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Abstract—This paper presents the implementation and vali-
dation of PI2 Active Queue Management (AQM) algorithm in
ns-3. PI2 provides an alternate design and implementation to
Proportional Integral controller Enhanced (PIE) algorithm with-
out affecting the performance benefits it provides in tackling the
problem of bufferbloat. Bufferbloat is a situation arising due to
the presence of large unmanaged buffers in the network. It results
in increased latency and therefore, degrades the performance
of delay-sensitive traffic. PIE algorithm tries to minimize the
queuing delay by auto-tuning its control parameters. However,
with PI2, this auto-tuning is replaced by just squaring the packet
drop probability. In this paper, we implement a model for PI2 in
ns-3 and verify its correctness by comparing the results obtained
from it to those obtained from the PIE model in ns-3. The results
indicate that PI2 offers a simple design and achieves similar or
at times better responsiveness and stability than PIE.

Index Terms—Queuing Disciplines, Bufferbloat, PI2

I. INTRODUCTION

The proliferation of delay-sensitive applications on the In-
ternet has given rise to new challenges for queue management.
On the other hand, reduced memory costs and the need to
accommodate large bursts have encouraged the vendors to
increase the router buffer sizes. Although this solves the
issue of packet loss and improves TCP throughput, it leads
to increased queuing latency. Management of large buffers
is indispensable because the unmanaged buffers result in a
number of problems such as bufferbloat [1], lock-out [2] and
global synchronization [3].

AQM algorithms are being re-investigated with a focus
on controlling the queuing latency. Algorithms such as Con-
trolled Delay (CoDel) [4] and Proportional Integral controller
Enhanced (PIE) [5] have been designed to minimize queue
delay and retain high link utilization. Recently, a new AQM
algorithm called PI2 [6] has been proposed which offers same
responsiveness and stability as PIE, but has a simpler design
and implementation.

Our contributions in this paper are twofold. First, we
propose a new model for PI2 algorithm in ns-3 [7] along
with its design and implementation. Our proposed model is
based on the Linux code of the authors of PI2.1 To the best of
our knowledge, there does not exist a PI2 implementation in
popular network simulators like ns-2 [8] and ns-3. We believe

1https://github.com/olgabo/dualpi2/blob/master/sch pi2/sch pi2.c

that our implementation of PI2 in ns-3 would provide an
additional platform to the community to verify its effectiveness
and usefulness for future AQM architectures, such as DualQ
[9]. Second, we validate the implementation of our PI2 model
in ns-3 by comparing its results to those obtained from PIE
model in ns-3 since both are expected to deliver near similar
performance.

The rest of the paper is organized as follows: Section II
provides a brief background on PIE, PI2 and the differences
between both. Section III details the design and implementa-
tion of PI2 model. Section IV presents the validation of PI2

model in ns-3. Section V summarizes and concludes the paper.

II. BACKGROUND

A. PIE

PIE is now an Experimental RFC (RFC 8033) and also
a recommended AQM algorithm for DOCSIS cable modems
(RFC 8034). It uses the Proportional Integral (PI) [10] con-
troller to keep the queuing delay to a specified target value by
updating the drop probability at regular intervals. Following
are the major components of PIE:

Random Dropping: On packet arrival, PIE enqueues or
drops the packet based on the drop probability, p. p is
compared with a uniform random variable u. The packet is
enqueued if p < u, otherwise dropped.

Drop Probability Calculation: This happens at every
tupdate interval. It is calculated as [11]:
p = α ∗ (qdelay − target) + β ∗ (qdelay − qdelay old)
where:

• qdelay: queuing delay during the current sample.
• qdelay old: queuing delay during the previous sample.
• target: desired queuing delay.
• α and β: auto-tuning factors in PIE
Queuing delay estimate: PIE uses Little's law [12] to

estimate the current queuing delay.
Burst Tolerance: PIE allows the short term packet bursts

to pass through for a specified interval.

B. PI2

Like PIE, PI2 uses PI controller to keep the queuing
delay within a specified target value. However, unlike PIE,
it removes the auto-tuning feature from PIE and makes the
drop decision by applying the squared drop probability. Fur-
thermore, it extends PIE to support both Classic (e.g., Reno)ISBN 978-3-901882-94-4 © 2017 IFIP



and Scalable (e.g., Data Center TCP [13]) congestion controls.
In this paper, we limit our discussion to implementing PI2 for
Classic TCP traffic in ns-3 because the differentiation between
Classic TCP traffic and Scalable TCP traffic is achieved by
using Explicit Congestion Notification (ECN) [14] which is
not yet completely supported in the main line of ns-3. The
components discussed in Section II.A apply even to PI2 with
minor changes.

C. Differences between PI2 and PIE

Drop decision: PIE drops the packets by comparing the
drop probability, p with the uniform random variable, u. On
the other hand, PI2 drops the packets by comparing p2 with u.
Squaring the drop probability helps PI2 offer a simple design
and eliminate the corrective heuristics of PIE without the
risking responsiveness and stability [6].

Burst allowance: PI2 disables the burst allowance as to
avoid an impact on the Data Center TCP fairness [6].

Other heuristics: PI2 chooses to remove a few more
heuristics which are a part of Linux Implementation of PIE.
Details and justifications on removing these heuristics have
been provided in [6].

III. PI2 MODEL IN NS-3

This section provides insights into the implementation of
PI2 algorithm in ns-3. PI2 algorithm has been implemented in
a new class called PiSquareQueueDisc which is inherited
from QueueDisc. QueueDisc is an abstract base class
provided by the traffic control layer and has been subclassed
to implement queuing disciplines such as Random Early De-
tection (RED) [3], PIE and CoDel. The following virtual
methods provided in QueueDisc should be implemented in
the respective classes of every queuing discipline:

• bool DoEnqueue (Ptr<QueueDiscItem>
item): enqueues or drops the incoming packet.

• Ptr<QueueDiscItem> DoDequeue (void): de-
queues the packet.

• Ptr<const QueueDiscItem> DoPeek (void)
const: peeks into the first item of the queue.

• bool CheckConfig (void) const: checks the
configuration of the queue disc.

• void InitializeParams (void): initializes the
parameters of the queue disc.

Figure 1 shows the relation between the parent class
QueueDisc and the derived class PiSquareQueueDisc.
In addition to the methods mentioned above,
PiSquareQueueDisc implements the following two
methods: CalculateP and DropEarly. These are specific
to the PI2 algorithm. Figure 2 depicts the interactions among
the core components of PI2.

On packet arrival, DoEnqueue is invoked which thereafter
invokes DropEarly to check if the incoming packet should
be dropped or enqueued. CalculateP calculates the drop
probability at regular intervals (tupdate). DoDequeue is in-
voked on packet departure and estimates the average drain
rate.

Fig. 1: Class Diagram for PI2 model in ns-3.

Fig. 2: Interactions among components of PI2 in ns-3.

A. Dropping Packets Randomly

This functionality is implemented in DoEnqueue method
in PiSquareQueueDisc. Like PIE, PI2 drops the packets
randomly based on the drop probability, p obtained from
CalculateP. PI2 applies the squared drop probability.
The squaring is implemented by multiplying p by itself.
DropEarly therefore, makes the drop decision based on
the comparison between the squared drop probability and a
random value u obtained from UniformRandomVariable
class in ns-3. On packet arrival, DoEnqueue invokes
DropEarly. The packet is enqueued if DropEarly returns
false, otherwise dropped.



B. Drop Probability Calculation

This functionality is implemented in CalculateP method
in PiSquareQueueDisc class. PI2 periodically calcu-
lates the drop probability based on the average dequeue
rate (m avqDqRate) and updates the old queuing delay
(m qDelayOld). Table I provides a list of parameters used in
the calculation of drop probability. Variables used in PI2 Linux
implementation are mapped onto corresponding variables used
in ns-3 model.

TABLE I: PI2 variables to calculate p.

PI2 variable ns-3 variable
tupdate m tUpdate
qdelay m qDelay

qdelay old m qDelayOld
target m qDelayRef
alpha m a
beta m b

avg dq rate m avqDqRate

C. Estimation of Average Departure Rate

This functionality is implemented in DoDequeue
method in PiSquareQueueDisc class. On packet
departure, DoDequeue calculates the average departure rate
(m avqDqRate) if the queue is in the measurement cycle.
Table II provides a list of parameters required to calculate
m avqDqRate. Variables used in PI2 Linux implementation
are mapped onto corresponding variables used in ns-3 model.

TABLE II: PI2 variables to estimate avg drate.

PI2 variable ns-3 variable
qlen m packets / m bytesInQueue

QUEUE THRESHOLD m dqThreshold
dq count m dqCount
dq tstamp m dqStart

dtime tmp
ε fixed to 0.5

All the variables are set internally and updated by PI2.
The only configurable parameter provided by the user is
m qDelayRef.

IV. MODEL VALIDATION

We have designed a test suite with unit tests for verifying
the implementation of PI2 model in ns-3, which is a mandatory
step in the process of merging new models into ns-3-dev.
Our implementation of PI2 model along with test suite is
currently under review.2

To further verify the correctness of our implementation,
we compare the results obtained from our model of PI2 to
those obtained from the PIE model in ns-3. The simulation
scenarios considered for comparison are: (i) varying the
traffic and (ii) comparing the CDF of queue delay. These
scenarios are in line with the ones used by the authors of
PI2 [6]. However, due to the unavailability of CUBIC [15]
and ECN models in ns-3, we have used TCP NewReno [16]

2https://codereview.appspot.com/314290043/

without ECN for the evaluation. Our aim is to ensure that
our implementation exhibits the key characteristics of the PI2

algorithm. The performance parameters used for comparison
are throughput and queue delay. Table III presents the details
of simulation setup.

TABLE III: Simulation setup.

Parameter Value
Topology Dumbbell

Bottleneck RTT 76ms
Bottleneck buffer size 200KB
Bottleneck bandwidth 10Mbps

Bottleneck queue PI2

Non-bottleneck RTT 2ms
Non-bottleneck bandwidth 10Mbps

Non-bottleneck queue DropTail
Mean packet size 1000B

TCP NewReno
target 20ms

tupdate 30ms
alpha PIE - 0.125, PI2 - 0.3125
beta PIE - 1.25, PI2 - 3.125

dq threshold 10KB
Application start time 0s
Application stop time 99s
Simulation stop time 100s

Scenario 1: Light TCP Traffic

In this scenario, a dumbbell topology is used to simulate
5 TCP flows that start at the same time and pass through
the same bottleneck link. Other simulation parameters are
set as shown in Table III. Figure 3 shows the variations in
queuing delay over time. We can observe the initial peak in
the instantaneous queuing delay for both PI2 and PIE results.
This is attributed to the burst traffic generated due to all 5
TCP sources starting at the same time. Moreover, it can be
observed that PI2 to some extent provides better control on
the queuing delay. The initial peak in PIE goes to 160ms.
However, PI2 keeps it under 120ms. Both PI2 and PIE bring
down the queuing delay quickly and maintain it around the
reference delay for the rest of the simulation. We can infer
that both PI2 and PIE produce similar results and control the
queuing delay to a desired target value. However, during the
burst it can be observed that PI2 offers better control.

Figure 4 shows the instantaneous throughput. Initially
the throughput degrades due to packets being dropped by
PI2 and PIE in an effort to control the queuing delay and
maintain it around the desired target delay. It can be noted
that throughput degradation with PI2 is slightly more because
of its tighter control on the queue delay. Nevertheless, both
algorithms yield similar performance for the rest of the
simulation.

Scenario 2: Heavy TCP Traffic

This scenario is same as Scenario 1, but configures 50 TCP
flows instead of 5 TCP flows. Figure 5 shows the variations
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Fig. 3: Queue delay with light TCP traffic.
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Fig. 4: Link throughput with light TCP traffic.
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Fig. 5: Queue delay with heavy TCP traffic.

in queuing delay over time. Similar to the previous scenario,
we can observe that PI2, like PIE, quickly brings down the
queuing delay and keeps it around the desired target value
despite heavy TCP traffic. The results are similar to those
obtained for Scenario 1. Although the amount of burst in this
scenario is much larger than that in Scenario 1, PI2 continues
to perform better than PIE in controlling the queue delay.

Figure 6 shows the instantaneous throughput. Unlike
previous scenario, we observe that the link throughput is not
penalized in either PIE or PI2 in this experiment, mainly due
to a large number of TCP flows sharing the link capacity.

Scenario 3: Mix TCP and UDP Traffic

This simulation scenario is to determine whether PI2 can
function normally with unresponsive UDP traffic. We use
dumbbell topology and simulate 5 TCP and 2 UDP flows
passing through the same bottleneck link. All TCP and UDP
flows begin transmission at the same time. UDP sources
transmit at a rate of 10 Mbps. Other simulation parameters
are same as mentioned in Table III.

We observe that the results obtained for PI2 and PIE are
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Fig. 6: Link throughput with heavy TCP traffic.
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Fig. 7: Queue delay with mix TCP and UDP traffic.
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Fig. 8: Link throughput with mix TCP and UDP traffic.

similar. Figure 7 shows that PI2 and PIE control the queuing
delay successfully. Moreover, in Figure 8 we can observe that
the bottleneck bandwidth is completely utilized with both the
algorithms.

Scenario 4: CDF of Queue Delay

In this scenario, we compare the CDF of queuing delay
obtained for PI2 and PIE. We conduct two experiments using
different traffic loads as done in [6]. First, we use 20 TCP
flows with target delay of 5ms and 20ms. Next, we use a mix

traffic consisting of 5 TCP and 2 UDP flows with target delay
of 5ms and 20ms. Rest of the simulation parameters are same
as listed in Table III. Figure 9 and 10 show the CDF plots
comparing the queuing delay of PI2 and PIE. In line with
the observations made by the authors of PI2, we observe that
PI2 performs no worse and infact, offers notable improvement
over PIE in some cases. We note that PI2 clearly outperforms
PIE when the traffic is TCP-only. The margin of improvement
slightly reduces when TCP and UDP traffic coexist.
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Fig. 9: CDF of queuing delay with 20 TCP flows.
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(a) 5 TCP + 2 UDP Flows and target delay = 5ms
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Fig. 10: CDF of queuing delay with 5 TCP and 2 UDP flows.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we describe the implementation of PI2 algo-
rithm in ns-3 for Classic TCP flows. We present the design of
our model and the interactions among different components
of PI2. Furthermore, we evaluate the effectiveness of our
implementation by comparing the results obtained from it to
those obtained from the PIE model of ns-3. We note that PI2

with its simple design can deliver similar performance as PIE.
Our implementation of PI2 has been submitted for review.
On the availability of ECN in main distribution of ns-3, we
plan to extend PI2 to work alongside ECN. Moreover, PI2

model in ns-3 can be further extended to work for scalable
congestion control algorithms like Data Center TCP after they
are available in the main distribution.
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