
Transparent Flow Mapping for NEAT
Felix Weinrank, Michael Tüxen

Münster University of Applied Sciences
Department of Electrical Engineering and Computer Science

Stegerwaldstrasse 39
D-48565 Steinfurt

Germany
{weinrank, tuexen}@fh-muenster.de

Abstract—The NEAT library provides application developers
with a unified and platform independent API for network
communication, regardless of the underlying network protocol.
NEAT’s abstraction layer approach allows the integration of new
network protocols and transport features, transparently to the
user. With QUIC, RTMFP and WebRTC, several widely deployed
protocols make use of mapping multiple data streams to a single
transport connection. However, the usage of multiplexing requires
application developers to spend additional effort and has to be
supported by both endpoints. This paper describes an approach
to integrate multiplexing functionality into the NEAT library,
giving application developers a simple way to use the benefits of
mapping multiple data streams to a single transport connection
without additional coding effort. We describe our considerations
about feature negotiation, connection handling and data trans-
mission for multiplexed data streams, an introduction to the
NEAT library, the implementation details as well as measurement
results and future steps.

I. INTRODUCTION

The internet is dominated by two transport protocols, TCP
and UDP, supported by nearly every operating system and
network. However, within the last years, several new transport
protocols have been developed to better address the needs of
modern network communication, providing new features and
improved techniques. Many of these protocols are developed
on top of the existing TCP / UDP stack provided by the
operating system, increasing the compatibility with existing
networks. By deploying them in user space, shorter software
update cycles can be realized. The usage of multiplexing to
bundle several data paths to a single transport connection
has become a key technology for many of these protocols.
Adobe’s Secure Real-Time Media Flow Protocol (RTMFP) [1],
Google’s Quick UDP Internet Connections (QUIC) [2] and
Web Real-Time Communication Data Channel (WebRTC) [3]
are some examples for widely used protocols and protocol
stacks using multiplexing. Especially for delay-sensitive ap-
plications with a low transmission rate, multiplexing can be
very beneficial. The inherent transport protocol mechanisms,
like flow-control and congestion-control, improve their effec-
tiveness when larger quantities of data have to be transmitted.
In case of packet loss, a higher packet rate per flow will result
in faster retransmissions and less application-to-application
delay. Also, sharing a common congestion window (cwnd) is

beneficial for newly created connections or connections with a
low sending rate. Additionally, the reduced amount of parallel
connections improves the capacity of servers.

Having the choice between several network protocols with
specific characteristics give application developers the ability
to use the best matching solution for their use case, but also
causes new difficulties. Every protocol, regardless of whether
accessed via the operating systems socket API or by a third
party library on application level, requires a different API
usage.

The NEAT library [4] addresses this issue by offering a
unified and cross-platform API for network communication.
This includes not only transport protocols offered by the
underlying operating system, like TCP, UDP or Stream Control
Transmission Protocol (SCTP), but also network protocols
which operate at application level. For example, on platforms
without native support for the SCTP protocol, like macOS
and NetBSD, NEAT can seamlessly include an SCTP userland
implementation [5].

Multiplexing has to be implemented at application level on
top of the network stack of the operating system, requiring
additional coding effort. The developer either has to implement
it from scratch or use an existing library providing an appli-
cation level protocol which includes this feature. Especially
when the application has only limited knowledge of its peer’s
multiplexing capabilities, a fallback solution is required to
guarantee a successful communication. Even if the effort for
multiplexing is high and its usage is not beneficial for all
traffic patterns, previous investigations [6] have shown that the
advantages outweigh the disadvantages for many use-cases.

Our work introduces a multi-purpose multiplexing solution
for the NEAT library, providing application developers with
the benefits of multiplexing without additional effort. This
includes an automatic negotiation mechanism which ensures a
maximum of compatibility and transparency to the application.
After introducing the NEAT library, its concept of flows
and how they map to transport connections, we will explain
the concept and implementation of transparently mapping
multiple flows to a single SCTP transport connection without
prior knowledge about the peer’s capabilities. The section is
followed by some of our measurement results, considerations
about alternative transport protocols and an outlook for our
ongoing and future work.ISBN 978-3-901882-94-4 c© 2017 IFIP



II. NEAT LIBRARY

The NEAT library offers application developers a new
interface for network communication. Instead of using the
traditional socket API, which requires a lot of protocol and
platform specific coding effort, NEAT provides a unified cross-
platform API for network communication. This includes DNS-
name resolution, connection handling, buffer management and
encryption. NEAT is built on top of the libuv [7] event-loop
library, and, therefore, it offers a non-blocking and callback-
based API. Additionally to the functionality provided by the
NEAT library, the developer has full access to the libuv
library’s functionality. A detailed insight about the concept
and architecture of NEAT has been given in [8].

Instead of specifying a transport protocol, the developer
specifies his requirements for the properties provided by the
transport service for every path. These requirements are for
example ordered/unordered delivery, message preservation or
reliability. Taking the preferences and requirements of the
application into account, the NEAT library chooses the best
matching protocol at run-time and cares for the protocol
specific connection handling. In addition to the widely used
TCP and UDP protocols, NEAT supports the SCTP protocol,
the native SCTP implementations on FreeBSD and Linux,
as well as the SCTP userland implementation on platforms
not having a native support for SCTP, such as macOS and
NetBSD.

III. NEAT FLOWS

In NEAT, a communication channel between two applica-
tion endpoints is called flow. Flows offer applications a bi-
directional data transmission interface to the network.

In order to create a new flow, the client application provides
a DNS-name or IP-address and the port-number of the remote
endpoint and an optional set of properties. These properties
offer a flexible way of configuring the requirements for the
new flow, allowing a high level transport feature requirements
specification. This includes demanding a reliable data trans-
port and message preserving boundaries, as well as a lower
level approach by setting the transport protocol(s) or protocol
features, like SCTP’s multihoming, and encryption. There is
a distinction between required and optional flow properties.
For example, an application may require the SCTP protocol
for a flow and optionally enable SCTP’s multihoming feature.
Flows are assigned to flow groups where they have a specific
priority within the group, affecting the share of the available
bandwidth. If not specified, all flows are assigned to flow zero.

Based on this information and collected data from previous
connections, available address-protocol candidates are built,
and the NEAT library tries to establish a connection, based on
the flow specific properties.

If multiple address-protocol candidates are available, NEAT
probes all available candidates by using the Happy-Eyeballs
algorithm [9]. In case of several successfully established con-
nections, NEAT will select the best matching connection and
close all spare connections. This selection is based on the flows
properties, taking the transport protocol specific characteristics

APP NEAT NEAT APP

neat_new_flow()

neat_set_property()

neat_set_operations()

neat_open()

TCP SYN

TCP SYN-ACK

TCP ACK

on_connected()

on_connected()

on_writable()

neat_write()

on_all_written()

TCP DATA

TCP ACK

on_readable()

neat_read()

neat_shutdown()

TCP FIN

on_readable()

neat_read() returns 0

neat_shutdown()

TCP FIN ACK

TCP ACK

on_close()

on_close()

Fig. 1. NEAT message and function sequence example using TCP

and user specified priorities into account. For example, the
TCP connection setup takes less round-trips than the SCTP
connection setup. If the NEAT library probes TCP and SCTP
candidates, the TCP connection will probably be established
before the SCTP connection. To overcome this disadvantage
for SCTP, NEAT will wait for an additional period of time
before evaluating the results. When a connection for a candi-
date has successfully been established, the NEAT flow changes
its state from connecting to open, and the application will
be notified by means of the on connected callback. Figure 1
illustrates the usage and operation of a NEAT flow using the
TCP protocol.

When NEAT uses the stream-based TCP transport proto-
col, the flow is reported ready for data transmission to the
application by calling the on connected callback, right after
the network socket becomes writable, followed by calling
the on writable callback. The application may now send and
receive data via the flow’s data transmission functions. Due
to NEAT’s non-blocking-io constraint, applications can write
data to connected flows at any time. The NEAT library will
try to send the data directly to the network. However, if the
socket is not writable or the amount of data cannot be sent at
once, the unsent data is buffered in a dedicated flow buffer.
The data will be sent as soon as the underlying network socket
becomes writable again. When all data has been transmitted
to the network and no outstanding data is left in the outgoing



flow buffer, NEAT will notify the application by calling the
on all written callback. This callback allows applications to
saturate a network connection without bloating the outgoing
flow buffer.

When the flow’s network socket becomes readable, the
NEAT layer notifies the application by triggering the
on readable callback. The application can now read data from
the flow by using the neat read function and by providing a
read buffer with a given size. If the amount of received data
exceeds the provided buffer size, the on readable callback
will be triggered again until all received data has been handed
over to the application. Internally, the application reads directly
from the flow’s underlying network socket without additional
buffering by NEAT. Applications may close a NEAT flow at
any time by calling neat close or initiate a graceful connection
shutdown by using neat shutdown. The library will transmit
all outstanding data to the remote peer, handle the connection
closing procedure and trigger the on close callback when all
operations have been finished. After the on close callback has
been triggered, no flow specific callbacks will be triggered by
the library and subsequent calls to read- or write-functions on
the flow will result in an error.

APP NEAT NEAT APP

neat_new_flow()

neat_set_property()

neat_set_operations()

neat_open()

SCTP INIT

SCTP INIT-ACK

SCTP COOKIE-ECHO

SCTP COOKIE-ACK

on_connected()

on_connected()

on_writable()

neat_write()

on_all_written()

SCTP DATA

SCTP SACK

on_readable()

neat_read()

neat_shutdown()

SCTP SHUTDOWN

SCTP SHUTDOWN ACK

SCTP SHUTDOWN COMPLETE

on_close()

on_readable()

neat_read() returns 0

neat_shutdown()

on_close()

Fig. 2. NEAT message and function sequence example using SCTP

The usage of message oriented protocols like SCTP or UDP
within NEAT differs internally from stream-based protocols
like TCP, but operates transparently to the application. Figure 2
illustrates the usage and operation of a NEAT flow using

the SCTP protocol. Once a SCTP based transport connection
is established, NEAT will evaluate SCTP specific connection
parameters and extensions before announcing the flow’s open
state to the application. The parameters and supported exten-
sions are important for the further usage of the flow. They
include the amount of available SCTP streams and support
of explicit end of record (EOR) marking, which allows the
transmission of arbitrary large user messages by the applica-
tion. Once all SCTP notifications have been read, NEAT will
trigger the on connected callback to notify the application that
the flow is ready for data transmission. When the application
writes data to the flow, it will be sent to the network or buffered
within a flow specific send buffer, similar to TCP, as explained
before. In contrast to stream based protocols, NEAT buffers
unsent data in a message preserving way by using a message
queue. Every user message is buffered in a distinct entry within
the queue. When incoming data is available at the network
socket, NEAT will read the incoming message into the flow
specific receive buffer. If the message is a fragment of a larger
user message, NEAT receives and reassembles all fragments
before announcing the complete message to the application
via the on readable callback. NEAT will only buffer a single
user message, no further messages are read from the socket
until the buffered message has been read by the application,
in order to avoid bloating the incoming buffer on the receiver
side. Closing SCTP based flows is similar to the procedure of
flows using TCP. NEAT, like SCTP, does not support TCP’s
half-closed feature, in order to keep the promise of a unified
API.

IV. TRANSPARENT FLOW MAPPING

Transparent flow mapping hooks into NEAT’s abstraction
layer approach by multiplexing multiple NEAT flows to a
single transport connection without additional actions of the
application. If both endpoints support multiplexing and the
applications have enabled the support for transparent mapping
in their settings, NEAT will automatically use the transparent
mapping. As shown in Figure 3, the flows still show up as they
would when using a dedicated transport connection, providing
the same API and functionality.

Application

NEAT

3 Flows

NEAT

Application

3 Flows

3 Transport 
Connections

Application

NEAT

3 Flows

NEAT

Application

3 Flows

1 Transport 
Connection

Fig. 3. NEAT flows - comparison of 1:1 and transparent flow mapping



A. Requirements and Negotiation

Before the transparent mapping can be used, both peers
have to fulfill some requirements and negotiate the support of
the feature. NEAT requires some SCTP specific extensions to
be supported by the network stacks on both sides, including
the support for Stream Reconfiguration [10]. The user may
require a flow to preserve data message boundaries. In this
case NEAT requires the support for the SCTP User Message
Interleaving (I-DATA) [11] extension, in order to prevent a
sender side head-of-line blocking. If the local requirements are
fulfilled, NEAT has to negotiate the multiplexing capabilities
with its peer. This is achieved by using SCTP’s adaptation
layer indication. The NEAT specific adaptation layer indication
value is exchanged within SCTP’s connection setup procedure
and provided as an SCTP notification on both sides, once the
connection has been established. If all requirements are met,
the transport connection is marked as usable for transparent
flow mapping. Otherwise the NEAT library continues operat-
ing in regular mode and maps every flow to a separate transport
connection. This approach has the advantage of being fully
interoperable with peers not using the NEAT library.

B. Flow creation

Creating a new flow triggers the NEAT library to search
for an established SCTP association with a matching tuple of
destination address, port, properties and support for transparent
flow mapping. Only flows belonging to the same flow group
are taken into this survey, allowing the application to prevent
multistreaming for a flow by assigning it to an empty flow
group.

APP NEAT NEAT APP

neat_open()

existing SCTP association
found

on_connected()

on_writable()

neat_write()

SCTP DATA

on_connected()

on_readable()

neat_read()

Fig. 4. Transparently mapped flow creation procedure

If NEAT discovers a matching SCTP association, the new
flow is mapped to it instantly and all ongoing connection estab-
lishment procedures for other address-protocol-candidates are
stopped. The mapping is realized by assigning the new flow to
a dedicated SCTP stream of the established association. The
amount of flows per transport connection is limited by the
number of available incoming and outgoing SCTP streams
per association. SCTP itself supports up to 65535 streams
per association. As shown in Figure 4, the NEAT library will
notify the application instantly by triggering the on connected
and on writable callbacks. If multiple SCTP associations are

available for a transparent mapping, NEAT takes the first one
to bundle as many flows as possible.

The first flow, for which the SCTP association has initially
been created, will always use stream id zero. All additional
flows are assigned to unused stream ids. To avoid a glare
situation, occurring when both endpoints map new flows si-
multaneously, the peer which initiated the transport connection
will use even stream numbers whereas the remote side will
map its flows to odd stream numbers. Both sides maintain a
status map of the assigned stream numbers.

Due to the lack of a connection setup procedure on the
network, the creation of a new flow is signalized to the
remote side by sending the first data message. Transparently
mapped flows are instantly ready for data transmission without
additional round-trips and, superior to the TCP fast open
mechanism [12], the amount of outgoing data is not limited.
When receiving an SCTP message on a previously unused
stream id, the receiver creates a new incoming flow and
triggers the same callbacks as if a new connection using a
native transport connection had been opened. Using an implicit
flow setup restricts the usage of transparently mapped flows for
use cases where the server starts transmitting data to the client
without receiving a request, for example a daytime-server. A
possible approach to overcome this limitation is the explicit
connection setup by sending a control message with a specific
Payload Protocol Identifier (PPID) to trigger the incoming flow
procedure on the receiver side.

C. Data transmission

One of the most challenging parts of transparently mapped
flows is the handling of incoming and outgoing data. Shar-
ing a network socket between multiple flows requires the
NEAT library to cope with scheduling and buffer management
techniques. When a shared socket becomes writable, NEAT
schedules over all assigned flows in a round-robin manner.
Beginning with the first flow, the library transmits scheduled
data from the outgoing flow buffer before triggering the flow’s
on writable callback. When the flow neither has outstanding
data in the buffer nor received new data from the application,
the library will continue with the same procedure for the next
flow. As mentioned in the negotiation section, applications
may send arbitrary large messages and require message bound-
ary preservation. To transmit user messages larger than the
maximum segment size (MSS), SCTP supports fragmentation
and reassembly. The sender fragments the user message in
multiple DATA chunks for transmission which are reassembled
by the receiver. If the sender starts transmitting a large user
message, consisting of several data chunks, transmissions on
all other streams are blocked until all fragments of the user
message have been transmitted. To overcome this sender side
head-of-line-blocking when transmitting large user messages,
NEAT uses the SCTP I-DATA extension. I-DATA solves the
sender side head-of-line-blocking issue by supporting message
interleaving [11] and is also used in the WebRTC protocol
for the same purpose [3]. Another major change for multi-
streaming affects the receiver side. Whereas a one-to-one style



mapped flow only buffers a single incoming user message,
a socket used for multistreaming reads messages from the
underlying SCTP socket until all assigned flows have at least
one user message in their receive buffer. If the sender transmits
data on two or more flows and the receiver does not read data
from one particular flow, NEAT buffers this data to prevent
other multistreamed flows from being blocked by this flow.
Limiting the maximum amount of buffered data on the receiver
side would either result in dropping data for the particular flow
or in blocking all incoming messages for every transparently
mapped flow on the affected SCTP socket, both cases are
undesirable. A possible approach to overcome this limitation
would be application based flow control per transparently
mapped flow. Here the receiver signalizes the increasing flow
buffer by sending a specific control message to the sender to
prevent further transmissions on this particular SCTP stream.

D. Teardown

Analogous to the creation of a transparently mapped flow,
NEAT cannot make use of SCTP’s native closing procedure
for teardown. Instead, NEAT uses the SCTP Stream Re-
configuration extension for the closing procedure. When the
application calls the neat shutdown function for a flow to
initiate a graceful shutdown, all outstanding data will be sent
and the application may still receive data from its peer, shown
in Figure 5. Internally, the flow is marked as closing by the
library and once the outgoing flow buffer has been drained,
NEAT will trigger the SCTP stream reset procedure for the
outgoing stream. After calling the neat shutdown method, the
application cannot write any additional data to the flow, the
on writable event will not be triggered any more and calling
neat write will cause an error.

APP NEAT NEAT APP

neat_shutdown()

SCTP_RESET_STREAMS

on_readable()

neat_read() returns 0

neat_shutdown()

SCTP_RESET_STREAMS

on_close()

on_close()

Fig. 5. Transparently mapped flow shutdown procedure

Upon receiving an SCTP Stream Request for an incom-
ing stream, NEAT indicates the event by a return value of
null when the application calls the neat read function. The
flow will not accept new data via the neat write function
for transmission. When the remote endpoint also responds
with a Stream Reset Request for the incoming stream, the
closing procedure of the flow has finished and all resources
may be freed. This behavior reflects the connection teardown
process for unmapped flows. An application may also use
the neat close function. In contrast to neat shutdown the

closing procedure resets the outgoing as well as the incoming
SCTP streams. Once the closing procedure for a flow has
been finished, the SCTP stream id may be reassigned to a
new multistreamed flow. Both endpoints maintain an SCTP
association assigned status map for every stream id.

V. MEASUREMENTS

Client

NEAT Client

UDP Client

Server

NEAT Server

UDP Server

Router

DummynetEthernet Ethernet

Fig. 6. NEAT flow mapping - 1:1 mapping and transparent flow mapping

To examine the advantages and disadvantages of a trans-
parent mapping, we used a client-router-server scenario. All
machines are physical nodes running FreeBSD 12 with a
GENERIC-NODEBUG kernel. As shown in Figure 6, the
NEAT Client and the NEAT Server are connected via the
router which emulates various network conditions between
the two peers by using FreeBSD’s builtin dummynet [13]
network emulation tool. The router emulates different network
conditions by adding delay and packet loss to the path between
the server and the client. To achieve some randomness during
the measurements, the client transmits a low amount of random
UDP messages to the server. Our benchmarking tool, using the
NEAT library, is designed to measure a variety of parameters,
including the application-to-application-delay between both
applications for every flow.

0

10

20

30

40

50

60

70

80

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Ap
pl
ica

tio
n-
to
-A
pp
lic
at
io
n	

De
la
y	
(m

s)

Link	Delay(ms)

Application-to-Application	 Delay

unmapped	streams mapped	streams

0%	loss 1%	loss 2%	loss

Fig. 7. Measurement results comparison of mapped and unmapped flows

The scenario compares the impact of packet loss and
link delay for mapped and unmapped streams concerning
application-to-application delay. The NEAT Client opens two
SCTP based flows to the NEAT Server and sends small
messages between 100-200 bytes periodically with a low



rate on each flow to simulate an application using multiple
flows for data transmission. This behavior is typical for many
use-cases like a browser scheduling requests over multiple
connections or control systems reporting data to a central
instance.

We varied the link delay, starting with 10 milliseconds in
steps of 10 milliseconds to a delay of 50 milliseconds and
used loss rates of zero, one and two percent on the link.
Every measurement ran for 60 seconds and was repeated ten
times. As shown in Figure 7, the results show a slightly higher
application delay for multiplexed flows on connections without
loss, resulting from internal data handling within the NEAT
library. In case of packet loss, the transparently mapped flows
show a lower delay compared to regular flows. This is a
result of better utilizing the transport protocols loss detection
algorithms.

Our results show a significant application-to-application
delay improvement for transparently mapped flows in com-
parison to regular flows, fulfilling our expectations.

VI. ALTERNATIVE TRANSPORT PROTOCOL
CONSIDERATIONS

As mentioned in the previous sections, transparent flow
mapping is not tied to the SCTP protocol. In addition to the
SCTP protocol, Google’s QUIC protocol also covers many
requirements for the transparent mapping of multiple flows
and, since it is layered on top of UDP, it can seamlessly
be integrated into NEAT’s abstraction layer approach. Mainly
developed to replace TCP as the underlying transport protocol
for HTTP2, QUIC is not tied to this use-case and may be used
by any other application for generic purposes. Similar to SCTP,
QUIC uses multiplexed streams and does not suffer from
head-of-line blocking. In contrast to SCTP, QUIC supports
zero-RTT connection setup and uses encryption by default.
Due to QUIC’s early stage of development and the lack of a
specification, QUIC is a candidate for future work. Another
candidate is Adobe’s RTMFP protocol which is also UDP
based and multiplexes multiple flows over a single transport
connection. Although specified in by an RFC [1], no official
RTMFP library is available and the development has been
discontinued.

VII. CONCLUSION AND OUTLOOK

While multiplexing of several data streams on a single
transport connection has become a feature more and more
popular due to its usage within new protocols, it still requires
additional effort for application developers. Especially when
the application has no knowledge about its peer. Even if the
developer uses a userland implementation of a transport pro-
tocol that supports multiplexing, it still remains an additional
coding effort, especially when a fallback solution is desired.
With NEAT’s approach of creating an abstraction layer on top
of the different network protocol APIs to give developers a
unified way of accessing transport function. We were able
to seamlessly integrate a transparent flow mapping feature
which gives application developers the benefit of multiplexing

without additional coding effort and still being fully com-
patible. We introduced our approach for multiplexing using
SCTP, the integration in the NEAT library and the techniques
for feature negotiation, flow handling and data transmission.
Our measurements show advantages of transparently mapped
flows over regular flows in usual use-cases. In our ongoing
work, we are focusing on improving the buffer management
and scheduling of concurrent multiplexed flows. Additionally,
we will add support for WebRTC Data-Channels [3] to the
NEAT library. This allows developers to use NEAT not only
for client-server communication but also for building peer-to-
peer applications.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT). The views expressed are
solely those of the authors.

REFERENCES

[1] M. Thornburgh, “Adobe’s Secure Real-Time Media Flow Protocol,”
RFC 7016 (Informational), Internet Engineering Task Force, Nov. 2013.
[Online]. Available: http://www.ietf.org/rfc/rfc7016.txt

[2] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “Quic:
A udp-based secure and reliable transport for http/2,”
Working Draft, IETF Secretariat, Internet-Draft draft-hamilton-
early-deployment-quic-00, July 2016, http://www.ietf.org/internet-
drafts/draft-hamilton-early-deployment-quic-00.txt. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-hamilton-early-deployment-
quic-00.txt

[3] R. Jesup, S. Loreto, and M. Tuexen, “Webrtc data channels,” Working
Draft, IETF Secretariat, Internet-Draft draft-ietf-rtcweb-data-channel-
13, January 2015, http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-
data-channel-13.txt. [Online]. Available: http://www.ietf.org/internet-
drafts/draft-ietf-rtcweb-data-channel-13.txt

[4] NEAT Project, “A New, Evolutive API and Transport-Layer Architecture
for the Internet,”
Available at https://www.neat-project.org/, 2017.

[5] “usrsctp - a portable SCTP userland stack,”
Available at https://github.com/sctplab/usrsctp, 2017.

[6] M. Welzl, F. Niederbacher, and S. Gjessing, “Beneficial Transparent
Deployment of SCTP: the Missing Pieces,” IEEE Globecom 2011
proceedings, 2011.

[7] libuv — Cross-platform Asynchronous I/O. [Online]. Available:
https://libuv.org/

[8] N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst,
K.-J. Grinnemo, D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tuexen,
and F. Weinrank, “NEAT: A Platform- and Protocol-Independent Internet
Transport API,” IEEE Communications Magazine, 2017.

[9] D. Wing and A. Yourtchenko, “Happy Eyeballs: Success with Dual-
Stack Hosts,” RFC 6555 (Proposed Standard), Internet Engineering Task
Force, Apr. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6555.txt

[10] R. Stewart, M. Tuexen, and P. Lei, “Stream Control Transmission
Protocol (SCTP) Stream Reconfiguration,” RFC 6525 (Proposed
Standard), Internet Engineering Task Force, Feb. 2012. [Online].
Available: http://www.ietf.org/rfc/rfc6525.txt

[11] R. Stewart, M. Tuexen, S. Loreto, and R. Seggelmann,
“Stream schedulers and user message interleaving for the
stream control transmission protocol,” Working Draft, IETF
Secretariat, Internet-Draft draft-ietf-tsvwg-sctp-ndata-08, Octo-
ber 2016, http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctp-ndata-
08.txt. [Online]. Available: http://www.ietf.org/internet-drafts/draft-ietf-
tsvwg-sctp-ndata-08.txt

[12] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP Fast Open,”
RFC 7413 (Experimental), Internet Engineering Task Force, Dec. 2014.
[Online]. Available: http://www.ietf.org/rfc/rfc7413.txt

[13] “The dummynet project,”
Available at http://info.iet.unipi.it/˜luigi/dummynet/, 2017.


