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Abstract— Economic, reliability, and low latency benefits of the 

cloud computing model are the result of a high level of dynamic 

resource sharing, made possible by a high degree of system 

interconnectivity.  This paper suggests a more nuanced view of the 

effect of interconnectivity and resource sharing since 

interconnectivity may contribute to system fragility, which is 

associated with a possibility of abrupt/discontinuous system 

transition to a persistent overloaded regime with unacceptably 

high delays.  This possibility is a result of the same system 

interconnectivity, which enables not only desirable but also 

undesirable load transfer throughout the networked system.  Our 

results indicate that benefits of dynamic queuing disciplines, 

including low latency, can be realized provided that the relevant 

systemic risks of undesirable contagion are eliminated or 

mitigated.  Due to the intractability of conventional performance 

models of large-scale interconnected systems, we use the “Complex 

Systems” methodology, e.g., a mean-field approximate 

performance model. 

Keywords-cloud computing model, dynamic queuing, low 

latency, fragility. 

I.  INTRODUCTION 

The NIST definition lists five essential characteristics of the 

cloud computing model: on-demand self-service, broad 

network access, resource pooling, rapid elasticity, and 

measured service [1].  The cloud computing model is just an 

example of the current trend towards interconnectivity, which 

is enabled by technological advances and driven by economics 

[2].  The major economic, reliability, and convenience 

advantages of interconnected service systems, as compared to 

the model of dedicated resources, are due to benefits of dynamic 

resource sharing.  These benefits include the ability to 

accommodate “small” local demand/capacity imbalances by 

dynamic routing, i.e., by dynamically redirecting load to distant 

network portions with available resources, as well as 

elimination of the fixed cost and reduction of the marginal cost 

for users of cloud computing infrastructure due to the economy 

of scale [1].   

The benefits of dynamic resource sharing are especially 

significant in the uncertain, volatile, and hostile environment of 

highly variable demand, hardware/software failures, and 

possible malicious attempts to disrupt services.  These benefits 

can be naturally quantified by an increase in the system 

operational region for a given set of operational scenarios.  

Various mechanisms designed for taking advantage of dynamic 

resource sharing, including statistical multiplexing, dynamic 

routing [3], replication [4], etc., have been investigated.  

Broadly speaking, these mechanisms have been evaluated and 

compared on their ability to enlarge the system operational 

region, given the quality of service requirements, e.g., with 

respect to delay, reliability, etc. 

This paper suggests that the same economic forces which 

brought the cloud computing model into life may also be 

responsible for the inherent “fragility” of this model.  Indeed, 

economic pressures force the system to operate close to the 

boundary of the operational region where system resources are 

almost fully utilized.  Due to inherent uncertainties, demand 

variability, and hardware/software failures, the system will 

occasionally breach the boundary of the stability region.  This 

raises a question about system performance deterioration and 

system ability to recover from this deterioration.   

While the notion of “fragility” has been receiving significant 

attention lately [5]-[6], this paper takes probably the most basic 

view of system fragility.  According to this view, fragile 

systems suffer abrupt/discontinuous performance deterioration 

as the boundary of the operational region is breached.  This 

basic view, which is consistent with intuitive notion of 

“fragility,” has well defined topological foundations in terms of 

bifurcation theory, or in a potential case, in terms of catastrophe 

theory.  From a practical perspective, abrupt/discontinuous 

instabilities are more dangerous than gradual for the following 

three interrelated reasons.  First, abrupt/discontinuous 

instabilities are more likely to result in unacceptably high 

performance deterioration as the system breaches the boundary 

of the operational region.  Second, these instabilities are often 

associated with the existence of metastable, i.e., persistent, 

states, inside the operational region.  This creates risk of the 

system abruptly transitioning to an undesirable metastable state 

as a result of sufficiently large fluctuation.  Finally, the third 

disadvantage of abrupt/discontinuous instabilities is that their 

prediction may be more difficult than for gradual transitions [7]. 

This paper suggests that dynamic resource sharing may 

create a form of “robust yet fragile” [5] phenomenon since 

dynamic resource sharing, while making the system robust to 
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“small” demand/capacity imbalances, may make the system 

“fragile” to sufficiently large demand/capacity imbalances.  

Indeed, the same dynamic load redistribution, which allows 

system to accommodate “small” demand/capacity imbalances, 

also creates a contagion mechanism for systemic congestion.  

The possibility of undesirable contagion necessitates control 

and mitigation of the relevant contagion risks at the cost of 

reduction in the system capacity/operational region, and thus a 

reduction in economic efficiency.  While the tradeoff between 

economic efficiency and risk of overload is well known for 

stand-alone resources, we argue that in networked systems this 

tradeoff may be more acute due to a possibility of 

discontinuous/abrupt transition to a persistent congestion in a 

sizable portion of the system. 

The paper is organized as follows.  Section II describes an 

operational model of a system of dynamically shared resources.  

Section III proposes an approximate mean-field performance 

model for this system.  Section IV analyses this performance 

model in a case of symmetric system.  Finally, Section V 

discusses the potential fragility of system performance and 

outlines directions of future research.   

II. SYSTEM OF S HARED RESOURCES 

Subsection A describes an operational model of a system of 

dynamically shared resources, and subsection B introduces an 

approximate mean-field performance model of this system. 

A. General Model 

Following [3] consider a system with I  classes of jobs 

(requests) and  J  service groups, where group Jj ,..,1  

includes jN  servers and an infinite buffer.  Jobs of class 

Ii ,..,1  arrive following a Poisson process of rate i , and 

have an exponentially distributed service time with average 

ij1  on a class Ij ,..,1  server.  We assume a service 

strategy which either rejects or accepts an arriving job.  In the 

latter case the job stays until service is completed.  We also 

assume a work-conserving service discipline which does not 

allow an idle server in a group with at least one buffered job. 

The static routing strategy )( ijqS , which is characterized 

by probabilities 
ijq  that an arriving request of class i  is routed 

to server group j , where 1 j ijq  and rejection 

probabilities  
j iji qq 1:0

, characterize the admission 

strategy.  We assume that on average, demand for the resources 

and supply of these resources are matched, i.e., the system is 

capable of accommodating of the entire demand: 

                          Iiq
j ij ,..,1,1  ,                                         (1) 

and the system has almost no spare capacity: 

            JjqN
i ijiijjj ,..,1,1)1(:    .           (2) 

Although conditions (1)-(2) appear to be restrictive, it can be 

shown that in market economy they arise naturally as a result of 

market pressures.  Assuming that the demand is elastic and 

service provider controls demand through service pricing in an 

attempt to maximize the revenue, conditions (1)-(2) are the 

result of this revenue maximization, which also determines 

routing probabilities 
ijq  [8]. 

In practice, due to variability of the exogenous demand and 

limited system reliability, the system may not have sufficient 

resources to accommodate occasional resource demand/supply 

imbalances, e.g., because delay requirements may limit buffer 

sizes.  These imbalances can be mitigated with dynamic 

resource sharing made possible by system interconnectivity.  In 

this paper we consider a dynamic routing strategy )( ijqD , 

which generalizes strategy [9] by allowing for load balancing.   

Strategy )( ijqD  is determined by probabilities 0ijq , 

where 0ijq  for 
iJj  and 0ijq  for 

iJj , and 

},,.,1{ JJi  .  Introduce vector ),..,1,( Jjj   , 

where 0j  if at least one server from group j  is available 

and 1j  otherwise.  According to strategy )( ijqD , a 

request of class i  arriving when at least one server in groups 

iJj  is available: 0)1(   ikJj k q
i

 , immediately 

occupies an available server 
iJj  with probability 

              


iJk ikkijjij qq )1()1()(                    (3) 

Otherwise, i.e., if group 
iJj  has no available servers: 

0)1(   ikJj k q
i

 , then 0)(  ij , and the arriving 

request with probability jq  joins the queue to server group  

iJj .   

B. System with Native Services 

In this paper we only consider an important particular case 

of one-to-one correspondence between request classes and 

service groups, when “native” service is at least as efficient as 

“non-native”: 

         JI  , iiij   , Iji ,..,1,  , ji   ,                       (4) 

It can be shown that under (4) and some natural assumptions on 

the model parameters, provider revenue maximization yields a 

routing which mostly allocates requests to native servers: 

             1iiq ,  ij ijq , 0                               (5) 

Strategy )( ijqD , where probabilities ijq  satisfy (5), first 

attempts to route an arriving request to a “native” server if one 

is available.  Otherwise, the arriving request is routed to an 

available feasible server iJj i \  with probabilities 

proportional to ijq .  If all servers in groups iJj  are 
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occupied, the request joins the queue to server group i : 
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otherwise

if
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101
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                          (6) 

and 

 








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

 



otherwise

qif
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q

ik

ikk

iJk

ikk

ijji

ij
i

0

0)1(
)1(

)1(

)(
\






     (7) 

Further in this paper we consider a particular case of 

symmetric, fully interconnected system with “native services,” 

where i ,  ii , )1(  ij ; Iji ,..,1,  , 

ji  , and parameter 0  characterizes inefficiency of a 

non-native service as compared to the native service.  We 

assume that dynamic resource sharing is characterized by 

probabilities 1iiq , Kqij  , 0 .  For 

Ii ,..,1 , 
iJj , set 

iJ  is comprised of K  randomly 

selected service groups from iI \},..,1{ .  Parameter K  

characterizes the level of resource sharing: case 0K  

corresponds to a system without dynamic resource sharing 

while case 1 IK  corresponds to the highest level of 

resource sharing.  Note that despite numerous simplifications, 

our model is more realistic than model [9] in the following two 

practically important aspects.   First, our model includes 

overhead   associated with non-native services, and second, 

it allows for a non-complete resource sharing for 1 IK . 

III. MEAN-F IELD P ERFORMANCE MODEL 

In this paper we are interested in performance of large-scale 

resource sharing systems with a large number of server groups: 

1I , and a large degree of resource sharing: 1iJ , 

Ii ,..,1 , where iJ  is the size of set iJ .  Using the 

methodology of complex systems [10]-[11], we analyze 

performance of this system under mean-field approximation, 

which is based on several simplifying assumptions.  The basic 

simplifying assumption neglects correlations between queues at 

different servers.  Specifically, in the steady state, random 

variables i  are approximately jointly statistically independent 

for Ii ,..,1 : )(
~

)(  PP  , where 

                 



i ii

iiP ])1([)(
~ 1                                  (8) 

and ][: ii E   .  Subsection A proposes a mean-field 

approximation for the case of a single native server for each 

class of requests.  Subsection B extends this approximation to a 

case of multiple native servers for some classes of requests. 

A. Single Native Server for Each Class of Requests 

In this subsection we consider a case when each server 

group Ii ,..,1  is comprised of a single server: 1iN .  In 

addition to the basic assumption (8), we also assume that the 

probabilities of server Ij ,..,1  being available, 
)0(

jp , and 

the probability of this server being occupied and having 1k  

queued requests, 
)(k

jp , are as follows: 
)0()0( ~

jj pp   and 

)()( k

j

k

j pp  , where 

        0

)0()1( ~~~
jjj pp  , 1

)()1( ~~
j

k

j

k

j pp 
, ,..1k ,                   (9) 

and probabilities (9) satisfy normalization conditions 

                            1~
1

)(  k

k

jp                                                      (10) 

 Parameters j
~

, 1
~

j , Jj ,..,1  in (9) play the roles of 

“state-dependent effective loads,” which account for the 

additional load due to dynamic resource sharing.  Under 

approximation (8)-(9), self-consistency conditions result in the 

following expressions for the effective loads: 

    
 







i jk

kk

ij

iji

j

j

kk



 



 ])1([

)(
)(~ 1

0 ,       (11) 

where ),(: jiij   , and  

     
 







1:

1

1 ])1([
)(

)(~

j

kk

jk

kk

jj

jjj

j



 



 .        (12) 

Combining (9)-(12) we obtain the following expression for 

the approximate probability that server j  is available: 

                
)(~)(~1

)(~1~

01

1)0(





jj

j

jp



 .                                  (13) 

Since 
)0(~1 jj p , relations (13) produce the following 

closed system of fixed-point equations for approximation 

 
~

: 

                   
)

~
(~)

~
(~1

)
~

(~
~

01

0






jj

j

j


 .                                  (14) 

After solving system (14) one can evaluate the average number 

of requests queued at server j ,  


1

)(~~
k

k

jj pkL : 

      
)]

~
(~)

~
(~1)][

~
(~1[

)
~

(~
~

011

0





jjj

j

jL


 .                   (15) 

B. Multiple Native Servers for Some Classes of Requests 

We call a system lightly or heavily loaded if the probability 

for a class i  to be backlogged is small: 

                               1  iJj jE  ,                                       (16) 



 

or, respectively, large: 

                              1  iJj jE  ,                                           (17) 

Ii ,..,1 .  Kolmogorov’s zero-one law implies that a large-

scale system: 1I  with a large degree of resource sharing: 

1iJ , Ii ,..,1 , under approximation of independence 

(8) can be either in a lightly loaded (16) or a heavily loaded (17) 

regime.  Thus, as exogenous loads increase, one may expect 

abrupt/discontinuous transition from a lightly loaded regime 

with almost empty queues to a heavily loaded regime with long 

queues.  In the next section we quantify this statement. 

In a heavily loaded regime, since servers are almost always 

occupied, the system operates as a system with a single server 

for each class of requests, where this single server has the 

capacity of the entire server group.  Thus, in a heavily loaded 

regime, average queue sizes can be approximated by (15), 

where vector )
~

(
~

j   is determined by fixed-point system 

(14) with effective loads 

 
 







i jk

kk

ij

iji

j

j

j

kk

N 

 



 ])1([

)(1
)(~ 1

0 ,  (18) 

and  

   
 







1:

1

1 ])1([
)(

)(~

j

kk

jk

kk

jjj

jjj

j
N 

 



 .           (19) 

In a case of “light load,” when requests do not wait for the 

service, the system evolution is described by a Markov process 
JI

jiij txtX ,

1,))(()(  , where )(txij  is the number of class i  

requests occupying class j  servers.  Process )(tX  has a 

unique steady-state distribution )(XP , which is a solution of 

the corresponding system of Kolmogorov equations.  S ince an 

astronomically high dimension of this Kolmogorov system 

makes direct solution computationally infeasible, we consider a 

mean-field approximation (8), which leads to the following 

expression for the overflow probabilities jj 
~

 : 

            
 


jIjj

ij

Nnn

I

i ij

n

ij

j

j
nZ .. 11

!

)]
~

(~[

)
~

(

1~ 


 ,                     (20) 

In (20) the normalization constants are 

              
 


jIjj

ij

Nnn

I

i ij

n

ij

j
n

Z
.. 11

!

)]
~

(~[
)

~
(


 ,                          (21) 

and the “effective” average loads are 

      










 



jik

kkij

ij

i
ij

kk

,

~
1

~

])1([)()
~

(~
.             (22) 

The closed system of J  non-linear mean-field equations 

(20)-(22) for the vector of overflow probabilities )
~

(
~

j   has 

the form of a fixed-point system.  In the case of a large number 

of group j  servers jN , equation (20) takes the 

following form: 

                  







 

i

ijj )
~

(~11,0max
~

 .                        (23) 

If jN  for Jj ,..,1 , relations (20)-(22) form a closed 

system of mean-field equations under fluid approximation.  

These equations also have the form of a fixed-point system. 

Under approximation (23), condition (16) for existence of 

a light load regime is as follows: 

                       1
~
  iJj j , Ii ,..,1 ,                               (24) 

where vector )
~

(
~

j   is determined by fixed-point system 

(22)-(23).  Under fluid approximation (22)-(23), existence of 

solution 0
~
j  is a sufficient condition for existence of a light 

load regime.  S ince condition 0j  guarantees existence of 

solution 0
~
j , this condition also guarantees existence of a 

light load regime.  Under fluid approximation (22)-(23), a 

necessary and sufficient condition for existence of a light load 

regime can be formulated in terms of the Perron-Frobenius 

eigenvalue of linearized system (22)-(23) [9]-[10]. 

IV. SYMMETRIC S YSTEM 

This section discusses the performance of a symmetric 

system of dynamically shared resources under the mean-field 

approximation proposed in the previous section.  Subsection A 

considers system with single native server for each class of 

requests.  Subsection B considers system with multiple native 

servers for some classes of requests. 

A. Single Server of Each Class 

For a symmetric system, equations (11)-(12) take, 

respectively, the following forms:  

           



 

















 ~

1

~
1~

)1(1)
~

(~ )0(
K

,                       (25) 

                         K~
)

~
(~ )1(  ,                                                     (26) 

where   , and thus system (14) simplifies to the 

following single fixed-point equation: 

           





)
~

1)(
~

1(
~

1

)
~

1(
~

)1(
~

1~
K

K




                            (27) 

In this paper we consider the particular case of a “large-

scale” symmetric system, I , with high degree of 

resource sharing K .  In this particular case the fixed-

point equation (18) takes the following form: 



 

                   



 ~

)1(1

~
1~




 ,                                    (28) 

and the expression for the average queue size (15) becomes: 
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


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~
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~


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L .         (29) 

Figure 1 shows the solution to fixed-point equation (28). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Solution to fixed-point equation (19). 

For )1(1    equation (28) has a unique stable solution 

)1(
~

*    in [0,1).  For )1(1    equation (28) 

has unique stable solution 1
~

*  .   

Figure 2 sketches the average queue size in a symmetric 

system for a case without resource sharing )1(
~

 L , 

and for a case of complete resource sharing vs. exogenous load. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Average queue size: single server of each class. 

Expression (29) yields *

~~
LL  , where 

                     
)]1(1[1

~
*






L                                      (30) 

for )1(1   , and 
*~~

LL  , where )1(1
~* L , for 

)1(1   .  Our analysis indicates that (a) while dynamic 

resource sharing is beneficial for sufficiently light exogenous 

load, it may create systemic overload as the exogenous load 

increases, and (b) the transition from a “normal/operational” to 

a “abnormal/overloaded” regime may occur 

abruptly/discontinuously.  Although we analyzed a highly 

idealized system and our analysis was based on a number of 

approximations, our analysis is consistent with simulation 

results of various distributed systems with dynamic resource 

sharing [12] and some analytical results [3]. 

B. Multiple Servers of Each Class 

In a symmetric case, the fixed-point system (20)-(22) takes 

the form of the following single fixed-point equation 

                   



Nnn
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
 ,                          (31) 

where   , the additional load due to dynamic resource 

sharing is 

                          



 ~

1

~

)1(


 ,                                        (32) 

and the normalization constant is 

                     



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Under fluid approximation, equations (31)-(33) take the form 

of the following equation: 
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
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 Figure 3 sketches the solution to fixed-point equation (31)-

(33) for different exogenous loads  . 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Solution to fixed-point equation (19). 

For sufficiently low and high exogenous loads *   and 

*   equation (31)-(33) has a unique globally stable 

equilibria *  and 1  respectively.  For intermediate loads 

*

*   , sufficiently large number of servers in each 

0

1
)

~
(


~)1(1  

)1(1  

*

~
 1

11  

0 1



)1(1 

*

~
L

L
~








1

~
L




1

1~*L



0

1

1

*

*  

* 

* 

)
~

(


~



 

class N , and sufficiently high level of resource sharing, 

equilibria 
*  and 1  coexist as locally stable, and are 

separated by an unstable equilibrium.  Critical loads 
*  and 

*  depend on the system parameters ,N .  In particular, 

)1(1*  N  and 1* N .  Following accepted 

practice, we interpret globally stable solutions as describing 

stable system equilibria, and locally stable solutions as 

describing metastable system equilibria.  Note that the 

metastability is the result of the positive feedback in the 

effective load ~  due to dynamic resource sharing. 

Figure 4 sketches the average number of backlogged 

requests at a server group as a function of “slowly” changing 

exogenous load  . 

 

 

 

 

 

 

 

 

 

Figure 4.  Average queue size: multiple servers of each class. 

As load   “slowly” increases, the average number of 

backlogged requests at a server group L
~

 follows curve 

CBBA *

**0 .  As   “slowly” decreases, L
~

 follows curve 

0*

** AACB .  Curves 
*0A  and CB*

 correspond to the 

globally stable “normal” and “congested” system equilibria in 

cases of light: 
*  , and heavy: 

*   loads, respectively.  

Branches 
**BA  and 

**BA  correspond to the coexisting 

“normal” and “congested” metastable system equilibria 

respectively, in a case of intermediate load: 
*

*   .  

Note that discontinuities at the critical loads *  and 
*  as well 

as hysteresis loop 
*

**

** AABBA  indicate discontinuous, i.e., 

the first order phase transition. 

V. DISCUSSION & FUTURE RESEARCH 

A possibility of discontinuous emergence of systemic 

congestion as a result of dynamic resource sharing suggests a 

paradigm shift in the design of highly reliable, low delay 

systems.  System designers/operators should combine taking 

advantage of dynamic resource sharing with controlling risk of 

abrupt systemic overload/failure due to higher risks associated 

with abrupt/discontinuous overload/failure than with 

gradual/continuous ones.  The higher risk is not only a result of 

higher performance deterioration, but also of the unexpected 

nature of abrupt/discontinuous systemic events.  Indeed, 

gradual/continuous systemic events are typically accompanied 

by some observable indicators [7], and thus can be predicted 

and mitigated by initiating the appropriate control actions.  This 

may not be the case for abrupt/discontinuous systemic events 

since economic pressures drive system designers/operators 

towards the point of instability, where system resources are 

fully utilized, increasing the risk of instability.  

A major economic driver of the current trend for 

interconnectivity is the ability of dynamic resource sharing to 

reduce delays and raise reliability with much higher resource 

utilization, and thus much higher economic efficiency. This 

paper suggests that designers/operators of distributed systems, 

which take advantage of dynamic resource sharing, should 

mitigate and control the risk of abrupt systemic overload on the 

boundary of the normal/operational region. 

It is straightforward to extend our analysis in order to 

incorporate limited reliability of system components.  Our 

preliminary results indicate that system component failures 

make both positive and negative effects of dynamic resource 

sharing more pronounced.  Indeed, while dynamic resource 

sharing allows system designers/operators to mitigate the 

negative effect of component failures by reallocating load to the 

operational components, this reallocation may persist even after 

the failed components recover.  Ultimately, we hope to extend 

our analysis to more realistic models of distributed 

interconnected systems for the purpose of quantification and 

managing of the relevant risk/benefit tradeoffs. 
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