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Abstract—Cascades represent an important phenomenon
across various disciplines such as sociology, economy, psychology,
political science, marketing, and epidemiology. The goal of this
paper is to develop a model for cascade size prediction in
online social networks. Specifically, given the first τ1 edges in
a cascade, we want to predict whether the cascade will have a
total of at least τ2 (τ2 > τ1) edges over its lifetime without any
a priori information. In this paper, we propose a Multi-order
Markov Model (M3) for cascade size prediction in online social
networks. Our evaluations using a Twitter data set show that M3

based cascade size prediction scheme outperforms the baseline
scheme based on cascade graph features such as edge growth
rate, degree distribution, clustering, and diameter. M3 based
cascade size prediction scheme consistently achieves more than
90% prediction accuracy in different experimental scenarios.

I. INTRODUCTION

Background and Motivation. The term cascade describes

the phenomenon of something propagating along the links in

a social network. That something can be information such as

a URL, action such as a monetary donation, influence such as

buying a product, discussion such as commenting on a blog

article, and a resource such as a torrent file. Based on what

is being propagated, we can categorize cascades into various

classes such as information cascades [7], action cascades

[10], influence cascades [23], discussion cascades [16], and

resource cascades [36]. Consider a toy example where user A,

connected to users B and C in a social network, broadcasts

a piece of information (e.g. a picture or a news article) to

his neighbors. Users B and C, after receiving it from user A,

may further rebroadcast it to their neighbors resulting in the

formation of a cascade.

Cascade phenomenon has been a fundamental topic in many

disciplines such as sociology, economy, psychology, political

science, marketing, and epidemiology with research literature

tracing back to the 1950s [32]. A key challenge in these

studies is the lack of large scale cascade data. As online social

networks have recently become a primary way for people

to share and disseminate information, the massive amount

of data available on these networks provides unprecedent

opportunities to study cascades at a large scale. Studying

cascades in online social networks will benefit a variety of

domains such as social campaigns [39], product marketing and

adoption [28], online discussions [16], sentiment flow [29],

URL recommendation [31], and meme tracking [17].

Problem Statement. The goal of this paper is to develop a

model for cascade size prediction in online social networks.

Specifically, given the first τ1 edges in a cascade, we want
to predict whether the cascade will have a total of at least
τ2 (τ2 > τ1) edges over its lifetime without any a priori
information. This prediction has many real-world applica-

tions. For example, media companies can use it to predict

social media stories that can potentially go viral [18], [31].

Furthermore, solving this problem enables early detection of

epidemic outbreaks and political crisis. Despite its importance,

this specific problem has not been adequately addressed in

prior literature.

Predicting the sizes of social network cascades is techni-

cally challenging from many aspects. For instance, real-world

cascades sometimes have large sizes, containing thousands of

nodes and edges [12], [25]. Besides, cascade size prediction

without any a priori information about the users has to rely

solely on the shape and structural information of initial cascade

propagation.

Limitations of Prior Art. A lot of prior work has studied

the characteristics of cascades in online social networks. For

example, Dow et al. studied the anatomy of two large photo

sharing cascades in Facebook [12]. Kwak et al. investigated

the audience size, tree height, and temporal characteristics

of the cascades in a Twitter data set [25]. These properties

of cascades are important; however, they are far from being

sufficient for accurate cascade size prediction.

Some prior work has also proposed models to capture

various aspects of cascades in online social networks. For

example, Galuba et al. proposed cascade propagation models

to predict which users a likely to mention which URLs [15].

Sadikov et al. investigated the estimation of the sizes and

depths of information cascades with missing data [35]. Gomez

et al. developed a generative model based on the maximum

likelihood estimation of preferential attachment process to

simulate synthetic discussion cascades [16]. However, little

work has focused on developing models to predict the sizes

of cascades in online social networks.

Proposed Approach. In this paper, we use a Multi-order

Markov Model (M3) for cascade size prediction in online

social networks. The key insight behind our proposed approach

is that large and small cascades have different initial propaga-

tion characteristics such as shape and structure. Our proposed

model aims to capture these differences by automatically

extracting distinguishing graph signatures that can be used to

discriminate between large and small cascades.

M3 has three key components: a cascade encoding algo-ISBN 978-3-901882-94-4 c© 2017 IFIP



rithm, cascade modeling method, and cascade classification

algorithm. The cascade encoding algorithm uniquely encodes

the shape and structure of a cascade for quantitative representa-

tion. It encodes a cascade by first performing a traversal on the

cascade graph and then compressing the traversal results using

run-length encoding. The cascade modeling method models

the run-length encoded sequence of a cascade as a discrete

random process. This random process is further modeled as a

Markov chain, which is then generalized into a multi-order

Markov chain model. Finally, the states of the multi-order

Markov chain model are used as features to train a supervised

classification algorithm for cascade size prediction.

Experimental Evaluation. We evaluate the effectiveness of

our proposed cascade size prediction scheme on a real-world

data set collected from Twitter containing more than 8 million

tweets, involving more than 200 thousand unique users. The

results show that our Markov model based cascade size predic-

tion scheme consistently achieves more than 90% prediction

accuracy in different experimental scenarios. We also com-

pare M3 based prediction scheme with a baseline prediction

scheme based on several cascade graph features such as edge

growth rate, degree distribution, clustering, and diameter. The

results show that M3 allows us to achieve significantly better

prediction accuracy than the baseline scheme.

Key Contributions. In this paper, we propose the first cascade

size prediction scheme based on a multi-order Markov model.

In summary, we make the following key contributions in this

paper.

1) We propose M3 to quantitatively characterize and model

cascades with arbitrary structures, shapes, and sizes.

2) We use M3 for cascade size prediction in online social

networks. Our evaluation using a real-world Twitter

data set shows that our proposed scheme consistently

achieves more than 90% prediction accuracy and out-

performs baseline prediction scheme which is based on

cascade graph features.

II. RELATED WORK

Cascades in online social networks have attracted much

attention and investigation. Below we summarize the prior

work related to characterization and modeling cascades in

online social networks.

A. Characterization

Zhou et al. studied Twitter posts (i.e., tweets) about the

Iranian election [39]. In particular, they studied the frequency

of pre-defined shapes in cascades. Their experimental results

showed that cascades tend to have more width than depth. The

largest cascade observed in their data has a depth of seven

hops. Leskovec et al. studied patterns in the shapes and sizes

of cascades in blog and recommendation networks [26], [27].

Their work is also limited to studying the frequency of fixed

shapes in cascades.

Kwak et al. investigated the audience size, tree height, and

temporal characteristics of the cascades in a Twitter data set

[25]. Their experimental results showed that the audience size

of a cascade is independent of the number of neighbors of

the source of that cascade. They found that about 96% of the

cascades in their data set have a height of 1 hop and the height

of the biggest cascade is 11 hops. They also found that about

10% of cascades continue to expand even after one month

since their start. Romero et al. specifically studied Twitter

cascades with respect to hashtags in terms of degree distri-

bution, clustering, and tie strengths [33]. The results of their

experiments showed that cascades from diverse topics (identi-

fied using hashtags), such as sports, music, technology, and

politics, have different characteristics. Similarly, Rodrigues

et al. studied structure-related properties of Twitter cascades

containing URLs [31]. They studied cascade properties like

height, width, and the number of users for cascades containing

URLs from different web domains.

Dow et al. studied the anatomy of photo sharing cascades in

Facebook [3]. They found that most cascades have broadcast

structure, i.e., most reshares are at a depth of 1 hop from

the source. They also showed that large cascades, with com-

parable sizes, can have different temporal evolution, repeated

exposure, branching factors, and user demographics. Recently,

Cheng et al. studied the problem of prediction cascades using

a bucket list of content, structural, and temporal features [8].

We evaluate and and compare to their structural features for

baseline comparison. Note that we could not compare to

their Facebook platform specific content-based features (e.g.,

fraction of positive emotion words in the caption) features.

These and similar structural properties of cascades are

important; however as we show later in our experimental

evaluation, they are far from being sufficient for accurate

cascade size prediction.

B. Modeling

Sadikov et al. investigated the estimation of the sizes and

depths of information cascades with missing data [35]. Their

estimation model uses multiple features including the number

of nodes, the number of edges, the number of isolated nodes,

the number of weakly connected components, node degree,

and non-leaf node out-degree. Their empirical evaluation using

a Twitter data set showed that their model accurately estimates

cascade properties for varying fractions of missing data. How-

ever, it is not clear how this model can be effectively used for

cascade size prediction.

Gomez et al. studied the structure of discussion cascades in

Wikipedia, Slashdot, Barrapunto, and Meneame using features

solely based on the depth and degree distribution of cascades

[16]. They also developed a generative model based on the

maximum likelihood estimation of preferential attachment

process to simulate synthetic discussion cascades. However,

their model is limited to the generation of synthetic discussion

cascades.

III. PROPOSED APPROACH

In this section, we present M3, a multi-order Markov

chain based model for cascade size prediction in online social

networks. It consists of three major components. The first

component encodes a given cascade graph for quantitative
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Fig. 1. Toy example of cascade construction and encoding.

representation such that its structural information is retained.

The second component models the encoded sequence using

a multi-order Markov chain. Finally, the states of the multi-

order Markov chain are used as features to train a supervised

classification algorithm for cascade size prediction. Before we

describe these components, we first present the details of the

cascade graph construction process.

A. Cascade Graph Construction
A social network can be represented using two graphs, a

relationship graph and a cascade graph. Both graphs share

the same set of nodes (or vertices) V , which represents the

set of all users in a social network. A relationship graph
represents the relationships among users in a social network.

In this graph, nodes represent users and edges represent the

relationships among users. If the edges are directed, where

a directed edge from user u to user v denotes that v is a

follower of u, then this graph is called a follower graph,

denoted as (V,
−→
Ef ), where V is the set of users and

−→
Ef is

the set of directed edges. If the edges are undirected, where

an undirected edge between user u and user v denotes that u
and v are friends, then this graph is called a friendship graph,

denoted as (V,Ef ), where V is the set of users and Ef is the

set of undirected edges. By the nature of our study, we focus

on the follower graph denoted as Gf = (V,
−→
Ef ). The cascade

graph represents the dynamic activities that are taking place

in a social network (such as users sharing a URL or joining a

group). A cascade graph is an acyclic directed graph denoted

as Gc = (V,
−→
Ec, T ) where V is the set of users,

−→
Ec is a set of

directed edges where a directed edge e = (u, v) from user u
to user v represents the propagation of something from u to v,

and T is a function whose input is an edge e ∈ −→Ec and output

is the time when the propagation along edge e happens.

While the static relationship graph is easy to construct

from a social network, the dynamic cascade graph is non-

trivial to construct because there maybe multiple propagation

paths from the cascade source to a node. So far there is no

consensus on cascade graph construction in prior literature. In

this paper, we use a construction method that is similar to the

method described in [35]. We next explain our construction

method through a Twitter example. Consider the follower

graph in Figure 1(a). Let (u, t) denote a user u performing

an action, such as posting a URL on u’s Twitter profile, at

time t. Suppose the following actions happen in the increasing

time order: (A, t1), (B, t2), (D, t3), (C, t4), (E, t5), where

t1 < t2 < t3 < t4 < t5. Suppose (A, t1) denotes that A posts

a URL on his Twitter profile, and all other actions (namely

(B, t2), (D, t3), (C, t4), and (E, t5)) are reposting the same

URL from A.

The cascade graph regarding the propagation of this URL is

constructed as follows. First, A is the root of the cascade graph

because it is the origin of this cascade. Second, B reposting

A’s tweet (which is a URL in this example) at time t2 must

be under A’s influence because there is only one path from

A to B in the follower graph in Figure 1(a). Therefore, in

the cascade graph in Figure 1(b), there is an edge from A
to B with time stamp t2. Note that each repost (or retweet

in Twitter’s terminology) contains the origin of the tweet (A
in this example). Third, however, D reposting A’s tweet at

time t3 could be under either A’s influence (because there is

a path from A to D in the follower graph in Figure 1(a) and

t1 < t3) or B’s influence (because there is a path from B to

D in the follower graph as well and t2 < t3). Note that even

if D sees A’s tweet through B’s retweet, the repost of A’s

tweet on D’s profile does not contain any information about

B and only shows that the origin of the tweet is A. In this

scenario, we assume that D is partially influenced by both A
and B, instead of assuming that D is influenced by either user

B or A, because this way we can retain more information with

respect to the corresponding follower graph. Therefore, there

is an edge from A to D and another edge from B to D in the

cascade graph shown in Figure 1(b), where the time stamps

of both edges are t3. Similarly, we add the edge from B to C
with a time stamp t4 and the edge from D to E with a time

stamp t5 in the cascade graph.

B. Cascade Encoding

The first step in cascade encoding is to encode the con-

structed cascade graph as a binary sequence that represents

the structure of the cascade graph. Graph encoding has been

studied for a wide range of problems across several domains

such as image compression and DNA profiling [19], [30].

The general goal of graph encoding is to transform large

geometric data into a succinct representation for efficient



storage and processing. However, our goal here is to encode

a given cascade graph in a way that its structural information

is captured. Towards this end, we use the following graph

encoding algorithm inspired by Dyck Path encoding [37].

We first conduct a depth-first traversal of the constructed

cascade graph starting from the root node, which results in

a spanning tree. To result in a unique spanning tree, at each

node in the cascade graph, we sort the outgoing edges in the

increasing order of their time stamps, i.e., sort the outgoing

edges e1, e2, · · · , ek of a node so that T (e1) < T (e2) <
· · · < T (ek); and then traverse them in this order. For each

edge, we use 1 to encode its downward traversal and 0 to

encode its upward traversal. Figure 1(c) shows the traversal

of the cascade graph in Figure 1(b) and the encoding of each

downward or upward traversal. The binary encoding results

from this traversal process is 11011000. Let C represent the

binary code of a cascade graph G = (V,
−→
E ). Then the length

of the binary code |C| is at most twice the size of the edge set

|−→E |, i.e., |C| ≤ 2|−→E |. Furthermore, let C[i] be the i-th element

of the binary code and I(C[i]) be an indicator function so

that I(C[i]) = 1 if C[i] = 1, and I(C[i]) = −1 if C[i] = 0.

Because each edge is exactly traversed twice, one downward

and one upward, we have:

|C|∑

i=1

I(C[i]) = 0.

The second step in cascade encoding is to convert the binary

sequence, which is obtained from the depth-first traversal of

the cascade graph, into the corresponding run-length encoding.

A run in a binary sequence is a subsequence where all bits in

this subsequence are 0s (or 1s) but the bits before and after

the subsequence are 1s (or 0s), if they exist. By replacing

each run in a binary sequence with the length of the run, we

obtain the run-length encoding of the binary sequence [22]. For

example, for the binary sequence 11011000, the corresponding

run-length encoding is 2123.

Intuitively, using run-length encoding with depth-first traver-

sal based encoding allows us to capture the branching charac-

teristics of a cascade graph. We also tried breadth-first traversal

based encoding, but it did not capture similar information that

would be effective later in cascade classification. Our proposed

encoding method successfully captures the branching charac-

teristics of cascade graphs, while being simple to implement.

It is noteworthy that our proposed framework can also be used

with other suitable encoding methods.

C. Markov Model

We further want to model cascade encoding to capture

the characteristics of cascades so that they can be used to

identify the similarities and differences among different types

of cascades (e.g., large vs. small cascades). This model should

allow us to extract structural features for different types of

cascades and then use these features to classify them. Below,

we first present our model and then demonstrate its usefulness

in classifying cascades.

Consider the run-length encoded sequence Ĉ of a cascade

graph G. We can model this sequence using a discrete random

process {Ĉk}, k = 1, 2, ..., |Ĉ|. Basic analysis of this process

reveals that there is some level of dependencies among the

consecutive symbols emitted by the random process. In other

words, it would be unreasonable to assume that the process is

independent or memoryless. Meanwhile, to balance between

capturing some of the dependencies within the process and to

simplify the mathematical treatment of this encoded sequence,

we resort to invoking the Markovian assumption [6]. As

we discuss later, this assumption can be reasonably justified

by analyzing the autocorrelation function of the underlying

process {Ĉk}. For a first order Markov process, this implies

the following assumption: Pr[Ĉn = cn|Ĉ1 = c1, Ĉ2 =
c2, ..., Ĉn−1 = cn−1] = Pr[Ĉn = cn|Ĉn−1 = cn−1].
Equivalently:

Pr[c1, c2, ..., cn] = Pr[c1]Pr[c2|c1]...P r[cn|cn−1]. (1)

In other words, we invoke the Markovian assumption about the

underlying cascade process and its shape and structure, which

is represented by the encoded sequence Ĉ. Given the Marko-

vian assumption with homogeneous time-invariant transition

probabilities, Ĉ can be represented using a traditional Markov

chain. The Markov chain framework allows us to quantify

the probability of an arbitrary sequence of states by using

Equation 1. Each element of the state transition matrix of a

Markov chain is equivalent to a sub-sequence of Ĉ, which in

turn is equivalent to a subgraph of the corresponding cascade.

We can generalize a Markov chain model by incorporating

multiple consecutive transitions as a single state in the state

transition matrix, which will allow us to specify arbitrary sized

subgraphs of cascades. Such generalized Markov chains are

called multi-order Markov chains and are sometimes referred

to as full-state Markov chains. The order of a Markov chain

represents the extent to which past states determine the present

state.

Autocorrelation is an important statistic for selecting ap-

propriate order for a Markov chain model [6]. For a given

lag t, the autocorrelation function of a stochastic process, Xm

(where m is the time or space index), is defined as:

ρ[t] =
E{X0Xt} − E{X0}E{Xt}

σX0σXt

, (2)

where E(·) represents the expectation operation and σXi
is

the standard deviation of the random variable at time or space

lag i. The value of the autocorrelation function lies in the

range [−1, 1], where |ρ[t]| = 1 indicates perfect correlation

at lag t and ρ[t] = 0 means no correlation at lag t. The

order of Markov chain model is generally selected equal to the

largest non-negative lag for which the value of autocorrelation

function jumps out of the 95% confidence envelope [24].

The number of possible states of a Markov chain increase

exponentially with an increase in the order of the Markov chain

model. For the n-th order extension of a Markov chain with

k states, the total number of states is kn. For a set of cascade

encoding sequences, let T denote the set of selected orders



as per the aforementioned criterion. We select the maximum

value in T, denoted by Tmax, as the order of a single Markov

chain model that we want to employ.

D. Cascade Classification

We now show how to use the aforementioned Markov chain

model for cascade classification.

1) Feature Selection: The essence of our modeling ap-

proach is to capture the shape and structure of a cascade

through the states of the multi-order Markov model. Each

state in the Markov chain represents a likely sub-structure of

cascades. Thus, we can use these states to serve as underlying

features that can be used to characterize a given cascade and to

determine the class that it might belong to. However, as men-

tioned earlier, the number of states in a Markov chain increase

exponentially for higher orders and so does the complexity

of the underlying model. Furthermore, higher order Markov

chains require a large amount of training data to identify

a subset of states that actually appear in the training data.

In other words, a Markov chain model trained with limited

data is generally sparse. Therefore, we use the following two

approaches to systematically reduce the number of states in

the Markov chain of order Tmax.

First, we can combine multiple states in the Markov chain

to reduce its number of states. By combining states in a

multi-order Markov chain, we are essentially using states from

lower order Markov chains. We need to establish a criterion

to combine states in the Markov chain. Towards this end, we

use the concept of typicality of Markov chain states. Typicality

allows us to identify a typical subset of Markov chain states

by generating its realizations [6]. Before delving into further

details, we first state the well-known typicality theorem below:

For any stationary and irreducible Markov process X and a

constant c, the sequence x1, x2, ..., xm is almost surely (n, ε)-
typical for every n ≤ c logm as m → ∞. A sequence

x1, x2, ..., xm is called (n, ε)-typical for a Markov process X
if P̂ (x1, x2, ..., xn) = 0, whenever P (x1, x2, ..., xn) = 0, and
∣∣∣∣
P̂ (x1, x2, ..., xn)

P (x1, x2, ..., xn)
−1

∣∣∣∣ < ε, when P (x1, x2, ..., xn) > 0. (3)

Here P̂ (x1, x2, ..., xn) and P (x1, x2, ..., xn) are the empirical

relative frequency and the actual probability of the sequence

x1, x2, ..., xn, respectively. In other words,

P̂ (x1, x2, ..., xn) ≈ P (x1, x2, ..., xn). (4)

This theorem shows us a way of empirically identifying typical

sample paths of arbitrary length for a given Markov chain.

Based on this theorem, we generate realizations (or sample

paths) of arbitrary lengths from the transition matrix of the

Markov chain. By generating a sufficiently large number of

sample paths of a given length, we can identify a relatively

small subset of sample paths that are typical. Using this

criterion, we select a subset of typical states as potential

features, whose lengths vary in the range [0, Tmax]. In what

follows, we further short-list the Markov states from the

typical subset and use them as features to classify cascades.

Second, to further reduce the number of features to be em-

ployed in a classifier, we need to prioritize the aforementioned

typical Markov states. The prioritization of features can be

based on their differentiation power. An information theoretic

measure that can be used to quantify the differentiation power

of features (Markov states in our case) is information gain

[9]. In this context, information gain is the mutual information

between a given feature Xi and the class variable Y . For a

given feature Xi and the class variable Y , the information gain

of Xi with respect to Y is defined as:

IG(Xi;Y ) = H(Y )−H(Y |Xi), (5)

where H(Y ) denotes the marginal entropy of the class variable

Y and H(Y |Xi) represents the conditional entropy of Y given

feature Xi. In other words, information gain quantifies the

reduction in the uncertainty of the class variable Y given that

we have complete knowledge of the feature Xi. Note that, in

this paper, the class variable Y is {0, 1} because we apply

our model to problems that require differentiating between

two classes of cascades (as described later). In this study, we

eventually select the top-100 features with highest information

gain, as using more features did not significantly alter the

results.
2) Classification: Let us assume that the presence of a

state i is represented by a binary random variable Xi, i =
1, 2, ..., 100. Hence, P (Xi = 1) represents the probability for

the presence of state Xi. We can think of the Xis as the

variables representing potential features. Thus, our training

process proceeds as follows. For a given class Y of cascades,

we evaluate the presence of a given feature (state) Xi in Y
by analyzing a sufficiently large number of sample cascades

that belong to the class Y . Subsequently, we are able to

evaluate the a-priori conditional probability P (Xi|Y ) for each

class Y ∈ {1, 2, ..., k}, where the number of classes k is

usually very small. In our case, we are interested in the

traditional binary classifier with k = 2. However, note that

this classification methodology can be extended to the cases

with k > 2 using the well-known one-against-one (pairwise)

or multiple one-against-all formulations [20].

We can jointly use multiple features to differentiate between

two sets of cascades belonging to different classes. In partic-

ular, given the top features with respect to information gain,

we can classify cascades by deploying a machine learning

classifier. In this study, we use a Bayesian classifier to jointly

utilize the selected features to classify cascades. Naı̈ve Bayes

is a popular probabilistic classifier that has been widely used in

the text mining and bio-informatics literature, and is known to

outperform more complex techniques in terms of classification

accuracy [38]. It trains using two sets of probabilities: the

prior, which represents the marginal probability P (Y ) of the

class variable Y ; and the a-priori conditional probabilities

P (Xi|Y ) of the features Xi given the class variable Y . As

previously explained, these probabilities can be computed

from the training set.

Now, for a given test instance of a cascade with observed

features Xi, i = 1, 2, ..., n, the a-posteriori probability



(a) Example cascade # 1

(b) Example cascade # 2

Fig. 2. Visualization of real-world Twitter cascades. Radial layout on left and
circular layout on right.

P (Y |X(n)) can be computed for both classes Y ∈ {0, 1},
where X(n) = (X1, X2, ..., Xn) is the vector of observed

features in the test cascade under consideration:

P (Y |X(n)) =
P (X(n), Y )

P (X(n))
=

P (X(n)|Y )P (Y )

P (X(n))
(6)

The naı̈ve Bayes classifier then combines the a-posteriori

probabilities by assuming conditional independence (hence

the “naı̈ve” term) among the features.

P (X(n)|Y ) =

n∏

i=1

P (Xi|Y ). (7)

Although the independence assumption among features makes

it feasible to evaluate the a-posteriori probabilities with much

lower complexity, it is unlikely that this assumption truly

holds all the time. For our study, we mitigate the effect of

the independence assumption by pre-processing the features

using the Karhunen-Loeve Transform (KLT) to uncorrelate

them [11].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our proposed

model for cascade size prediction in online social networks.

Below, we first describe the data set used for evaluation,

then define evaluation metrics, and finally discuss evaluation

results.

A. Data Collection

Among the popular online social networks, Twitter is one of

the social networks that allows systematic collection of public

data from its site. Therefore, we chose to study the shape and

structure of cascades appearing on Twitter. For our study, we

separately collected two data sets from Twitter. The first data

set was collected using Twitter’s streaming API, which allows

the realtime collection of public tweets matching one or more

filter predicates [2]. We focused on tweets related to the Arab

Spring event, which represents an ideal case study because

it spans several months. To collect tweet data pertaining to

a country, we provided relevant keywords as filter predicates.

For example, we used the keywords ‘Libya’ and ‘Tripoli’ to

collect tweets related to Libya. In total, we collected tweets

for 8 countries over a period of a week in March 2011. Using

Twitter’s streaming API, we collected more than 8 million

tweets from more than 200 thousand unique users.

As mentioned in Section III-A, we cannot accurately con-

struct cascade graphs without information about whom the

users are following. Twitter provides follower information

for a given user via a separate interface called REST API

[2]. REST API employs aggressive rate limiting by allowing

clients to make only a limited number of API calls in an hour.

In our tweet data set, we encountered more than 200, 000
unique users and we were required to make at least one request

per user to get the follower list. To overcome this limitation,

we utilized dozens of public proxy servers to parallelize calls

to Twitter’s REST API. Using this methodology, we collected

follower lists of all users in less than a month.

B. Data Characteristics

Twitter provides a “re-tweet” functionality which allows

users to re-post the tweet of other users to their profiles. The

reference to the user with original tweet is maintained in all

subsequent re-tweets. There is no information on intermediate

users in re-tweets. Using the follower graph, we constructed

cascade graphs for all sets of re-tweets which are essentially

cascades. Therefore, the overall graph is a union of all cas-

cades in our data. In Figure 2, we visualize two cascades in our

data set using the radial layout method [1]. In a radial layout,

we choose the user with original tweet as a center vertex (or

root vertex in general) and the remaining vertices are put in

concentric circles based on their proximity to the center vertex.

In Figure 2(a), we observe that the degree of vertices typically

decreases as their distance from the root vertex increases.

On the contrary, in Figure 2(b), we observe that subsequent

vertices have degrees comparable to the root vertex. We aim is

to capture such differences in an automated fashion using our

proposed model. Next, We analyze the structural features of

the cascades in our collected data set in terms of their degree

and path properties.

We first jointly study the number of edges and the number

of nodes for all cascades in our data set. The cascade graphs

in our data set are connected and each user in the cascade

graph has at least one inward or outward edge. Therefore,

the number of edges in a cascade graph |E| has the lower

bound: |E| ≥ |V | − 1, where |V | is the number of users

participating in the cascade. Figure 3(a) shows the scatter plot

between edge and node counts for all cascades in our data set.

Note that we use the logarithmic scale for both axes. From

this figure, we observe that the scatter plot takes the form

of a strip whose thickness represents the average number of

additional edges for each node. The average thickness of this
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Fig. 3. Cascade graph attributes in our data set.

strip approximately corresponds to having twice the number

of edges compared to the number of nodes.

1) Path Properties: Another important characteristic of a

cascade is the degree of the root node (user who initiated the

cascade), which typically has the highest degree compared to

all other nodes in a cascade graph. In our data set, the root

node has the highest degree compared to all other nodes in

cascade graphs for more than 92% of the cascades. The degree

of the root node essentially represents the number of different

routes through which cascade propagates in an online social

network. Note that these paths may merge together after the

first hop; however, we expect some correlation between the

degree of root node and the number of unique routes through

which a cascade propagates. One relevant characteristic of a

graph is average (shortest) path length (APL), which denotes

the average of all-pair shortest paths [5].

APL =
∑

∀i,j∈V,i�=j

d(i, j)

|V |(|V | − 1)
,

where d(i, j) is the shortest path length between users i and

j. We expect the average path length of a cascade to be

proportional to the degree of the root node. Figure 3(b) shows

the scatter plot of the root node degree and the average path

length. As expected, we observe that cascades with higher root

node degrees tend to have larger average path lengths.

C. Evaluation Metrics

We now evaluate the classification effectiveness of M3

in terms of the standard Receiver Operating Characteristic

(ROC) metrics [13]. Below, |Positives| = |True Positives| +
|False Positives| and |Negatives| = |True Negatives| +
|False Negatives|.

Detection Rate =
|True Positives|

|True Positives|+ |False Negatives|

False Positive Rate =
|False Positives|

|False Positives|+ |True Negatives|

Accuracy =
|True Positives|+ |True Negatives|

|Positives|+ |Negatives|
To ensure that the classification results are generalizable,

we divide the data set into k folds and use k − 1 of them

for training and the left over for testing. We repeat these

experiments k times and report the average results in the
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following text. This setup is called stratified k-fold cross-

validation procedure [38]. For all experimental results reported

in this paper, we use the value of k = 10. We observed

qualitatively similar results for other k values.

D. Discussions

We now present the evaluation results of M3 using our

Twitter data set. We compare the classification performance

of M3 based scheme with a baseline scheme that uses the

following well-known graph features [4] with the Naı̈ve Bayes

classification algorithm: edge growth rate, number of nodes,

degree of the root node, average shortest path length, diameter,

number of spanning trees, clustering coefficient, and clique

number. These features summarize the structural information

of cascade graphs.

In this paper, we treat the cascade size prediction problem to

an equivalent cascade classification problem: given a cascade

with τ1 edges, classify it into two classes: the class of cascades

that will have less than τ2 edges over their lifetime and the

class of cascades that will have greater than or equal to τ2
edges over their lifetime. We use the initial τ1 edges to train

both the cascade size prediction scheme based on M3 and
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Fig. 5. Classification results of M3 and the baseline scheme for different τ1 and τ2 − τ1 values.

the baseline scheme that is based on cascade graph features.

For extensive evaluation, we vary the values of τ1 and τ2.

Because the distribution of the number of edges in our data

set is skewed, i.e., most cascades having only a few edges over

their lifetime, the larger the values of τ1 and τ2 − τ1 are, the

more imbalanced the two classes are. To mitigate the potential

adverse effect of class imbalance [21], we employ instance

re-sampling to ensure that both classes have equal number of

instances before the cross-validation evaluations. Below we

discuss the classification accuracies of both schemes as we

vary the values of τ1 and τ2.

Impact of Varying τ1. Figure 4(a) shows the evaluation

setup as we vary the values of τ1 ∈ {10, 50, 100}, while

keeping τ2 − τ1 fixed at 10. The solid, dashed, and dotted

vertical black lines corresponds to τ1 = 10, 50, and 100. The

solid, dashed, and dotted vertical grey lines all correspond to

τ2 − τ1 = 100. The value of τ1 impacts the classification

results because it determines the number of edges in each

cascade that are available for training. Therefore, larger values

of τ1 generally improve training quality of both cascade size

prediction schemes and lead to better classification accuracy.

Figure 5(a) plots the detection rate, false positive rate, and

accuracy of M3 and the baseline scheme for varying τ1 ∈
{10, 50, 100}, while keeping τ2 − τ1 fixed at 10. Overall, we

observe that M3 consistently outperforms the baseline scheme

with the peak precision of 96% at τ1 = 100, τ2 − τ1 = 10s.

Generally, we observe that the classification accuracies of both

schemes decreases as the value of τ1 is increased. The standard

ROC threshold plots of M3 shown in Figure 6(a) also confirm

this observation.

Impact of Varying τ2− τ1. Figure 4(b) shows the evaluation

setup as we vary the values of τ2 − τ1 ∈ {10, 50, 100}, while

keeping τ1 fixed at 10. The solid vertical black line corre-

sponds to τ1 = 10. The solid, dashed, and dotted vertical grey

lines correspond to τ2 − τ1 = 10, 50, and 100, respectively.

The value of τ2 − τ1 also impacts the classification results

because it determines the separation or distance between the

two classes. Therefore, larger values of τ2− τ1 generally lead

to better prediction accuracy.

Figure 5(b) plots the detection rate, false positive rate, and

accuracy of M3 and the baseline scheme for varying values

of τ2 − τ1. Once again, we observe that M3 consistently

outperforms the baseline scheme with the peak precision of

99% at τ2 − τ1 = 100, τ1 = 10. We also observe that the

classification accuracies of both methods improve as the value

of τ2 − τ1 is increased. The standard ROC threshold plots of

M3 shown in Figure 6(b) also confirm this observation.

V. CONCLUSION

In this paper, we first propose M3, a multi-order Markov

chain based model for cascade size prediction in online

social networks. The key insight behind M3 is that large and

small cascades have different initial propagation characteristics

such as shape and structure. M3 captures these differences

by automatically extracting distinguishing graph signatures

that can be used to discriminate between large and small

cascades. The experimental results using a real-world Twitter

data set showed that M3 significantly outperforms the baseline

scheme in terms of prediction accuracy. M3 based cascade

size prediction scheme consistently achieved more than 90%
prediction accuracy in different experimental scenarios.

We envision future work along the following directions.

First, M3 can be used to solve other cascade classification

problems that can benefit from their structural information.

For example, M3 can be used to differentiate spam and normal
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Fig. 6. ROC threshold plots of M3 for different τ1 and τ2 − τ1 values.

activity cascades in online social networks. Second, we plan to

explore randomized cascade encoding methods such as those

based on random walks on graphs [14], [34]. Finally, we used

M3 in the context of online social networks in this paper;

however, our model is generally applicable to cascades in

other contexts as well such as sociology, economy, psychology,

political science, marketing, and epidemiology. Applications

of our model in these contexts are interesting future work to

pursue.
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