On Broadcast-based Self-Learning
in Named Data Networking

Junxiao Shi
The University of Arizona
shijunxiao@email.arizona.edu

Abstract—In local area networks and mobile ad-hoc networks,
broadcast-based self-learning is a common mechanism to find
packet delivery paths. Self-learning broadcasts the first packet,
observes where the returning packet comes from, then creates
the corresponding forwarding table entry so that future packets
will only need unicast. The main benefits of this mechanism are
its simplicity, adaptability, and support of mobility. While the
high-level idea of broadcast-based self-learning is straightfor-
ward, making the scheme efficient and secure, especially in a
data-centric network architecture like Named Data Networking
(NDN), requires careful examination. In this paper, we study how
broadcast-based self-learning may be applied to NDN networks,
point out two major issues: the name-prefix granularity problem
and the trust problem, and propose corresponding solutions. We
also apply self-learning to switched Ethernet as an example to
develop a specific design that can build forwarding tables without
any control protocol, recover quickly from link failures, and make
use of off-path caches. Simulations are conducted using both real
and synthetic traffic to evaluate the performance of the design.

I. INTRODUCTION

Broadcast-based self-learning is a common mechanism in
network designs. Self-learning broadcasts the first packet
with an unknown path across the network. When, and if, a
response packet returns, a forwarding table entry is created
toward the destination, so that future packets will only need
unicast. Forms of broadcast-based self-learning have been
implemented in both switched Ethernet and Ad hoc On-
Demand Distance Vector (AODV) Routing [1].

Named Data Networking (NDN) [2], [3] is a data-centric
Internet architecture, in which the basic network service
semantic is changed from “packet delivery” to “content re-
trieval.” NDN packets carry content names, which are used by
NDN routers and hosts to match user requests (called Interests)
with proper content objects (called Data). Communication is
receiver-driven: a client (called a consumer) sends an Interest,
then network forwarders find a path to a server (called a
producer) or an in-network cache using the content name, and
finally the Data packet is returned in reverse direction along
the same path.

Broadcast-based self-learning allows networks to adapt to
changing environments and allows for producer mobility,
without using any routing or other control protocols. These
benefits are particularly notable in mobile ad hoc and wireless
network environments, where no fixed infrastructure has been
established and periodic routing announcements would cost

ISBN 978-3-901882-94-4 (© 2017 IFIP

Eric Newberry
The University of Arizona
enewberry @cs.arizona.edu

Beichuan Zhang
The University of Arizona
bzhang @cs.arizona.edu

undue computation time and energy. This mechanism also fits
the NDN architecture well because it does not require prior
knowledge of the location of data. Listen First, Broadcast
Later (LFBL) [4], sCDN [5], and Reactive Optimistic Name-
based Routing (RONR) [6] are early works that apply self-
learning to NDN.

The high-level idea of broadcast-based self-learning is
straightforward, illustrated in Figure 1: Node C sends the first
Interest, which is broadcasted. When the Interest reaches the
producer node B, a Data is returned on the reverse path of the
Interest. Network forwarders create FIB entries leading to B,
so that future Interests will be sent via unicast. Nevertheless,
making the scheme efficient and secure requires addressing a
number of technical issues: (1) NDN uses hierarchical names
and FIB entries are associated with name prefixes instead of
host addresses. Given the names of the broadcast Interest and
the returned Data, what prefix granularity should be used in the
FIB entry for a learned path? (2) Broadcast-based self-learning
lacks authentication, enabling attacks such as ARP spoofing.
Can NDN’s data-centric security prevent such attacks?

After examining these issues common to all networks, we
developed NDN self-learning, a forwarding scheme applying
self-learning to local area networks and switched Ethernet in
particular that (1) builds forwarding tables in the data plane
with low overhead; (2) recovers quickly from link failures
and other path problems; (3) makes use of off-path caches
for Internet contents.

We conducted evaluations using both real and synthetic
traffic. Compared to RONR and Ethernet, NDN self-learning
can: (1) more accurately learn FIB prefixes from producers,
leading to less packet flooding; (2) recover from link failures
faster, without waiting for control plane convergence; and
(3) divert Interests requesting Internet contents to off-path
caches in order to reduce the load on the Internet connection.

This paper is organized as follows: Section II examines
the FIB prefix granularity problem. Section III investigates
the trust model for prefix announcements. Sections IV and V
propose NDN self-learning, our specific design for switched
Ethernet. Section VI evaluates the benefits and overhead of
our design. We conclude the paper in Section VII.

II. PREFIX GRANULARITY

The NDN forwarding daemon (NFD) [7] determines where
to forward an Interest by doing a longest prefix match on

- broadcast
Interest

<:| Data

) FIB entry

unicast
Interest

consumer

Fig. 1: Broadcast-based self-learning in NDN

the Forwarding Information Base (FIB), a name-based lookup
table of forwarding paths. With self-learning, NFD floods
Interests that do not match an entry in the FIB, and learns
forwarding paths through observation of Data return paths,
which are then inserted into the FIB. However, this still leaves
unresolved the issue of how to determine the name prefix of
an inserted FIB entry from the Data name. Having an accurate
FIB prefix is critical for the performance of NDN self-learning.

In Figure 1, node B serves the /A/B prefix. After flooding
an Interest /A/B/C/1 and receiving a Data with the same
name from B, a network forwarder can see the names of the
Interest and Data, but has no knowledge of B’s true prefix
(/a/B). If the FIB prefix is too specific (or long), such as
/A/B/C, a subsequent Interest /A/B/D/1 would be flooded
unnecessarily. Conversely, if the FIB prefix is too generic (or
short), such as /A, an Interest that cannot be served by the
producer (e.g. /A/E/F/1) would be incorrectly forwarded to
B.

We have identified three potential solutions to the prefix
granularity problem, which are described below.

A. k-shorter Prefix

The simplest solution to this problem is to derive the
FIB entry prefix from the Data name, removing the last
k components. One issue with this solution is that the
number of name components to remove (k) is highly de-
pendent on the naming scheme used by the application.
For example, ndnputchunks, a file transfer application, gen-
erates Data names in the format /network-prefix/
file-name/version2/segment0, while NdnCon, a
real-time conferencing application, generates Data names
in the format /network-prefix/user—name/cam3/
1920x1080/key/frame500/data/segment0 [8]. The
correct k value for each application is 2 and 6, respectively.

In a general-purpose network, it is impossible for forwarders
to understand the naming scheme of every application and
adjust k accordingly. Therefore, there will always be some FIB
entries with prefixes that do not match the producer’s prefix,
negatively impacting network performance. Since unnecessary
flooding does less harm than mis-forwarding Interests to the
wrong producer, k is often conservatively set to a small value.
RONR adopts this solution with k = 1.

B. FIB Aggregation

Another solution is to aggregate related prefixes into more
generic prefixes over time. In this solution, NFD initially sets
FIB prefixes conservatively, such as the Data name minus one

component. Then, if most FIB entries under a common prefix
point to the same nexthop, they can be aggregated into a single
entry at the shorter common prefix. As an example, if /A/B/
C, /A/B/D, /A/B/E, etc all point to the same nexthop, they
are aggregated into an /A/B entry pointing to that nexthop.

This mechanism is similar to IP prefix aggregation, but is
necessarily different because the NDN namespace is infinite.
Even after a nexthop is observed to serve many prefixes
under a common prefix, NFD cannot conclude with absolute
certainty that the same nexthop is able to serve all content
under this prefix, because there are infinitely many sub-
prefixes under it. Therefore, aggregations are optimistic, and
a deaggregation procedure is necessary in case an aggregation
is found to be incorrect.

During our investigation of this method, we found that there
is significant computational overhead in implementing the
aggregation algorithm, and that the optimal parameters of the
algorithm differ with the naming structure of each application.

C. Prefix Announcements

The third and final solution is to have the producer explicitly
inform the network of the prefix it serves. This solution
is implemented by having the producer attach a prefix an-
nouncement as a link-layer header on a Data packet sent
in response to a flooded Interest. The prefix announcement
is itself a Data packet, containing the prefix served by the
producer. It is signed by the producer, allowing its authenticity
to be verified (see Section III-A).

This solution is straightforward and allows FIB prefixes to
adapt to applications’ differing granularities. One drawback
of this approach lies in the bandwidth overhead of trans-
mitting announcements; however, this is compensated for by
the reduction in computational overhead compared to FIB
aggregation.

There are two variants of this solution: (1) Instead of
flooding the first application Interest and attaching the an-
nouncement onto the application Data, we can use an ARP-
like procedure: the consumer floods an Interest asking “who
has /A/B/C/17”, receiving the announcement in response,
and then unicasts application Interests. However, this incurs
an extra round-trip time before the first Data is retrieved.
(2) Instead of letting the producer attach an announcement
onto the Data, the producer prefix can be attached onto
the Interest by the consumer. This is applied to vehicular
networks in Navigo [9], but it will not work in general-purpose
networks because consumers may not know a producer’s prefix
granularity.

III. TRUST OF ANNOUNCEMENTS AND DATA

ARP spoofing is a common attack in IP-based local area
networks. In this attack, a malicious node transmits an ARP
message with a forged sender IP address, allowing it to
capture, manipulate, or even block traffic intended for an-
other host. A similar producer spoofing attack can occur
with NDN self-learning. To perform this attack, a malicious
node responds to flooded Interests with bogus Data, causing

subsequent Interests to be forwarded toward itself. This attack
is particularly effective when combined with prefix announce-
ments: by announcing a very short prefix, the resulting FIB
entry can attract Interests under a large namespace.

Producer spoofing attacks can be mitigated using NDN’s
mandatory Data authentication, which requires all applications
to sign and authenticate every Data packet. This is done by
applying two tiers of trust models: (1) a universal, network-
wide trust model for authenticating prefix announcements, and
(2) application-specific trust models carried in every prefix
announcement for validating packets under the announced
prefix. Announcement trust and application Data trust are
separated because there is not a universal trust model that
covers all application Data; instead, each application can
define its own trust model. Conversely, a LAN is under the
control of one entity, so it is feasible to define a universal trust
model for prefix announcements.

A. Trust Model for Announcements

In a routing-based NDN network, all prefix announcements
are authorized by the network administrator. A trust relation-
ship among routers prevents other nodes from announcing
arbitrary prefixes [10]. In broadcast-based self-learning, we
can apply a similar principle and let the network administrator
authorize prefixes announced by producers.

When a content-producing node joins the network, its
operator will request an announcement signer certificate from
the network administrator. Part of the name of this certificate
indicates which prefix the producer is allowed to announce. !
The administrator then signs the certificate with the network’s
certificate authority. After the certificate has been issued,
the producer can sign its prefix announcements with this
certificate.

The network administrator configures every switch/router
in the network with a trust model for authenticating prefix
announcements. Upon receiving a prefix announcement, NFD
can verify: 1) that the announcement has a valid signature
matching the public key in the announcement signer certificate,
2) that the announced name prefix matches the allowed prefix
encoded as part of the certificate name, and 3) that the
certificate is issued by the network’s certificate authority. If
all of these conditions are satisfied, NFD accepts the prefix
announcement and inserts a FIB entry.

B. Trust Schema for Application Data

While an announcement trust model ensures that no one
can announce unauthorized prefixes, a malicious node can still
collect a prefix announcement from a legitimate producer, and
attach it onto a bogus Data packet. This is a form of replay at-
tack, as the malicious node is replaying an old announcement.
A standard countermeasure to replay attacks is challenge-
response. In this case, a forwarder would generate a random
piece of information as the “challenge”, and the producer
would include this information in the prefix announcement,

ITo produce content under multiple prefixes, each prefix needs a separate
announcement signer certificate.

signed by the announcement signer certificate, which proves
that the announcement is fresh (not replayed). However, using
challenge-response would require that every flooded Interest
be processed at the producer and prevent the use of in-network
caches, as they are unable to sign the challenge.

To prevent producer spoofing, while keeping the benefits of
NDN’s in-network caching, we propose a different solution:
Every prefix announcement may carry the trust model for
Data packets under their announced prefix. This trust model is
encoded as a trust schema [11], which contains a set of name-
binding rules that dictate which certificates are authorized to
sign each Data or sub-certificate, as well as a set of top level
certificates as trust anchors. With the trust schema, anyone
can verify received Data packets against the trust model
in an automated and consistent way. In-network caches are
able to respond to flooded Interests with legitimate Data, but
malicious nodes cannot poison the network with bogus Data
packets, as their Data packets would not comply with the trust
schema.

We normally do not require NFD to verify application Data
because it would be prohibitively expensive. Instead, if a
consumer detects a bogus Data during its validation, it can
send a report to the upstream network [12], which then triggers
NED to verify the application Data. If the Data is found to be
bogus, NFD deletes the FIB nexthop toward the malicious
node and, as a penalty, may stop flooding Interests toward it
for a period of time.

IV. SELF-LEARNING ON SWITCHED ETHERNET

We developed a specific design that applies NDN self-
learning to switched Ethernet in wired LAN environments. In
this section, we introduce how self-learning builds forwarding
tables in the data plane without any other control protocols and
with low overhead, as well as how it can quickly recover from
link failures and other path problems. This design primarily
targets wired networks with hundreds of nodes, such as those
found in an office building or university department. It is
assumed that there is no congestion, as most wired LANs are
over-provisioned.

A. Building Forwarding Tables in the Data Plane

NDN self-learning determines the location of content by
flooding the first Interest, and observing the return path of
the corresponding Data packet. Forwarders use the prefix
announcements carried on Data to build the forwarding tables
(FIB). This happens entirely in the data plane, and does not
require a routing protocol or any other control plane protocols.

This process is similar to the flood-and-learn process in
traditional address-based Ethernet. If an Ethernet switch does
not know the location of a packet’s destination address, it
floods the packet. Afterward, it remembers a mapping between
the source address and the switch port, allowing subsequent
packets to that address to be sent unicast. However, Ethernet
flood-and-learn suffers from bridge loops: If the topology
contains cycles, a flooded packet will loop along them. To
prevent bridge loops, Ethernet employs the Fast Spanning Tree

Protocol (FSTP), which trims the topology to a spanning tree
by disabling particular links. However, FSTP severely reduces
the available bandwidth in the network and negatively impacts
the performance of Ethernet.

Conversely, NDN has built-in loop freedom. This is enabled
through the use of nonces. The nonce is a random number
carried in every Interest packet, generated by the consumer.
When NFD receives an Interest, it checks its (name, nonce)
tuple against recently seen (name, nonce) tuples. If the same
tuple has been seen recently, either this Interest is looping, or
it was received on multiple paths and the current incoming
Interest is not on the fastest path (for example, in Figure 1,
node S would drop the Interest from T during the initial
flooding since it arrives later than the Interest from R). In
both cases, NFD will drop the Interest, preventing Interests
from looping. Loops are not possible for Data packets, as they
always follow the reverse path of an Interest. This mechanism
prevents bridge loops in NDN, without requiring a protocol
like FSTP. Not only does this eliminate a control plane
protocol, but it also enables NDN to utilize the bandwidth
on all available links, as well as ensuring that flooding will
always learn the fastest path. This is because, when two copies
of a flooded Interest arrive at the same node via two different
paths, the copy received later is dropped, so that the Data reply
is only returned via the fastest path traversed by the Interest
at the time of flooding.

After a successful Interest flooding, NFD inserts a FIB entry
for the prefix listed in the returned Data’s prefix announce-
ment. The nexthop for this entry is the adjacent node that
the Data was received from. This allows subsequent Interests
under this producer’s prefix to be forwarded along a known
path via unicast, without requiring the use of flooding.

The number of dynamic FIB entries created using this
mechanism is subject to a capacity limit: when the FIB is
full, the least-recently-used (LRU) entry is erased.

B. Minimizing Flooding Overhead

Interest flooding consumes network bandwidth, and incurs
CPU processing overhead at end hosts that receive the flooded
Interests but do not have the content. The key to minimizing
overhead is to flood less often and in smaller regions.

In keeping with this goal, only the consumer can initiate
Interest flooding. Flooding should be initiated for any Interest
with an unknown path or where the previously learned path
has failed (see Section IV-D). Whether an Interest is being
flooded or not is indicated through a discovery tag field on
every Interest. The consumer tags an Interest as “discovery”
if it wishes to flood the Interest; otherwise, the Interest is
tagged as “non-discovery”. The inclusion of this tag allows
the consumer to regulate the flooding frequency.

However, if multiple consumers concurrently request con-
tent under the same name prefix (but not necessarily the same
data name), each joining consumer will initiate flooding of its
first Interest, even if a network forwarder has already learned
the path to the prefix. To avoid unnecessary flooding, when
NFD receives a discovery Interest but already knows a working

path, the Interest will be retagged as “non-discovery” and
forwarded along the known path via unicast. This effectively
“absorbs” Interest flooding from joining consumers. When a
Data packet comes back to the same forwarder, the original
prefix announcement that was used to create the FIB entry will
be attached onto the Data packet, allowing new downstream
nodes to learn the producer’s prefix.

C. Fast Reaction to Link Failures

Link failures are infrequent but inevitable in wired switched
Ethernet environments. NFD constantly monitors the availabil-
ity of learned paths, and informs the consumer when a link
failure is detected so that it may initiate another flooding.

We use a variant of Bidirectional Forwarding Detection
(BFD) [13] at the link layer to detect link failures between
adjacent nodes. NDN-BFD treats any incoming NDN packet
on a link as an indication that the link is up. If a node has not
sent any NDN packets on a link during a specific period of
time (e.g. Sms), it transmits an “idle packet”, which informs
the neighbor that the link is still up, even though there is
no current activity. If no NDN packets or idle packets arrive
within a longer period of time (e.g. 50ms), NDN-BFD declares
a link failure to the network layer.

Such link failures affect all pending Interests already for-
warded via the failed link, as well as all future Interests
that would have used the failed link as their nexthop. For
already forwarded Interests, although NFD could attempt to
retransmit them on an alternate path, it is computationally
expensive to do so, because records about pending Interests are
organized by name prefix and NFD cannot easily enumerate
through them. Thus, as a trade-off between recovery speed and
processing overhead, we rely on consumer retransmission (see
Section IV-D) to retransmit the affected Interests.

NFD will react to link failure when it receives another
Interest (which could be a new Interest or a retransmission)
matching a FIB entry with the failed link as its nexthop. It does
not forward the Interest to this nexthop. Instead, if the FIB
entry has a known alternate path, NFD forwards the Interest
on that path. If no alternative path exists and the incoming
Interest is tagged as “discovery”, it is flooded. Otherwise,
since there is no alternative path and the Interest cannot be
flooded, NFD informs the downstream about the link failure
by returning a Nack against the non-discovery Interest. A Nack
(“negative acknowledgment”) is a packet returned in lieu of
a Data when it is unable to be retrieved [14]. This packet
contains the Interest name and indicates why the Data could
not be retrieved (in this case, “link failure”).

Upon receiving a Nack, a downstream forwarder will set
a flag in the relevant FIB entry indicating that the current
path to this prefix has a link failure. It will then run through
the same procedure as the node adjacent to the failure (listed
above). Eventually, if no functioning alternate path is found,
the Nack will be returned, hop by hop, to the consumer. Then,
the consumer can retransmit the Interest, tagged “discovery”,
to initiate a new flooding, which may find another path to the
producer.

link
failure

affected
path

suboptimal
path (4 hops)

— . . — shortest
path (3 hops)

Fig. 2: Flooding from node D learns suboptimal path

We require flooding to be initiated from the consumer,
instead of allowing NFD to flood a (non-discovery) Interest
when there is a link failure, because flooding from an in-
network node might cause the network to learn suboptimal
paths. In Figure 2, consumer C initially retrieves Data from P
via C-D-P path. When link D-P fails, if D floods the Interest,
the path learned would be C-D-A-B-P, which is one hop
longer than the shortest path C-A-B-P which could be learned
if flooding is initiated from the consumer. This is also the
motivation of introducing a “discovery tag” into the Interest
packet to indicate whether an Interest is being flooded.

D. Consumer Retransmission

When the consumer believes or is informed that an Interest
or Data has been lost, but still wishes to retrieve the relevant
Data, it should retransmit the Interest. The retransmitted
Interest contains the same name, but has a new nonce, to avoid
being detected as a duplicate. The consumer can either send a
non-discovery Interest, allowing the network to explore known
alternate paths, or send a discovery Interest, initiating a new
round of flooding.

There are two situations when a consumer should retransmit
an Interest:

a) Nack: As mentioned in the previous section, when
the network returns a “link failure” Nack to the consumer, the
consumer should retransmit a discovery Interest to re-trigger
flooding. Retransmitting a non-discovery Interest would be
useless in this situation, as the network has already exhausted
all known alternate paths prior to returning the Nack to the
consumer.

b) Retransmission timer: Once the consumer has learned
the prefix granularity from the prefix announcement, it can
measure the round trip time for data retrievals, and use it
to calculate the retransmission timeout (RTO) using TCP’s
algorithm [15]. After expressing an Interest, if no Data comes
back within the RTO, it can retransmit the Interest. This is
primarily used to recover Interests that were already forwarded
to a link prior to its failure. 2

E. Handling Producer Mobility

Mobility is handled using the same procedures as link
failure: a node that has moved is treated as a link failure

2The lack of a Data reply could also be caused by packet loss, but in NFD,
packet losses are greatly reduced through link layer retransmissions [16].

between the previous hop and the moved node. When an
Interest reaches the previous hop, a Nack will be returned
so that the network can discover the new location of the Data.
After finding a new path, the new nexthop is added to the FIB
entry and will be used for subsequent Interests. The old path
is retained in the FIB entry as an alternate. This is especially
useful when a node is moving back and forth between several
attachment points. In this case, the forwarder at the branching
point could alternate between the paths without returning
Nacks.

V. CACHING OF INTERNET CONTENTS

One of NDN’s benefits is in-network caching. Every node
opportunistically caches Data packets passing through it, al-
lowing them to satisfy future Interests requesting the same
Data. Popular contents requested by multiple consumers can
be satisfied from a nearby cache, resulting in bandwidth sav-
ings and latency reduction. However, for most local contents
produced by a node within the LAN, these improvements are
marginal, as internal links have abundant bandwidth and low
latency. On the other hand, most LANs are connected to the
Internet via Wide Area Network (WAN) connections which
often have limited bandwidth and high latency. Maximizing
the utilization of in-network caches can significantly improve
the performance of Internet content retrieval.

A. Caching Basics

Every forwarder is equipped with an opportunistic cache
of Data packets, called the Content Store (CS). Data packets
passing through a forwarder are added to its CS. When an
Interest arrives, after confirming its nonce is not a duplicate,
the forwarder queries the CS to look for a matching Data that
can satisfy the Interest. If a match is found, it is returned to
the downstream, and the Interest is not forwarded or flooded
further. The CS is subject to a capacity limit set according to
available memory on the node. When the CS is full, entries are
evicted in either First-In-First-Out (FIFO) or Least-Recently-
Used (LRU) order.

Both discovery and non-discovery Interests can be satisfied
with cached Data. When answering a discovery Interest, NFD
attaches the original prefix announcement onto the Data.
Therefore, an Interest flooding may learn a path toward a
cache, instead of a path toward the producer. If a subsequent
Interest is forwarded to a cache but cannot be satisfied by
a cached Data, the cache node should forward or flood (if
the Interest is tagged “discovery”) the Interest as a forwarder
normally would, or return a Nack if there is no available
upstream. Returning a Nack would cause the network to find
a path to another cache or producer.

B. Internet Contents Retrieval

Internet contents are retrieved via a gateway router. When a
consumer expresses an Interest requesting an Internet content,
flooding is used to discover a path to the gateway, which
then retrieves the content from the Internet. The gateway
announces itself as the “producer” of the “/” prefix through

a prefix announcement attached to the returning Data packet.
This announcement causes network forwarders to insert a FIB
default route toward the gateway, so that subsequent Interests
for Internet contents are sent to the gateway without flooding.

One issue is that, a FIB entry at the “/” prefix will match not
only Interests requesting Internet contents, but also Interests
requesting local (internal) contents. To solve this problem,
the gateway’s announcement should carry a local prefix list,
containing a list of administrator-defined prefixes internal to
the LAN. If an Interest matches this root FIB entry, but falls
under one of the local prefixes, it will not be forwarded toward
the gateway, but instead flooded or Nacked as if there were
no FIB match.

Since this FIB entry will match every Interest requesting
Internet contents, all Interests for Internet content will be
forwarded as non-discovery, allowing only caches on the path
between consumers and the gateway to be utilized. Although
these on-path caches can satisfy some redundant Interests,
requiring less content to be retrieved from the Internet, the
caches in network switches and the gateway router have lim-
ited capacity and handle a high volume of traffic, and therefore
can only offer limited assistance in this regard. However, there
is abundant cache capacity on other, off-path nodes, especially
on end hosts. Retrieved Data can be cached for longer on
these nodes due to the less frequent replacement of old entries.
Therefore, we extend the design in the next section to utilize
off-path caches for Internet traffic by diverting Interests to
them, in order to reduce WAN connection bandwidth usage.

C. Diverting Interests to Off-Path Caches

To utilize off-path caches, all nodes remember where each
Data packet they processed was forwarded to and, therefore,
where they may be cached. After these Data packets have been
evicted from the on-path cache, Interests requesting them can
be forwarded to potential off-path caches.

Information about potential off-path caches is stored in the
CS. When a Data is forwarded downstream, the downstream
face is recorded as a potential off-path cache in the Data’s CS
entry. When a CS entry must be evicted, instead of deleting
it altogether, it is converted to a “stub” entry, containing the
Data name and the locations of potential off-path caches, but
not the Data payload. Since a name is much smaller than a
Data payload, a node can store many more stub entries than
regular CS entries. These stub entries are subject to a separate
capacity limit and can be evicted once that limit is exceeded.

When an incoming Interest matches a CS stub entry, the
forwarder examines potential off-path cache locations, and
decides whether to divert the Interest by predicting whether
the Data is still cached on the off-path cache. We use a
simple heuristic for this prediction: a Data is less likely to
have been evicted if less Data packets have been sent to that
downstream in the meantime. This heuristic is implemented in
three steps: (1) NFD maintains an outgoing Data counter for
each face (abstraction of “network interface”). This counter
is incremented every time a Data packet is sent to the face.
(2) When a downstream is recorded as a potential off-path

cache, the current value of that face’s counter is recorded in
the CS entry. (3) To determine whether an Interest should be
diverted to an off-path cache, NFD calculates the number of
other Data packets sent to this cache after the requested Data.
This is done by subtracting the value recorded in the CS entry
from the current counter value. If the difference is less than
or equal to a pre-determined diversion threshold, the Interest
is diverted to the off-path cache, and not forwarded further
toward the gateway. In case there are multiple eligible off-
path caches, the Interest is diverted to the one with the least
“other Data count”, as it is most likely to still have the Data.

When an off-path node receives a diverted Interest, the
forwarder on that node queries its CS to look for a match. If
a regular CS entry is found, the Data packet is returned to the
diverting node, which returns the Data to the downstream. If a
stub CS entry is found, the Interest is passed to the downstream
that is most likely to still have the Data, chosen with the same
heuristic as above; however, it is not subject to the diversion
threshold criteria 3. If there is no match in the CS, most likely
because the stub entry has been evicted, the off-path node
returns a Nack to the diverting node, which then forwards the
Interest toward the gateway. This Interest is also tagged “no
diversion”, disallowing other on-path nodes from diverting it
again, in order to limit the extra latency introduced by Interest
diversion.

Similar opportunistic off-path cache discovery mechanisms
have been proposed for ISP networks. (1) In S-BECONS [17],
an on-path node remembers which downstream has most
recently retrieved a file, along with a timestamp of that
retrieval. Whether an incoming query would be diverted or
not depends upon whether the timestamp is recent enough.
However, we argue the traffic volume sent to a downstream
is a better predictor than when the downstream last retrieved
the Data, hence our heuristic based upon “other Data” count.
(2) In [18], when an incoming Interest matches the record of
off-path caches, it is forwarded to a potential off-path cache;
additionally, in most cases, the Interest is still forwarded to-
ward the FIB nexthop, without waiting for an answer from the
off-path cache. Although this design is effective in reducing
latency when Data is found in an off-path cache, it would not
save WAN connection bandwidth in our scenario. On the other
hand, they limit diversion overhead by attaching some quotas
on the Interest and letting every node decide whether to spend
them. This is present in our design as the “no diversion” tag.

VI. EVALUATION

NDN self-learning was implemented in NFD, and evalu-
ated in the Mininet network emulator [19], with both real
world and synthetic topologies and traffic traces. Three addi-
tional forwarding schemes were implemented for comparison.
(a) The “broadcast” scheme reuses NFD’s multicast forward-
ing strategy, which floods Interests to every neighbor, with
the exception of the downstream; however, Data only returns

3A node can tell that the Interest is already diverted because it is coming
from an upstream in the direction of the gateway.

600000 -

73 FSTP mmm Nacks
mm Nacks 500000 - Y Data
59 Data @ [Interests
1 Interests ° 400000 |-

<

2 300000

g 200000 -

100000 +

0

50 100 200 300 400 500

Oswitch 1400000
1200000 |-
.NFS server n
£ 1000000 |-
24
A\ Nes client é 800000 |-
T 600000 (-
2 400000 |
200000 |-
0
broadcast RONR
Fig. 3: Topology for NFS experi- Fig. 4:

ment

via the shortest path. (b) RONR is implemented according to
[6]. FIB granularity is derived from the Data name, removing
the last component. The FIB expiration timer is set to 5 sec-
onds. (c) “Ethernet-style self-learning” adapts Ethernet’s self-
learning algorithm to NDN. Interests and Data are restricted
to the spanning tree, calculated by an FSTP implementation
from the VDE switch emulator [20]. FIB granularity comes
from prefix announcements, and FIB entries expire after 15
seconds.

A. Low Bandwidth Usage

NDN self-learning can learn producers’ accurate prefixes
from prefix announcements. These announcements are used to
build forwarding tables in the data plane with low overhead.
We evaluated the performance of our design using a real-world
university department topology and traffic trace. In Nov-Dec
2014, we captured Network File System (NFES) traffic with
nfsdump [21], and implemented a pair of NDN programs
to emulate the same functionality using NDN Interest-Data
exchanges. The client program expresses Interests to read
files and directories, as well as to execute commands. Interest
names sent by the client start with the file name. The network
must learn which server serves the directory, as well as how
to reach that server. In response, when NDN self-learning or
Ethernet is in use, the server attaches a prefix announcement
announcing the NFS mount point’s prefix. To write a file,
the client first sends a command to the server, and the server
expresses Interests to retrieve the file from the client. These
“reverse” Interests start with a name component that identifies
the specific client, meaning that the network needs to learn a
path to the client. Each Interest can be retransmitted up to 3
times upon a Nack or timeout. If no Data has been received
after 3 retransmissions, the NFS operation that triggered the
Interest is marked as having failed.

We took a subset of the traffic traces, and replayed them
on the topology in Figure 3. This topology has 5 switches, 2
NFS servers, and 21 NFS clients. The experiment lasted 60
minutes, during which 36478 NFS operations were performed.
We measured how many packet transmissions were needed
to complete the NFS operations in each forwarding scheme,

4File names in the trace were anonymized as SHA-1 digests to respect
privacy, but the name hierarchy was preserved.

NFS experiment, total packets

Ethernet self-

learning FIB capacity in self-learning

Fig. 5: Effect of FIB capacity in NFS
experiment

and plotted the results in Figure 4. The FIB capacity of
NDN self-learning was set to 50 entries per node; RONR and
Ethernet used a maximum of 510 and 37 FIB entries per node,
respectively. The results demonstrate that NDN self-learning
transmitted the least number of packets, while Ethernet-style
self-learning, which also uses prefix announcements to deter-
mine FIB granularity, transmitted 7% more packets than self-
learning, more than half of which can be attributed to the Fast
Spanning Tree Protocol. RONR uses a 1-shorter prefix for its
FIB entry granularity, which required one flooding per file
for many NFS operations, as the Data name used ends with a
segment number component (as per NDN naming conventions
[22]). This pushed RONR’s bandwidth usage close to that of
broadcasting.

We studied the effect of FIB capacity on NDN self-learning,
with results shown in Figure 5. It can be seen that NDN
self-learning performs better with a higher FIB capacity limit,
because every node is able to remember more forwarding paths
for a longer period of time, resulting in less flooding. However,
the improvement was marginal when the FIB capacity was
greater than 300.

B. Fast Link Failure Recovery

Each forwarding scheme was evaluated for their reaction
to link failure on the topology in Figure 6. The topology
contains 12 NDN switches and 12 end hosts. Node P is
a producer, serving content under /P. Node C is the con-
sumer executing ndnping that continually sends Interests for
/P/ping/<sequence—-number> at a l-second interval.
The consumer application will retransmit an Interest at most
twice upon receiving a Nack, but will not retransmit after a
timeout.

The experiment lasted 60 seconds. 30 seconds into the
experiment, link 1 experienced a failure. Since link 1 sits on
the shortest path between C and P, it is expected that traffic
will be affected, and therefore the forwarding scheme should
find an alternate path.

We ran this experiment for the broadcast, Ethernet, RONR,
and NDN self-learning schemes. Since the location of the root
bridge in Ethernet affects which links are on the spanning tree,
we ran Ethernet scenarios with R as the root bridge, in addition
to scenarios with S as the root bridge. We also ensured that
link 1 was on the initial spanning tree.

2500

30

Fig. 6: Topology for link failure Fig. 7: Link failure experiment, total packets
* RONR has 8.3% end-to-end loss

experiment

Emulation revealed that, although every forwarding scheme
can eventually detect a link failure and switch to an alternate
path, the bandwidth usage and recovery speeds varied greatly.
Figure 7 shows the total number of packet transmissions
across the network by each scheme. While RONR demon-
strated slightly lower bandwidth usage compared to NDN self-
learning, it had a 8.3% end-to-end packet loss. The three other
tested schemes completed the communication in its entirety,
without any end-to-end packet loss. Among these, NDN self-
learning transmitted less packets than broadcast and Ethernet.

We also compared the number of Interest transmissions in
RONR and NDN self-learning for each Interest (shown in
Figure 8). Both schemes flooded /P /ping/0 and learned the
shortest path. Link 1 failed after /P /ping/30 was retrieved.
The sharp increase in Interest transmissions indicates that
NDN self-learning detected the link failure immediately and
responded by promptly flooding /P/ping/31. On the other
hand, RONR was stuck on the failed path for 5 seconds
until the FIB entry expired, causing packet loss during these
5 seconds, and then discovered a new path by flooding
/P/ping/36.

C. Off-path Cache Utilization

Our Interest diversion design was also evaluated for its
effectiveness in utilizing off-path caches for Internet content
retrieval. This experiment used the tree topology shown in
Figure 9. In this experiment, each end host ran a consumer
program that retrieved 5000 Data packets from the Internet
over a period of 1000 seconds, with a 200ms interval between
Interests. Interest names followed a Zipf distribution with the
parameters N = 200000 and s = 0.955 [23]. The end hosts
also retrieved Data from each other at regular intervals, such
that local traffic accounted for either 20%, 50%, or 80% of
the total traffic volume of the network, depending upon the
scenario. The Content Store (CS) capacity on each node was
set to 2000 Data packets and 4000 stub entries, both using the
FIFO replacement policy.

The main benefit of diverting Interests to off-path caches
is to decrease the amount of traffic on the WAN connection,
which is often the source of much latency when accessing
Internet content. Figure 10 shows the number of packets
traversing the WAN connection when running self-learning
without diversion (“nodivert”) and with diversion, under three

FSTP " | .— self-learning
2000 mmm Nacks »5 25 - i~~~ RONR
9 =9 Data @ i
[3 Interests € 20
< 1500 @ & ‘.
© —x 15 |
= 1000 SN £ :
i % 10 i
o] AN g g e
= 500 AN :\:3 g 5 :
\ W m £ -
o 0 1 1 1 1 1 1]
acar,& eme‘x* 2(‘\6‘5 %O@* ea‘““@ 0 10 20 30 40 50 60
O S\
o <« & o sequence number

Fig. 8: Link failure experiment, Interest
transmissions

different traffic ratios. We can see that the Interest diversion
mechanism can effectively reduce utilization of the WAN
connection by up to 13%. The total amount of bandwidth
saved by this mechanism is affected by what percentage of
the LAN’s traffic volume consists of Internet content. It was
more effective when Internet traffic made up a greater share of
the LAN’s total traffic, as demonstrated in the lower curves.

The diversion threshold parameter (X-axis), used by the
forwarder to determine whether a potential off-path cache may
still have the Data (mechanism described in Section V-C),
has a significant impact on the effectiveness of the Interest
diversion mechanism. When the diversion threshold was set
to a small value (e.g. 250), no diversions occurred in our
experiments, so that there was no change in performance.
Larger diversion thresholds tended to achieve greater benefit,
as long as they were set below the CS capacity (< 2000).
Setting the threshold to be greater than the CS capacity (e.g.
3000) caused a slight reversal in the trend of decreased WAN
connection utilization, but still allowed for better performance
than self-learning without diversion.

The processing overhead of diverted Interests is shown in
Figure 11. In this plot, “hits” indicate how many diverted
Interests were satisfied by an off-path cache, while “misses”
indicate how many diverted Interests missed an off-path cache
and were Nacked. A “hit” is desirable because, while it incurs
a small processing overhead within the LAN, the signifi-
cantly larger delay of sending an Interest onto the Internet is
avoided; a “miss”, on the other hand, incurs internal processing
overhead and adds a small, but undesirable, delay before
Data is retrieved from the Internet. We can see that, in our
experiments, there were a negligible number of cache misses
in scenarios with smaller diversion thresholds (< 1500). A
significant number of cache misses begin to appear when
the diversion threshold approaches 2000 because, when the
diversion threshold equals the CS capacity, it is more likely
that some Internet content has been evicted from the Content
Store by a local content. For example, if Al fetches a local
Data from A2 and causes an Internet Data to be evicted
from A’s CS, R will not know of this eviction and may still
divert an Interest toward A, causing a cache miss. When the
diversion threshold is set to 3000, a value greater than the CS
capacity, there is a significant increase in cache misses but

“Internet

atewa 95000 -
Dfouter Y § 80% local traffic 16000 - == misses
WAN connection 4}‘-3 90000 | W g 14000 | = hits
switch =)) 3 12000 -
O € 85000 X %X\ 50% local traffic & 10000 L
A : s
endhost £ S 8000 -
o L
g 80000 \ 2% local traf § 6000 |
o 6 local traffic @
£ 75000 - e X £ 4000 -
] 2000 -
a 70000 1 1 1 1 1 1 1 1) 0]

Fig. 9: Topology for the Internet
content retrieval experiment

only a marginal difference in off-path cache hits. Therefore,
taking both WAN connection utilization and internal process-
ing overhead into account, for best performance, the diversion
threshold should be set to a value around 75% of the CS
capacity.

VII. CONCLUSION

This paper examines how broadcast-based self-learning can
be applied to Named Data Networking. We discussed two
previously overlooked issues, namely, the FIB granularity
problem and the trust model for prefix announcements. We
also proposed a specific NDN self-learning design for local-
area switched Ethernet, which can build forwarding tables
in the data plane with low overhead, recover quickly from
link failures, and efficiently utilize off-path caches for Internet
contents.

Emulation showed that NDN self-learning consumes 68%
less bandwidth than RONR with file access traffic due to the
more accurate prefixes learned from prefix announcements.
We also demonstrated that, due to the use of Nacks, NDN
self-learning can recover from link failures without waiting
for FIB entry expiration or incurring the overhead of FSTP
convergence. Our Interest diversion design was shown to
reduce bandwidth usage on the WAN connection by up to
13% (when 80% of LAN traffic was composed of Internet
content retrieval).

In the future, we plan to extend the NDN self-learning
design to incorporate congestion control, and apply the design
to wireless networks and data centers.

VIII. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
comments. This material is based upon work supported by
the National Science Foundation under Grant No. 1345142,
1513505, and 1629009. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance
Vector (AODV) Routing,” RFC 3561 (Experimental).

nodivert 250 500 750 1000 12501500 17502000 3000

diversion threshold

Fig. 10: WAN connection utilization

[2]

[3]
[4]
[5]

[6]

[7]
[8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]
[22]

(23]

500 750 1000 1250 1500 1750 2000 3000
diversion threshold

Fig. 11: Interest diversion hits and misses,
50% local traffic

L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, Jul. 2014.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in CoNEXT, 2009.
M. Meisel, V. Pappas, and L. Zhang, “Listen First, Broadcast Later:
Topology-Agnostic Forwarding under High Dynamics,” in ITA 2010.
C. Partridge, R. Walsh, M. Gillen, G. Lauer, J. Lowry, W. T. Strayer,
D. Kong, D. Levin, J. Loyall, and M. Paulitsch, “A Secure Content
Network in Space,” ser. CHANTS ’12, 2012.

E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wihlisch,
“Information Centric Networking in the IoT: Experiments with NDN in
the Wild,” in ICN’2014.

A. Afanasyev et al., “NFD Developer’s Guide,” NDN, Technical Report
NDN-0021, Revision 7, 2016.

P. Gusev, Z. Wang, J. Burke, L. Zhang, T. Yoneda, R. Ohnishi, and
E. Muramoto, “Real-Time Streaming Data Delivery over Named Data
Networking,” IEICE TRANSACTIONS on Communications, 2016.

G. Grassi, D. Pesavento, G. Pau, L. Zhang, and S. Fdida, “Navigo: In-
terest forwarding by geolocations in vehicular named data networking,”
in WoWMoM 2015.

V. Lehman, A. K. M. M. Hoque, Y. Yu, L. Wang, B. Zhang, and
L. Zhang, “A Secure Link State Routing Protocol for NDN,” NDN,
Tech. Rep. NDN-0037, 2016.

Y. Yu, A. Afanasyev, D. Clark, k. claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in named data networking,” in ACM-ICN, 2015.

S. DiBenedetto and C. Papadopoulos, “Mitigating poisoned content with
forwarding strategy,” in INFOCOM 2016.

D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),” RFC
5880 (Proposed Standard).

C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,
“A Case for Stateful Forwarding Plane,” Comput. Commun., vol. 36,
no. 7, Apr. 2013.

V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
Retransmission Timer,” RFC 6298 (Proposed Standard).

S. Vusirikala, S. Mastorakis, A. Afanasyev, and L. Zhang, “Hop-by-
hop best effort link layer reliability in Named Data Networking,” NDN,
Tech. Rep. NDN-0041, 2016.

E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, best-effort
content location in cache networks,” in IEEE INFOCOM 2009.

0. Ascigil, V. Sourlas, I. Psaras, and G. Pavlou, “Opportunistic off-path
content discovery in information-centric networks,” in LANMAN 2016.
B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks,” in HotNets-IX.

M. Goldweber and R. Davoli, “VDE: An Emulation Environment for
Supporting Computer Networking Courses,” SIGCSE Bull., vol. 40,
no. 3, Jun. 2008.

D. Ellard and M. Seltzer, “New NFS Tracing Tools and Techniques for
System Analysis,” in LISA 2003.

Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “NDN Technical Memo:
Naming Conventions,” NDN, Tech. Rep. NDN-0023, 2014.

Y. Liu, F. Li, L. Guo, B. Shen, S. Chen, and Y. Lan, “Measurement
and analysis of an internet streaming service to mobile devices,” IEEE

Transactions on Parallel and Distributed Systems, 2013.

