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Abstract—The degree of closeness in a relationship is charac-
terized as tie strength. Estimates of tie strength can be useful
in many contexts, including as a parameter in access control
policies or social context based services. Several papers have
proposed how tie strength can be estimated by quantifying
interactions in different individual communication channels such
as online social networks, phone communication and face-to-
face encounters. It has been conjectured by Wiese et al. [1] that
considering only a single communication channel may not lead to
accurate estimates of tie strengths. In this paper, we explore this
conjecture by examining whether the combination of co-location
events and mobile communication data can lead to better tie
strength estimations than considering each channel individually.
Surprisingly, our results indicate that the conjecture may not be
true, but further analysis with more extensive datasets is needed
to confirm the result.

I. INTRODUCTION

Tie strength is a notion used by social scientists to represent
the degree of closeness in a relationship between two people
[2]. The ability to accurately estimate tie strengths among
people can lead to new services or improvement of existing
ones. For instance, travellers and commuters can use tie
strength estimation to decide if they want to share a ride
with a stranger [3]. Similarly, people can decide to share
their mobile data connection with close friends, specified
as the list of their contacts with tie strength values above
some threshold [4]. Generally, estimation of tie strength has
many important applications in user-controlled online identity
authentication [5], consumer behaviour prediction systems [6],
recommendation services [7] and reputation services [8].

Prior research on tie strength estimation has largely focused
on using input data from a single communication channel.
We define a communication channel as any medium that
can be used for exchange of information between people.
Most studies estimate tie strength based on three communi-
cation channels: online social network (OSN) interactions [9],
[10], traditional telecommunication such as calls and text
messages [11], [12], [13] and interactions based on physical
proximity [14], [15], [16].

Intuitively, information about interactions in different com-
munication channels is likely to be a more accurate predictor
for tie strength values. Several previous works [2], [17], [18],
[1] have touched on this topic. Want et al. [17] conducted
user studies to understand how well interactions over different

communication channels correlate with closeness of friend-
ship. Hritsova et al. [18] showed that people who use multiple
types of channels for communicating with each other are more
likely to have higher tie strengths between them. Wiese et
al. [1] showed that when only one communication channel
(interactions via telecommunication networks) is considered,
the resulting tie strength estimates may be incorrect. They
further concluded that combining information from different
communication channels can lead to more accurate estimation
of tie strength values. None of above investigated concrete
tie-strength computation techniques that use multiple commu-
nication channels to confirm whether the conjecture is correct.

In this paper, we explore this question by using machine
learning classifiers to predict tie strengths in order to evaluate
whether combination of data from different communication
channels leads to a better prediction accuracy. We use an
existing dataset [19]. Our results indicate that while this
conjecture may be true, it cannot be claimed with statistical
significance. We therefore conclude that a more extensive
dataset would be needed in order to resolve this question more
definitively.

II. BACKGROUND

Tie strength was introduced by Granovetter in 1973 [20].
He defines strength of a tie between two people in the social
network as a combination of four factors: the amount of time
people spend with each other, emotional intensity, intimacy
(mutual confiding), and reciprocal services that characterize
the tie. Furthermore, he also divides ties into two classes: weak
ties that link acquaintances and strong ties that are formed
between people trusting each other. There is a lot of published
prior work on tie strength estimation with a particular focus
on assigning binary values (strong or weak) to ties [17], [5],
[21] and labelling them [22], [8].

We now present a brief summary of recent works on tie
strength estimation using a single communication channel and
discuss the shortcomings of relying only on a single channel.

A. Tie strength in a single communication channel
We consider three types of communication channels: online

social networks (OSN), mobile communication networks and
physical proximity.

Tie strength via OSN interactions. People using OSNs
often have a very large number of contacts. Although mostISBN 978-3-901882-83-8 c� 2016 IFIP
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OSNs provide the functionality of assigning social contacts
to specific sets (e.g., family, acquaintances, etc.) that reflect
various degrees of closeness, people usually do not bother
to take advantage of such functionality. To automate this
process, Gilbert et al. [23] and Spiliotopoulos et al. [24]
proposed using tie strength estimation methods based on a
linear combination of factors described by Granovetter as well
as emotional support and social distance. Arnaboldi et al.
[9] defined 19 Facebook features, found their correlation to
tie strength and presented two linear models for tie strength
estimation. They concluded that recency of contact between
people has the highest impact on tie strength. Jones et al. [10]
extracted 14 features and developed a logistic regression model
to check importance of extracted features. They, however,
showed that interaction frequency is the most important feature
in determining tie strength.

Tie strength via mobile communication network inter-
actions. Before OSNs became hugely popular, tie strength
estimation research largely concentrated on interactions via
(mobile) communication networks. Onnela et al. [11] ex-
amined social communication patterns based on phone calls
and SMSes. They applied duration of calls for tie strength
estimation to show the existence of a relationship between
tie strength and local social network structure. Zhang and
Dantu [12] presented an affinity model for predicting social
ties relying on communication logs. Eagle et al. [25] analysed
status of friendship based on mobile phone record data.

Tie strength via interactions in physical proximity. Tie
strength can also be estimated based on co-location events
(proximity interactions) between two people. Crandel et al.
[15] found that high number of physical proximity interactions
between two people corresponds to the higher probability of a
strong tie between them. Bilogrevic et al. [16] used the notion
of an encounter (defined as co-presence of two people for a
sufficiently long duration) for estimating tie strength. Sekara
et al. [26] presented tie strength estimation based on proximity
as determined by Bluetooth encounters.

B. Shortcomings of using a single communication channel

Although tie strength estimation based on a single commu-
nication channel gives a fairly accurate results, applications
like access control can benefit from increased accuracy. For
instance, tie strength estimation based solely on physical
proximity interactions is affected by the familiar stranger [27]
phenomenon, which can causes the strength of some ties to
be overestimated. Similarly, ties between people that are not
usually co-located (e.g., in long-distance relationships) will
be underestimated. Wiese et al. [1] showed that tie strength
estimation based only on mobile communication interactions
causes about 50% of strong ties to be incorrectly classified
as weak ties. They concluded that there is a strong motivation
for building tie strength estimation methods that connect input
data from multiple communication channels.

III. MULTI COMMUNICATION CHANNEL TIE STRENGTH

We now discuss our multi communication channel tie
strength estimation model. We begin with a description of the
dataset we worked with, including an overview of features we
use in our model. Later, we describe the three tie strength
estimation models.

A. Dataset
We have two main requirements for the dataset to fulfill:

(1) presence of at least two different communication channels
and (2) ground truth about the tie strength between pairs of
people. We chose the MIT Social Evolution dataset [19] which
contains traces from everyday life of 80 students living in the
dormitory on the MIT campus. The dataset includes two com-
munication channels: physical proximity (based on Bluetooth
scans) and mobile communication network interactions (logs
of phone calls and SMSes). The dataset covers nine months
beginning from October 2008.

Data volume. The dataset contains 372 instances (pairs
of people) with mobile communication interactions and 4770
instances with physical co-presence. 367 instances have in-
teractions in both communication channels, and can thus
be used for evaluation of tie strength estimation in a multi
communication channel model.

Ground truth. During the data collection campaign, par-
ticipants were asked which other participants they consider to
be close friends with. Thus, if a participant has indicated that
he/she is a close friend of another participant, we recognize
their tie as strong. Otherwise, we consider their tie as weak.
Overall, the ground truth is skewed, as only 668 pairs out of
4770 total pairs of users in both interactions indicated strong
tie.

B. Multi-channel Tie Strength Model
Definition. We define the multi communication channel tie

strength as a tie strength between two individuals that includes
communication features coming from multiple communication
channels.

Figure 1 illustrates difference in tie strength estimation be-
tween single and multiple communication channel approaches.
If only mobile communication channel is involved, tie strength
between Bob and John cannot be estimated. Similarly, tie
strength between Bob and Alice cannot be calculated if
only physical proximity channel is considered. However, by
aggregation of data from multiple communication channels,
all possible tie strengths between them can be estimated.
Furthermore, tie between Alice and John can be estimated
more accurately, as it includes data coming from both com-
munication channels.

Feature Extraction. Recall from II-A that contact duration,
contact frequency, and recency of contacts are considered as
the most important features for tie strength estimation. We
use them as the basic features both in mobile communication
as well as physical proximity channel. In addition, we derive
several new features which are based on distribution of these
basic features (e.g., percentiles of call duration).
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Fig. 1: Social network based on multiple communication
channels.

Having extracted the features for mobile communication and
physical proximity channels, we build two models, namely the
Mobile Communication-only model and the Proximity-only
model based on the features from respected channels. Finally,
we create the new model (which we call Aggregation) by
combining the features from the both channels.

Model description.

• Mobile Communication-only. The most important mo-
bile communication features are identical to the top
five features used by [1]. Furthermore, we define also
additional 11 features describing various percentile levels
of inter-communication times (i.e., time intervals between
subsequent communication between two people). In total,
the model includes 16 mobile communication features
(see Table II for details).
Furthermore, we assume mobile communication model
follows unidirectional character of user interactions. This
is motivated by intuitively different impact of incoming
and outgoing calls and SMSes on tie strength estimation.
For instance, if Alice calls Bob, it can be implied that
she is interested in him, but the reverse interest cannot
be proven.

• Proximity-only. Following Bilogrevic et al. [16], we use
encounter as the primary feature. Based on it, we derive
a total of 17 proximity features ranging from simple
total encounter counts and mean encounter duration to
more sophisticated percentile based features describing
distributions of encounter and inter-encounter durations
(see Table II for details).
Unlike in the mobile communication-only model, we
assume user interactions in the Proximity-only model
to be bidirectional. This is motivated by assumption of
mutual interest of two people during a co-presence event.

• Aggregation. This model includes both the Mobile
Communication-only and the Proximity-only features. In

total, the model has 33 features.
Since the aggregation model is a combination of the
Mobile communication-only and the Proximity model,
for which notions of interactions are unidirectional and
bidirectional respectively, we assume also unidirectional
notion of user interactions in this model.

IV. EVALUATION

This section presents accuracy of tie estimation achieved
by our models. We begin with description of the dataset
preparation for our evaluation. After that we describe how
we checked that the dataset includes similar characteristics
to the dataset used by Wiese et al. [1]. Finally, we eval-
uate the Aggregation model and compare accuracy of tie
strength estimation with the Mobile Communication-only and
the Proximity-only models.

A. Dataset preparation
Preprocessing. Recall from Section III that the Proximity-

only model assumes user interactions to be bidirectional.
Unfortunately results of Bluetooth scans may be asymmetrical
(e.g., if Bob and Alice are co-located, only Bob’s device
discovers Alice presence, while her device does not discover
him). This can happen for two reasons: (1) strong interference
coming from neighbouring devices makes some devices unable
to respond to Bluetooth discovery inquiry and (2) two parties
are separated by some distance/obstacle (and in fact not co-
present) and consequently Bluetooth signal between them is
very weak and detectable only by one party. To compensate
for this problem, we assumed the former reason and manually
updated proximity data, as if the parties have been able to
mutually discover themselves. On the other hand, we also
checked that removal of asymmetric Bluetooth scan results
(i.e., assuming the latter reason) does not change the accuracy
of tie strength estimation results.

Normalization. Due to wide range of values that the
features take, we apply the normalization of features with the
range of 0 and 1.

B. Dataset validation
Wiese et al. [1] concluded that reliance only on the mobile

communication network channel produces many errors in tie
strength estimations and needs to be updated with more com-
munication channels. Furthermore, as the dataset presented in
their evaluation shows specific characteristics, we validate that
our dataset exhibits similar characteristics.

They evaluated accuracy of tie strength estimation for three
different input data. The first set of data (all) contains tie
strength estimations between users and randomly chosen 70
contacts from the phone book and the Facebook contacts. The
second set (contactlist) includes only contacts contained in
user’s phone book. Finally, the third set (somecomm) includes
only contacts to which user has made at least 1 phone call
or exchanged 1 SMS. Their results show a clear trend that
precision of weak ties classification decreases if there are less
contacts with whom user does not actively communicate (see
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Table I for details). The reason behind this performance drop
is the fact that most of the ties without active communication
are weak ones, thus are easier to classify.

Since our dataset does not contain the notion of the
Facebook contacts and the phone book, we must generate a
simulated phone book which includes all users contained in
the dataset. We have following inputs:

• fullbook: includes all possible pairs of dataset users. Our
dataset contains 80 users, so there are 80⇤79 = 6320 pairs
in total. If there is a recorded communication between
a pair of users, we assign mobile communication-only
features for them, otherwise we set values for all features
to zero.

• someEn1: includes all possible pairs of users in the
dataset with at least one recorded co-location event. It
has 4403 pairs in total.

• someEn10: includes all possible pairs of users in the
dataset with at least 10 recorded co-location events. It
has 3893 pairs in total.

We validated that our dataset shows similar trends to Wiese
et al.’s by evaluating our inputs using the Weka Toolkit [28].
We balanced ground truth using Synthetic Minority Over-
sampling Technique (SMOTE) [29] and used implementation
of the Sequential Minimal Optimization (SMO) [30] with 10-
fold cross-validation as the classifier. As the strong tie in our
dataset is indicated by “close friend” label, for comparison we
chose 2 � mediumstrong class condition from Wiese et al.
which classifies tie strength into two classes (strong-medium
ties and weak ties). Our dataset exhibits similar performance
drop trend as reported by Wiese et al., thus it can be used
for evaluation of multi communication channel tie strength
estimation (see Table I for details).

TABLE I: Comparison of performance drop in precision of
weak ties classification for Wiese et al. [1] and our dataset.

Strong ties Weak ties
Precision Recall Precision Recall

Wiese et al.
all 0.693 0.420 0.764 0.920
contactlist 0.683 0.460 0.680 0.843
somecomm 0.707 0.724 0.488 0.467

Our dataset
fullbook 0.928 0.338 0.615 0.976
someEn1 0.936 0.398 0.547 0.964
someEn10 0.943 0.425 0.51 0.959

C. Aggregation analysis
Evaluation settings. Now we present the accuracy values

for the Mobile Communication-only, the Proximity-only and
the Aggregation models. Recall from III-A that only 367 pairs
of users appear both in the mobile communication network
channel and the physical proximity channel. Thus, to ensure
equal input data in comparison of models, we use only data
belonging to pairs of users appearing in both communication
channels. We balanced ground truth using SMOTE and used
SMO with 5-fold cross-validation as the classifier (10-fold
cross-validation was not possible due to low number of input
pairs).

TABLE II: Attributes and their weights in proximity and
communication models.

Model Attribute Weight

Communication

Total duration of call -0.0616
Count of days with at least 1 call -0.3544
Count of calls -0.0179
Count of calls and SMSes -0.0741
Call duration mean time -1.5441
Mean time between two calls -0.4804
90th percentile of time between two calls -1.534
75th percentile of time between two calls 0.4843
50th percentile of time between two calls 0.0186
25th percentile of time between two calls -0.9565
90th percentile of call duration -0.0237
75th percentile of call duration -0.0192
50th percentile of call duration -0.4215
25th percentile of call duration -0.311
Count of days since last call 0.0298

Proximity

Count of co-location events -0.1276
Count of all encounters 0.4214
Mean encounter time -0.082
Count of encounter days 0.1409
95th percentile of encounters -0.4808
90th percentile of encounters -0.3974
80th percentile of encounters -0.5826
75th percentile of encounters -0.1368
50th percentile of encounters 0.3816
25th percentile of encounters 0.6159
90th percentile of time between two encounters 0.3849
75th percentile of time between two encounters 0.1433
50th percentile of time between two calls 0.092
Mean time between two encounters 0.1584
Count of non-encounter co-location events 0.53
Count of days since last co-location 0.1467
Sum of all times between two encounters -0.2853

Results. The accuracy for the Mobile Communication-
only, the Proximity-only and the Aggregation model equal
72.49%, 62.23% and 72.71% respectively. The Aggrega-
tion model obtains a 10% accuracy improvement over the
Proximity-only model. However, results achieved by the Mo-
bile Communication-only and the Aggregation models are
almost equal with a slight edge for the latter (see Table III
for details). Thus, although the Aggregation model achieves
the best accuracy, the significant accuracy gain anticipated by
Wiese et al. [1] is not observed with this dataset.

TABLE III: Classification performance with different models

Model F-measure AccuracyStrong ties Weak ties
Mobile Communication-only 0.688 0.754 72.49%
Proximity-only 0.656 0.581 62.23%
Aggregation 0.69 0.756 72.71%

Statistical Analysis. To verify that there is enough evidence
to accept our claims about results, we run the statistical test.
Table IV lists the accuracies of five folds for each of the three
models.

We verify our claims by testing two hypotheses:
Null Hypothesis 1 (H1): There isn’t any significant dif-

ference between accuracy results achieved by the Mobile
Communication-only model and the Aggregate model.

Null Hypothesis 2 (H2): There isn’t any significant differ-
ence between accuracy results achieved by the Proximity-only
model and the Aggregate model.
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TABLE IV: Accuracy for Each Fold

Accuracy
Mobile Communication-only Proximity-only Aggregation

fold 1 74.74% 56.84% 74.74%
fold 2 76.6% 57.45% 75.53%
fold 3 76.59% 60.64% 76.59%
fold 4 65.96% 63.83% 65.96%
fold 5 70.21% 57.45% 71.28%

We found that difference in accuracy between the Aggregate
model and the Proximity-only method is statistically signifi-
cant in the 95% confidence interval (t⇤H2 = �5.792). However,
there is not any significant difference between the accuracy
of the Mobile Communication-only model and the Aggregate
model in the 95% confidence interval (t⇤H1 = 0).

V. RELATED WORK

Motivated by constant increase in the use of OSNs, the
research community has worked on several solutions for the
social relationships based access control. Fogues et al. [31]
reviewed some Relationship-based Access Control (ReBAC)
models and specified their features. One feature which can
be used for differentiating relationships in these models is
tie strength. Carminati et al. [32] defined several access
control rules and leverage relationship types for determining
numerical values for strength of friendship.

Another group of research activities concern mappings of
tie strength estimations between social networks. WeMeddle,
the Twitter application showed that a predictive model for tie
strength can be generalized to other social media [21]. Tang
et al. [22] described a transfer-based factor graph (TranFG)
model that can be used to learn and infer tie strength across
heterogeneous networks.

Another set of activities is related to prediction of online
social network evolution. Wang et al. [33] discovered that
online and offline movement patterns have strong correlation
with each other and measured that both patterns can be used
for link prediction. They also observed that tie strength has
more correlation with offline proximity than online measures.
On the other hand, Kahanda et al. [34] investigated link
strength prediction in online social networks. They derived
four categories for social features and showed that network
transactional features (e.g. wall posts) are the most important
one.

Another field of research studies mechanisms fortrust in-
ference based on tie strength estimation. In [35], Seyedi et
al. introduced a proximity-based method for bootstrapping
trust values, and showed by experiment that trust values are
relevant to tie strength using the MIT Reality Mining dataset.
TidalTrust [36], SUNNY [37], H-OSTP [38], SocialTrust [39],
FuzzyTrust [40] algorithms are examples for inferring trust in
social networks.

Onnela et al. [11] examined social communication patterns
based on phone calls and SMSes. They applied duration
of calls for tie strength estimation to prove existence of a

relationship between tie strength and local social network
structure.

VI. CONCLUSION

In this paper, we evaluated the three new tie strength estima-
tion models. Two of them are based on a single communication
channel (the Mobile Communication-only and the Proximity-
only models), while the third one (the Aggregate model)
is constructed by merging all the features provided by the
first two models. We evaluated performance of these models
using the MIT Social Evolution dataset. Our results show a
significant accuracy improvement of the Aggregate model in
comparison to the Proximity-only model. However, the gain
between the Aggregate model and the Mobile Communication-
only model is negligible.

Based on obtained results, we cannot confirm (with this
dataset) the hypothesis stated by Wiese et al. [1] that usage
of multiple communication channels improves accuracy of
tie strength estimation. However, their hypothesis cannot be
dismissed either, as the dataset used by us contains communi-
cation data only between people that have participated in the
collection campaign, thus it may not be fully representative.
In addition, there are no other publicly available datasets that
fulfil requirements of having multiple communication channels
and verified ground truth. Finally, construction of the new
dataset is also not a trivial task. In order to have a more
meaningful dataset than the MIT Social Evolution dataset,
it must be able to correlate identities of users (both actively
participating in the dataset construction process as well as acci-
dentally encountered) over multiple communication channels.
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