[4], RPKI [21],
ROVER [8]

Route path
updates

✓ ✓ ✗ ✗ PHAS [20],
PrefiSec [15],
PG-BGP [16]

Passive
measure-
ments

✗ ✗ ✓ ✓ CrowdSec [14]

Active
measure-
ments

✗ ✗ ✓ ✓ Zheng et al. [30],
PrefiSec [15]

and there is currently no universally deployed solution that
prevents hijacking of Internet traffic by third parties [12]. For
example, the deployment of crypto-based efforts [18], [21],
[27] has been hampered by high deployment costs for network
operators [4], [12]. Instead, monitoring of path announcements
and the data paths taken by data packets are typically used to
identify potential hijacks and other suspicious data paths [14],
[16], [20], [28]. With routing paths being determined by the
individual routing decisions of many involved operators and
other organizations running their own Autonomous Systems
(AS) [1], [16], [28], such techniques benefit greatly from
information sharing between ASes.

Different types of information can be helpful in the detec-
tion of routing attacks. Table I summarizes some of the most
commonly proposed information sources for such systems, as
well as some example systems and the types of attacks these
systems propose to protect against. In this paper, we focus on
the first three types and only briefly discuss the fourth type.

A number of important questions arise when considering
cooperative information sharing across ASes and other network
entities/organizations for the purpose of detecting or preventing
routing attacks. For example, how do the detection/prevention
rates of the different techniques scale with the number of
participants? What is the impact of the size of each participant,
or the information available to the participant? And, what
is the impact of the location of the participants sharing the
information? The latter question may be particularly important
as it may help provide insights into the effectiveness of
regional government-issued legislation or regional agreements.
For example, the United States (US) government or the Euro-
pean Union (EU) may push to have ASes and organizations
under their respective jurisdictions share information in order
to protect the common interests of each region.

While some of the papers introducing the above example
systems have used data-driven analysis to illustrate the powerISBN 978-3-901882-83-8 c⃝ 2016 IFIP
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of large-scale information sharing between large ASes, little at-
tention has been paid to the effect of the geographic locality of
each participant. Although many ASes have points-of-presence
in many geographic regions, ASes operated by organizations
from the same country or geographic region may be more
likely to openly or through legislation, for example, share
information with each other. Ongoing geographical and polit-
ical polarization may further contribute to potential location-
based participation and sharing restrictions. Motivated by these
observations, in addition to analyzing each of the above three
questions on their own, this paper places particular focus on the
impact of the locality of the participants. Locality is considered
both on its own, and also with regards to size-based inclusion
within and across regions, as well as with regards to the scale
of the (local or global) information sharing alliance.

The main contribution of this paper is a systematic data-
driven evaluation of some promising-previously proposed hi-
jack prevention and routing attack detection techniques. In
particular, we consider the above outlined questions in the
context of three example techniques that share (i) prefix origin
information, (ii) route path updates, or (iii) passively collected
round-trip time (RTT) information. For our evaluation, we
develop a data-driven methodology for each information shar-
ing approach which takes into account the geographic locality
(e.g., the region in which the AS is registered) and the relative
size (e.g., measured by the number of neighboring ASes) of
each of the potential participants. Using real-world topologies
and routing information derived from measurement data we
then systematically evaluate the impact of each factor, either
on its own, or accounting for the geographic locality of the
participants, attackers, and victims.

Our results provide insights into the tradeoffs between
global and local deployment. While the results highlight the
value of detection and prevention close to the source of
an attack, we also find cases where regional collaboration
may achieve many of the benefits achievable through global
deployment. Other interesting findings include the observation
that the largest ASes are not always the best at hijack detection
when the attacks are from other regions. Instead, collaboration
with mid-sized ASes may be beneficial. This is in contrast
to the deployment of hijack prevention mechanisms, which
benefit significantly from large ASes participating, regardless
of whether the deployment is global or regional. Our scale-
and size-based evaluation also provides insights into other
deployment related issues, including the relative deployment
benefits during different phases of an incremental rollout.

Paper outline: Section II provides background and sets the
context. The following three sections present our evaluation
results for three general classes of collaborative prevention and
detection systems. In Section III we evaluate (sub)prefix attack
prevention techniques that use prefix origin information, in
Section IV we evaluate hijack detection mechanisms that use
path announcements, and in Section V we evaluate interception
and imposture detection techniques that use passively collected
RTT measurements. Finally, related work and conclusions are
presented in Sections VI and VII, respectively.

II. BACKGROUND

BGP works well in normal circumstances. However, inher-
ent vulnerabilities with the protocol enable routing attacks.

Old path

New path

VictimDetector

Attacker

Old path

New path

VictimDetector

Attacker

(a) Imposture attack (b) Interception attack
Fig. 1. Imposture and interception examples.

A. Routing attacks

A major vulnerability in BGP is its inability to validate the
allocation of prefixes to ASes. This makes it difficult to detect
when an attacker AS announces one or more prefixes allocated
to other network(s). In a prefix hijack the attacker announces a
prefix (e.g., a.b.c.d/16) that is actually allocated to a different
AS. Depending on ASes’ relationships and how the AS-PATH
is propagated between ASes such attacks may attract (hijack)
more or less traffic. In a subprefix hijack the attacker announces
a subprefix (e.g., a.b.c.d/24) of a larger prefix (e.g., a.b.c.d/16).
Due to the longest-prefix matching rule used by routers, these
attacks may be particularly effective in hijacking traffic.

All the above types of attack may lead to one of several
outcomes. For example, in a blackholing attack the attacker
simply drops the traffic that it attracts. Figure 1 illustrates two
more difficult attacks to detect. In an imposture attack (Figure
1(a)), the attacker impersonates the intended destination for the
traffic and in an interception attack (Figure 1(b)) the attacker
redirects the traffic to its intended destination, possibly after
making a copy or modifying the data, for example. These
attacks are particularly stealthy when the users originating the
traffic receive uninterrupted service.

B. Collaborative information sharing

Various systems have been proposed to detect, mitigate, or
prevent routing attacks and other unwanted routing incidents.
These systems typically rely on collaborating ASes sharing
different information. For our analysis we focus on three broad
classes of techniques that share and/or use the first three types
of information in Table I. They correspond to prefix origin
information, route path updates, and passively collected RTTs.
Route path updates can easily be collected at individual routers
or at the AS level, and then shared with other ASes. RTTs can
easily be passively collected and shared by almost any network
entity [14]. In the following we describe how the different
systems that we evaluate here use the shared information.

C. Hijack prevention using prefix origin

Ideally, a hijack prevention mechanism should prevent an
AS from accepting and propagating bogus route announce-
ments. If implemented widely, such mechanisms could then
prune away bogus route announcements close to the source
and prevent an attacker from reaching more ASes and users.

Previously proposed mechanisms that can provide hijack
prevention include prefix filtering [4], PG-BGP [16], RPKI [8],
and ROVER [17]. Many of these techniques build a trusted and
formally verifiable database of prefix-to-AS pairings between
the IP prefixes and the ASes that are allowed to originate
them. If used correctly, routers implementing RPKI [8] and
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ROVER [17] can be assumed to pick the right origin and avoid
propagating the wrong origin for prefixes. To achieve this, two
conditions must be satisfied. First, the AS that wants to defend
itself against route hijacks on its prefixes, or its provider AS,
must register a prefix-to-AS mapping with RPKI or ROVER.
Second, as part of their validation of prefix-to-AS mappings,
relying ASes must successfully retrieve and check these AS-
to-prefix mappings from the RPKI or ROVER records.

With PG-BGP [16], the acceptance of suspicious routes is
delayed, and routes are accepted and propagated only after a
certain threshold time duration has passed. Since suspicious
routes are typically short-lived [25], the performance of PG-
BGP is usually similar to that of RPKI and ROVER. Therefore,
for the purpose of our evaluation, we only simulate the
performance of RPKI and ROVER.

D. Control-plane based anomaly detection

There are several works that are based on control-plane
data for the detection of anomalies in BGP routing, including
PHAS [20], PrefiSec [15], and PG-BGP [16]. While PHAS
and PG-BGP aggregate all information centrally, PrefiSec
distributes computing and detection across participants. Oth-
erwise, the approaches are relatively similar. For each pre-
fix, these protocols track the origin ASes observed by its
participants and raises alerts when there are changes. The
common idea leveraged by all these protocols is that an IP
prefix should be originated by a single AS. An IP prefix
originated by more than one AS results in a Multiple Origin AS
(MOAS) conflict. While some MOAS are legitimate and can be
observed over long time periods [29], a newly-detected MOAS
conflict can be an indication of a potential prefix hijack. By
keeping track of the AS-to-prefix mappings observed in AS-
PATH announcements, these protocols can flag new potential
MOAS cases. Naturally, as more ASes participate and share
their observed path announcements, the system will have more
complete AS-to-prefix mappings.

E. Route anomaly detection using passive measurements

The examples in Figure 1 illustrate why imposture and in-
terception attacks may be particularly difficult to detect without
observing the actual data path or the impact these changes have
on the RTTs. Both active traceroute-based anomaly detection
techniques [15], [30] and passive RTT-based anomaly detection
techniques [14] have been proposed. While we will focus on
the use of passive measurements, we note that the approaches
in general are fairly similar. For example, Zheng et al. [30]
use changes in the number of hops in the traceroute paths to
identify potential hijacks, while Hiran et al. [14] use changes
in the RTTs to identify potential anomalies.

In both types of systems measurement information from
multiple sources is shared to provide stronger evidence and
more accurate flagging of suspicious events. For example, in
CrowdSec [14] clients or other network entities (e.g., mid-
dleboxes) share RTT outlier information and collaboratively
identify prefixes with many affected clients, so as to identify
potential routing anomalies. For collaborative detection the
system uses statistical tests based on binomial hypothesis
testing. One of the main advantages of using passive mea-
surements is that, in contrast to active measurements such as
traceroutes, they do not add additional traffic overhead.

III. EVALUATING HIJACK PREVENTION TECHNIQUES

Several studies have suggested that there are significant
benefits to deploying hijack detection and prevention mech-
anisms on several large ASes across the world. However,
global deployment that spans multiple geographic regions and
jurisdictions is non-trivial and may not be practical due to
political and economic reasons. It may be more practical
to push or incentivize the deployment within a geographic
region such as the US or EU. For example, governmental
legislation or other regional mechanisms may be used to push
or incentivize agreements between ASes within a region.

In this paper, we evaluate and compare the benefits and
drawbacks of deploying three different general classes of
prevention and detection techniques regionally versus globally.
For each class of techniques we simulate the effectiveness
of the general technique when different subsets of potential
candidate participants employ the technique and share in-
formation between each other. Within this context, we then
answer questions related to the impact of locality and size
of the participants, as well as the number of participants. For
example, what is the impact of the number of ASes that deploy
the hijack prevention mechanisms, either from a specific region
(e.g., North America or Europe) or globally? And, what is the
impact of size of the ASes that deploy the hijack prevention
mechanisms from a specific region or globally?

In this section we answer the above questions in the
context of hijack prevention mechanisms such as route filter-
ing [3], [4], RPKI [21], and ROVER [8].

A. Simulation-based Evaluation Methodology

For our simulation-based evaluation, we modified and
extended the existing BSIM [16] simulator. BSIM simulates
route propagation using the standard Gao-Rexford model [7],
which captures the behavior of the economy-driven poli-
cies used in practice [11]. The model distinguishes between
customer-provider relationships (where the customer AS pays
its provider) and peer-peer relationships (where two ASes
often agree to transit each other’s traffic for free). In particular,
the model assumes that ASes use a routing policy in which
customer routes may be exported to all neighboring ASes, but
routes learned from peers or providers are exported only to
the customers. In addition, the policy prefers customer routes
over peer routes (since they bring revenue) and peer routes
over provider routes (since provider routes cost money). In
cases of multiple tied routes, the routes with the shortest AS
paths are chosen. Finally, for the purpose of the simulations, if
there are still ties, these ties are broken (arbitrarily) by picking
the route over the AS with the lowest AS number.

We extracted the Internet AS-level topology and AS rela-
tionship information for every pair of neighboring ASes from
public data [5]. We use a snapshot from August 2015, which
contains 51,507 ASes and 199,540 AS relationships.

For evaluating hijack prevention mechanisms, we simulate
how the routes would propagate in the presence of hijack
prevention mechanisms compared to the case when these
mechanisms are not present. We measure the fraction of ASes
that end up forwarding packets along the correct path in both
scenarios and report the percentage increase in the number of
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ASes that choose the correct origin. To calculate the percent-
age increase we first simulate each example attack when no
ASes deploy the prevention mechanism and when a random
subset of ASes deploy the mechanism, respectively, and then
report the average increase in the number of ASes that route to
the correct destinations when the prevention mechanism was
deployed. In each example scenario, we perform simulations
by randomly choosing victim and attacker ASes from selected
example regions. Across all scenarios, we randomly picked
N ASes to deploy the mechanism from the set of ASes with
at least X neighboring ASes, and reported the average over
500 simulations per scenario (with 95% confidence intervals
for the average). The use of threshold is in part motivated by
larger ASes (with many neighbors) being more likely to have
the resources to deploy hijack prevention mechanisms [10].
Here, the degree threshold X is used to bias the size of the
individual participants and the parameter N captures the size
(scale) of the alliance as a whole.

To compare different deployments, we use locality-, size-,
and scale-based criteria to randomly pick subsets of the nodes
on which to implement the mechanism. In all simulations,
victim nodes are selected at random and the reported metrics
are calculated over all nodes in the network.

As is common practice, for our evaluation we varied one
parameter at a time, while keeping all the other parameters
constant. Our default degree threshold X = 20 was selected
to map to an intermediate value in the range of interest (0-50),
and the default alliance size N was selected to be equal to the
number of ASes with at least 50 neighbors.

Before presenting our results, it should be noted that the
simulations have limitations. First, the AS relationship data
used for the simulations is not perfect and does not take into
account more complex AS-to-AS relationships. For example,
two ISPs may interconnect at multiple peering points and have
different types of relationships at each point [5]. Second, not
all network operators follow the standard rules for route export.
However, it is believed that there are few exceptions [11].

B. Global Baseline: Scale and Size

For reference, we first present results when the participating
ASes are selected from the global set of ASes. Figure 2
summarizes these results. Figure 2(a) shows the percentage
improvement in the number of ASes that chose the correct
origin, as a function of the number of participating ASes. With
our default threshold X = 20, the right-most points correspond
to the case when all 2,626 ASes with at least 20 neighbors
participate. In comparison, Figure 3 shows the same plot for
ASes in North America (NA), the European Union (EU), and
the rest of the world (all ASes excluding those in NA and
EU).

Referring to the global deployment results (Figure 2(a)),
all regions observe significant advantages from higher par-
ticipation. For example, with 500 random participants we
observe an average improvement of more than 15% across
all victim-attacker pair scenarios. In comparison, hen all ASes
with degree of at least 20 participate the improvements are
consistently above 45%. While overall numbers are lower
when only local ASes participate (Figure 3), we note that
local deployment is important when protecting against attacks

from within the region. This is demonstrated by the higher
percentage of improvements when the attacker is in the region
deploying the security mechanism.

Figure 2(b) shows the percentage improvement as a func-
tion of the threshold degree X . With our default alliance size
N = 1, 093, the righ-most points correspond to the case when
all ASes with a degree of at least 50 participate.

From these results it is clear that the high-degree ASes
are the ones that offer the most protection. For example, if all
the 1,093 top-ASes with more than 50 neighbors participate
we observe improvements of more than 40% for all victim-
attacker scenarios. This shows the importance of getting the
large ASes onboard in these deployment efforts. The general
observation that collaboration by a few large ASes can provide
much of the protection is not new. Similar observations have
been made by Gersch et al. [9] and Karlin et al. [16], for
example. In this work, we take this analysis one step further
and consider the impact of regional deployment.

Figure 4 presents location-based results for when only
ASes in a certain region deploy the prevention mechanism,
and where ASes deploying the mechanism are selected based
on their degree. We note that regional deployment can provide
similar improvements as in a global deployment when the
attacker is local. The improvements are noticeably lower
when the attackers are located in other regions. For example,
the percentage gain in ASes choosing the correct origin for
attackers in NA is greater when ASes in NA deploy the
prevention mechanisms compared to the gains when ASes in
other regions deploy the mechanisms. These results illustrate
that enforced deployment of these mechanisms may be a good
way for regions to clean up their own networks.

The locations of victim networks play a smaller role.
Although all networks would benefit from such a deployment,
the local networks would not gain much more protection
than external networks. These mechanisms should perhaps
best be seen as mechanisms for the greater good, with the
results showing that there is great incentive for governments
and network operators to come together to help ensure that
prevention mechanisms are deployed on a large scale.

C. Location-based Discussion: Key Findings

It is often stated that you should keep your friends close
and your enemies closer. Our results highlight that this is also
an important lesson in today’s networks. First, starting with
our friends, our results show that there are substantial gains
from local deployment, regardless of where the attacks come
from. For example, if all ASes with a degree of at least 20
deploy these mechanisms we observe a 30% gain for the NA-
based victims regardless of attacker region (e.g., Figure 3(a)).
In EU (Figure 3(b)) the corresponding gain is 20%.

Second, considering the attackers, our regional results
clearly show that detectors close to the attackers help the
most. For example, when ASes in NA deploy hijack prevention
schemes, the damage from hijack attacks originating from
ASes in this region can be significantly controlled in all
regions. These results show that the largest benefits come
with global deployment, and that there may be benefits to
subsidizing or otherwise incentivizing international partners to
implement these mechanisms too.
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Fig. 2. The average percentage improvement in the number of ASes that choose the correct origin when different subsets of the global set of ASes participate.
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Fig. 3. Impact of number of participating ASes, when ASes are selected from a particular geographical region or the “rest of the world”.
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Fig. 4. Impact of the degree threshold of the participating ASes, when all are selected from a geographic region or the “rest of the world”. For these figures,
we choose N = 207, N = 571, and N = 315, respectively.

Overall, the percentage gain when hijack prevention mech-
anisms are deployed by all (roughly 2,500) ASes around the
world with a degree of at least 20 varies between 40% and
50% for different combinations of victim-attacker regions (Fig-
ure 2(a)). If only 500 random ASes around the world deploy
the mechanism, the gain is roughly 15%. By comparison, when
the 431 ASes with a degree of at least 20 in NA deploy
the hijack prevention mechanisms, the percentage gain varies
between 23% to 43%, depending on which victim-attacker pair
combination is considered (Figure 3(a)). The higher numbers
partially reflect the big impact of the NA-based ASes, many
of which are high-degree ASes with peering points around the
globe, but also demonstrate the value of regional deployment
to help protect against hijack attacks.

IV. EVALUATING HIJACK DETECTION MECHANISMS

A. Methodology and Datasets

To evaluate hijack detection mechanisms based on AS-
PATH updates we have extended and modified a framework
that was previously used to evaluate alert rates for PrefiSec [15]
to account for ASes and their locality. While the evaluation
framework is designed for PrefiSec, the results presented here
also apply to PHAS [20] and PG-BGP [16]. Given the same

information, these systems’ detection rates are the same. The
main differences between these systems are their communica-
tion overhead and where the processing is performed.

For our analysis, we collected the RIB files and AS-PATH
announcements observed at all six routeviews servers active
during the time of the China Telecom incident [13], on April
8, 2010, when China Telecom announced origin for 50,000
prefixes originated by other ASes. Using announcements from
around the time, we compare differences and similarities of
the detection rates during an actual attack.

Focusing on a two-week window around the time of the
incident, we first used the RIB files from April 1 and a warm-
up period to initialize the AS-to-prefix mappings seen by
different selected subsets of ASes. Of particular interest here
is the degree (size) and locality of the collaborating ASes. In
our evaluation, we consider sets of collaborating ASes selected
from NA, EU, the “rest of the world” (reference point, rather
than a region), and from the global set. In contrast to the
original evaluation frameworks, which treated the routeviews
servers as the participants [15], we use the AS information of
the ASes contributing announcements to the routeviews servers
and AS-to-region mappings to identify subsets of information
seen by different subsets of collaborating ASes.
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In total, the six routeviews servers have 100 vantage points
that belong to 73 unique ASes. Of these, 38 are NA-based, 21
EU-based, and 14 map to other geographic regions.

For each of the subsets of collaborating ASes that we
chose, we then look at each day in the time window and simu-
late and report the number of prefixes and origins, respectively,
that the ASes in the subset would not have seen prior to that
day. These two metrics directly measure the number of cases
that must be flagged (and further investigated) as potential
prefix and sub-prefix attacks, respectively.

B. Global Baseline

As a baseline, we first present results for when the col-
laborating ASes are selected globally. Figure 5(a) shows the
number of alerts raised for both “new prefixes” (possible
subprefix hijacks) and “new prefix origins” (possible prefix
hijacks) announced during the incident (on April 8) as a
function of number of collaborating ASes. We also include
separate lines for the number of alerts of these two types raised
due to announcements made by China Telecom.

We see that the number of alerts for possible prefix hijacks
increases with the number of collaborating ASes, and that
40,575 alerts (for both prefix and subprefix hijacks) are raised
during the day of the attack if all the nodes collaborate. With
the exception of a few “new prefixes” and “new prefix origins”,
almost all alerts are due to the China Telecom announcements
associated with the incident, which caused traffic for these
prefixes and subprefixes to be hijacked.

Only a few ASes are needed to detect the majority of
the subprefix hijacks (“new prefixes”). This result can be
explained by subprefixes being propagated to almost all ASes
due to more specific prefixes being preferred. For prefix attacks
(“new origin”) additional ASes are much more beneficial,
with some diminishing returns after reaching 40 ASes. This
happens because ASes during these instances become divided
into two groups: ASes that continue routing to the victim
network and ASes that choose to route to the attacker network.
Thus, additional collaborating ASes increases the chance that
conflicting origins are detected and hijack alerts are raised.

Figure 6 puts the above numbers in perspective, showing
the number of alerts for the days before and after the attack.
In addition to being orders of magnitude lower than during the
day of the incident, the flatter “new origin” curves suggest that
the “new origin” announcements during these days propagated
somewhat further than the China Telecom announcements.

Figure 5(b) shows the number of alerts as a function of
the degree threshold to be included in the alliance. For every
threshold, 10 ASes with a degree of at least X are selected
at random. Here, the right-most displayed threshold is picked
so that the selection set include exactly 10 ASes, and the
following points (moving to the left) are picked so as to
roughly double the selection set for each point. The degree
threshold of 1 is included as a reference point.

The figure shows that the number of alerts for the China
Telecom incident is higher when the degree threshold is small,
and the number of alerts is quite low when large ASes
collaborate. This is a very interesting observation as much prior
work has suggested collaboration between the largest ASes,

but it can be partially1 explained by most of the high degree
ASes being NA-based. For example, of the ASes with a degree
greater than 1,174, all but one (i.e., 9 of 10) are NA-based,
and when the threshold is 646, there are 18 NA-based and
2 EU-based. However, these NA-based ASes do not have as
good a vantage point of the China-based incident, with only a
subset of the paths propagating to these ASes. With a lower
degree threshold more ASes from outside NA and EU will be
included, improving the results. This illustrates that the vantage
points offered by global collaboration can be more valuable
to the prefix hijack detection than having only the large ASes
collaborate. Similarly, multi-hop BGP peering can also help.
The detection numbers for subprefix attacks (“new prefixes”)
are less dependent of the AS degree (size) and locality; again,
indicating their wider propagation.

C. Location-based Analysis

We now discuss the benefits of regional collaboration for
hijack detection. Figure 7 shows the number of alerts as a
function of number of ASes for different regions. For all of
the three regions (NA, EU, and “rest of the world”), the number
of alerts increases as more ASes share information. If all NA-
based ASes collaborate there are 22,178 alerts (13,214 “new
origin” and 8,964 “new prefix”). Sharing among all EU-based
ASes raises 10,829 (3,620+7,209) alerts and sharing among all
the ASes in the “rest of the world” category would raise 36,328
(27,280+9,048) alerts. Whereas the sub-prefix detection (“new
prefix”) is similar for the different regions, the differences in
total alerts are substantial. For example, despite there being far
fewer ASes in the “rest of the world” category, this category
has the highest detection rate. The main reason for this is
that many of these ASes have more vantage points closer to
China Telecom than NA-based and EU-based ASes may have,
and therefore have better visibility of the route announcements
made by China Telecom. This observation mirrors the insights
provided by our hijack prevention results (Section III) that
show that ASes deploying protection mechanisms close to the
attacker provide the best protection.

While none of the regional collaborations performs as
good as global collaboration, the value of regionally deployed
solutions should not be underestimated, especially as there is
no solution that has seen widespread deployment yet. These
results show that careful regional deployment, possibly with a
few complementing ASes from other regions, may provide a
significant step in the right direction.

Figures 8(a) and 8(b) show the number of alerts as a
function of the degree threshold for regional collaborations
in NA and EU, respectively. As for the global results, for each
degree threshold, we randomly pick 10 ASes per alliance.

We again observe stronger degree (size) dependence for
prefix hijack detection (“new origins”) than for subprefix hi-
jack detection (“new prefixes”). While the large ASes in NA in
general provide more alerts than the smallest ASes in NA, it is
very interesting that the very top ASes see a drop in the number
of alerts they raise. It is also interesting that the large ASes in
EU detect fewer attacks than the smaller ASes in EU. As the
above ASes are in the same region, our previous explanations
(in Section IV-B) regarding the relative differences in coverage

1Additional explanation will be provided in the next subsection.
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Fig. 5. Average number of alerts raised when global ASes collaborate the day of the China Telecom
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Fig. 7. Number of alerts during the day of the incident (April 8, 2010) for different sizes of regional collaborations.

seen by ASes in different regions no longer apply here. In the
same region, the size-based differences may instead be related
to the standard route export policy. In particular, malicious
routes (learnt from a peer or provider) are typically exported
only to customers. Therefore, malicious routes learnt by mid-
tier ASes may not reach their providers (typically large ASes).

V. INTERCEPTION AND IMPOSTURE DETECTION

A. Methodology and Datasets

To provide insights into the impact of regional collabo-
ration for detecting interception and imposture attacks, we
have extended the evaluation of CrowdSec [14] to account
for locality of the collaborating network entities. CrowdSec
is designed to raise alerts about RTT anomalies and help
detect interception and imposture attacks. In the case of an
interception attack (Figure 1(b)) the RTTs typically increase
during an attack, whereas the RTTs during an imposture attack
(Figure 1(a)) can either increase or decrease, depending on the
relative locality of the attacker, victim, and detector.

In CrowdSec the end clients passively collect RTT mea-
surements while in contact with different candidate victim IP
addresses (or prefixes). The client applies an outlier detection
test to raise an alert if the new RTT measurement deviates
significantly from previously observed RTT measurements.
These alerts are shared with other CrowdSec clients, and the
individual alerts are combined using statistical test methods
such as a binomial test that takes into account the likelihood
of N clients observing significant deviations in RTT measure-
ments to the same prefix, given past observations [14].

For the evaluation presented here, passively collected RTT
values are simulated by extracting RTTs from (active) tracer-
oute measurements performed by PlanetLab2 nodes as part

2PlanetLab, https://www.planet-lab.org/

of the iPlane [23] project. In particular, we use daily RTT
measurements associated with 106 NA-based nodes, 79 EU-
based nodes, and 36 nodes located in other parts of the world.
For the most part we use a month’s worth of training data
(e.g., 278,690 successful traceroutes during July 2014) and
evaluate the performance of different detection techniques for
the following week, during which we simulate different attack
combinations. In total, we simulate 15,279 interception attacks
and 62,576 imposture attacks per set of sample detectors,
and report results averaged over 10 such sample sets. While
we only present interception results, the results for imposture
attacks are similar. In each simulation, detector nodes and
affected nodes are selected randomly within each region.

B. Global and location-based evaluation

Figure 9 shows a comparison of tradeoffs in detection
rate during a simulated attack (y-axis) and the false alert rate
under normal circumstances (x-axis), when all global vantage
points are collaborating (Global) and when only those in North
America (NA) or Europe (EU) collaborate. We include results
for when all (100%), half (50%), or none (0%) of the potential
detector nodes are affected. The case when no nodes (0%) are
affected is included only as a reference point, and captures the
false positive rates during normal circumstances.

Interestingly, the 106 NA-based nodes achieve a tradeoff
that is almost as good as the larger global collaboration (with
221 nodes). For example, a global collaboration that allowed
a false alert rate of 10−2 would achieve a detection rate of
80%, if 50% of the nodes were affected. In the same scenario,
the NA-based nodes achieve a 70% detection rate and the EU-
based nodes achieve a 40% detection rate.

Note, however, that the size of the collaboration may play
a big role. In Figure 10 we present a regional comparison
while keeping the number of detector nodes fixed at 20 and
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30. It turns out that NA-based nodes provide much better
detection than EU-based nodes, even when taking alliance
size into account, and in fact outperform a global alliance.
Part of the reason for these differences may be differences in
the variability of RTTs. Another possible contributing factor
that we have discovered is that some EU-based routes (even
between two EU-based nodes) go through NA even under
“normal” circumstances. In such cases, attacks by networks
outside EU may not result in noticeable changes in the RTTs.

C. Scale of collaboration

In general, regardless of the locality of the alliance, we
have observed significant advantages to larger alliances. This
is illustrated in Figure 11. Here, we show the alert-rate tradeoff
for collaborations of different sizes when including nodes that
are randomly selected from all global nodes (Figures 11(a))
vs. only North America (Figures 11(b)). Related to scale, it
should also be noted that there are benefits to larger numbers
of RTT measurements, as this helps to filter out anomalies.
While region-based analysis of this aspect is omitted here, we
refer the interested reader to our global results [14].

VI. RELATED WORK

A large number of security mechanisms have been pro-
posed to secure Internet routing. As described in Section II, this
includes prefix hijack prevention mechanisms based on prefix
filtering [3], [4], crypto-based solutions such as RPKI [21] and
ROVER [8], hijack detection mechanisms based on changes
in prefix origins observed in AS-PATH announcements (e.g.,
PHAS [20], PrefiSec [15], and PG-BGP [16]), and route hi-
jack detection mechanisms using either passive RTT measure-
ments [14] or active traceroute measurements [15], [30]. Rather
than proposing new mechanisms, we evaluate the effectiveness
of three broad classes of such mechanisms when they are only
partially deployed. We place particular focus on the geographic
locality of the collaborating ASes or network entities, while
also considering the impact of the collaboration scale and the
size of participating ASes.

While partial deployment of BGP security mechanisms has
been considered in prior literature [2], [10], [16], [22], the
geographic location of participants is almost always ignored.
Instead, carefully selected ASes have typically been used to
demonstrate the potential of the individual techniques. For
example, Avramopoulos et al. [2] demonstrate good protection
of a participant’s outgoing and incoming traffic using only the
top-5 tier-1 ASes in the world. Others have relied on the top-
tier ASes to demonstrate the effectiveness of PG-BGP [16],

path validation protocols such as S-BGP and BGPSec [22],
and incentive strategies for deployment of S*BGP [10]. None
of these works consider the impact of locality of the ASes that
are deploying the security mechanisms.

We are not the first to study the impact of the number of
participating ASes [9] or their node degree [24]. For example,
Suchara et al. [24] analyze security gains as a function of
increasing the node degree of the ASes that use a BGP security
mechanism that filters malicious routes. Similarly to our re-
sults, they find significant benefits to deploying the mechanism
at high-degree ASes at the core of the Internet. Gersch et
al. [9] analyze the effect of increasing the number of ASes
using attack prevention techniques. Their results nicely show
how the average number of polluted ASes decreases as the
number of participating ASes (with higher degrees) increases.
Again, none of these works consider which geographic region
each AS maps to. This can be an important factor when it
comes to legislation and other political incentives.

Much work has also been done to understand the slow
adoption of RPKI and other solutions [10], [26]. Other or-
thogonal but interesting work in this domain has designed
AS reputation systems that use control-plane information to
capture short-lived routes often used by malicious ASes [19].

Finally, the original simulation framework used in Sec-
tion III has also been used by Karlin et al. [16]. For this part,
we extend the simulator to take into account the geographic
locations of the attackers, victims, and collaborating partici-
pants. In Sections IV and V we extend and generalize our prior
evaluation frameworks for PrefiSec [15] and CrowdSec [14].
Again, neither of these systematically evaluates the value of
scale and size in the context of locality-restricted collaboration.
This paper evaluates three such broad classes of mechanisms.

VII. CONCLUSIONS

Despite BGP’s vulnerabilities and increasingly many rout-
ing attacks, no universally deployed security solution to such
attacks exists. Using simulations based on real measurement
data we have presented a systematic evaluation of three
broad classes ofprevention and detection techniques. We have
focused on the impact that regional, rather than global, de-
ployment could have on their ability to prevent/detect at-
tacks, as well as the impact of AS size of the (regional or
global) participants and the number of ASes that deploy the
techniques. While prefix hijack prevention (Section III) and
detection (Section IV) benefit greatly from deployment close
to the source of an attack, it is encouraging to see cases with
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all three classes of techniques where regional deployment
provides substantial benefits. We even find some cases where
regional deployment achieves most of the benefits achievable
through global deployment, and note that regional deployment
with carefully selected participants (e.g., based on AS size) can
outperform global deployments that are less carefully planned.
Another interesting observation is that the largest ASes can
provide worse detection than mid-sized ASes, which may see a
richer set of bogus announcements. This contrasts to deploying
hijack prevention mechanisms, for which large ASes appear
to provide the greatest benefit. The best AS selection may
therefore depend on if the system is designed for prevention
or detection. We have focused on one class of techniques
at a time. Interesting future work could weigh the benefits
of the different approaches against each other for different
collaboration constellations.
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