Secure Chain Replication

Berkin Guler, Oznur Ozkasap
Department of Computer Engineering
Koc University, Istanbul, Turkey
{bgulerl5, oozkasap}@ku.edu.tr

Abstract—We propose an approach for enabling secure chain
replication that is resilient against crash and arbitrary failures.
The main contribution is provided by a service named Elias which
acts as a proxy between clients and the chain replication system.
Elias is a trusted service that ensures the secure communication
between clients and the replication system while detecting any
arbitrary failures through cryptographic hashing. Elias also
provides reconfiguration for the chain to eliminate the node
affected by a crash or arbitrary failure.

Index Terms—Distributed systems; fault tolerance; chain repli-
cation; secure replication;

I. PROBLEM DEFINITION AND MOTIVATION

Replication is the most common way of enabling fault
tolerance features in a distributed system. Basically, the nodes
of the system are repeated in a redundant manner so that
if one fails another one could continue the execution. There
are two main approaches in replication and these are called
as state-machine replication and primary-backup replication.
In state-machine replication, every node executes the same
request and there is a voting process takes over after all but in
primary-backup replication, each client request is executed by
the primary replica then the result is sent to backup replicas
such that the communication is handled by a single primary
replica. However, in Chain Replication (CR) [1] a client request
is executed by the head replica and the result is forwarded
to other replicas through the body of the chain and in case
of any replica affected by an arbitrary failure or exhibiting
malicious behavior, the forwarded message becomes susceptible
to be altered before reaching to the tail. Consequently, the
confidentiality, integrity, and authenticity of the request and
the result are exposed since every replica is involved in the
communication.

There exist a few studies that address arbitrary failures
in a chain communication setup yet they all assume a state
machine replication approach. [2] proposes the Aliph protocol
for detecting Byzantine failures. [3] proposes the Shuttle
protocol and the Olympus service with 2 different Shuttle
implementations where the CRC Shuttle requires f + 1 replicas
whereas the HMAC Shuttle requires 2f + 1 replicas to detect
Byzantine failures. The most recent study in this context
proposes two different protocols named BChain-3 and BChain-
5 [4]. Both protocols can tolerate f failures and for this BChain-
3 requires 3f + 1 replicas while on the contrary, the BChain-5
requires 5f 4+ 1 replicas.

Despite the chain communication pattern is taken into
account in all these studies, they follow the state machine

replication as after a client requests for an operation o, while
propagating through the chain the o is applied by all replicas
and a result 7 is obtained which conflicts with the original CR
protocol definitions that require single execution of the o and
the result r obtained in the head node should be applied by
all other nodes until reaching to the tail. Since not only the
state-machine replication protocols are implemented in real life
services but many of these services are also replicated in the
primary-backup replication manner, it is necessary to obtain
an arbitrary failure-free execution which requires the usage of
BSMR-like secure protocols for primary-backup replication.
In contrast to prior works, we address the traditional primary
backup nature of CR and propose an approach for enabling
secure CR supported by a coordinator service named Elias.

II. ELIAS

The system includes a traditional CR configuration where
there are a head, a tail and a body in the replica chain. The
proposed Elias service extends the traditional CR configuration,
enables secure chain replication and tolerates Byzantine failures.
In contrast to the traditional setting, the clients communicate
with Elias instead of the head of the chain to send its queries.
Elias offers both an easy chain reconfiguration when needed
and also acts as a trusted node in the system. Elias enforces the
public-key encryption system such that clients have to encrypt
the queries using Elias’ public key before interacting with the
system. Elias system overview is demonstrated in Figure 1.

Encrypted
Request

Forwarded Encrypted
Reponse

Forwarded Encrypted

Clients Request

Chain
Replication

Encrypted
Response

Fig. 1. Elias System Overview

The Elias service algorithm is provided in Algorithm 1.
Since Elias acts as a coordinator between the traditional chain
replication and the clients, it constantly listens for the incoming
client requests. We assume that the replicated service is a
distributed key-value store and replicated using the traditional
CR protocol. Suppose client ¢ issues an UPDATE operation
on the system by the following operation < K = V' >, which
stands for assigning value V' to the key K. The actual request
will be the following < (K, 3) = €(V, 3) > where /3 denotes



the public key of the Elias and ¢() is the asymmetric encryption
function.

Once Elias receives the request, it obtains the cryptographic
hash value (¢)) of the ¢(V, 8) and saves the < ¢(K, 3),¢ >
pair locally (lines 3-4). Then forwards the original request

< €(K,B) = €(V,8) > to the head of the chain (line 5).

The head updates its e(K, 3) field with the e(V, 8) value and
propagates this change to its successor. Every node of the chain
would perform the same operation and apply the result obtained
by the head. Once the tail applies the change, it notifies the
Elias regarding the change it made and also starts the back
propagation of acknowledgments of the traditional CR. When
Elias is notified (line 6), it computes the cryptographic hash
value of the change and compares it with the pair it has (line
7). If they match, Elias acknowledges the client (line 8) and
if they do not, it means that there is an arbitrary failure in a
replica.

Elias sends internal READ requests to all replicas of the
chain in parallel for the key field e(K, 3) by expecting a result
whose cryptographic hash is equal to the ¢ (lines 10-11). By
comparing the hashes it tries to find the closest replica to the
head and once finding the failed node, it runs a reconfiguration
algorithm on the chain which removes the links from the failed
node so the predecessor and the successor of the failed node are
now linked to each other (lines 12-15). Eventually, it re-sends
the original request of the client to the head to ensure that all
replicas are consistent with each other (line 16).

If a client wants to make a READ operation for the key field
K it sends the following request to the Elias, (K, 3). Elias
looks checks its local database and obtains the cryptographic
hash value 1 for the value of the key field (K, 5) (line 18)

and then forwards the request to the tail of the chain (line 19).

The tail returns the value of the (K, 3) and sends it to the
Elias (line 20). The Elias computes the cryptographic hash
value of that value and compares it with ¢ (line 21). If they are
equal, it first decrypts the €(V, 3) value with the p(e(V, 8), a)
operation where p is the cryptographic decryption function
and « is the private key of the Elias. In order to continue the
secure communication, Elias again encrypts the result with
the following operation ¢(p(e(V, 8),a), ) using its private
key so that the client can decrypt it with the public key S of
Elias (line 22). However, if Elias detects a mismatch in the
cryptographic hash values, it issues a reconfiguration on the
chain which eliminates the tail node by letting the predecessor
of the tail node that it is the new tail node and Elias forwards
the READ request to the new tail node and starts over the
aforementioned procedure (lines 26-27). It is possible that Elias
had never seen the requested key, so in that case, it cannot
check for any arbitrary failure (line 24).

The system with the Elias trusted service promises secure and
robust chain replication resilient against arbitrary failures and
malicious behavior. However, since Elias stores a private hash
database for values that were inserted into the system, if a client
wants to read a key that Elias did not witness being inserted
into the system, it cannot check for any arbitrary failures and
has to trust every replica. Therefore, if the replicated database

Algorithm 1: Elias algorithm

1 foreach incoming request from clients do

2 if update request is arrived then

3 ) = hash(e(V, 8))

4 save pair < e(K, ), >

5 forward < e(K, 8) = e(V, 3) > to the head

6 wait for ACK from the tail replica

7 if hash(ACK) = v then

8 ‘ send ACK to client, operation was successful
9

else

10 issue internal read operations to all replicas for
key, €(K, B)

11 check if the returned value has the same hash
value with

12 find the closest replica (p;) to the head, that
returns the wrong value

13 remove p; out of the chain

14 set the predecessor of p;+1 as p;_1

15 set the successor of p;_1 as p;t1

16 repeat lines 4-7

17 else

18 find pre-saved v value for requested key e(K, 3)

19 forward request to the tail replica

20 wait for the value €(V, §)

21 if ¢ exists A\ hash(e(V, 3))=1 then

2 | send €(p(e(V, 8), @), a) to the client

23 else if ¢ does not exist then

24 respond to client, we cannot search for any
arbitrary failure

25 else

26 remove tail node from the chain, set the
predecessor of it as the new tail

27 repeat line 21

will contain initial values, a preparation phase could be needed
for Elias, to read the keys and values and obtain an initial hash
database for them.

In the poster presentation, we are demonstrating the overall
system throughput of both the traditional CR and our proposed
method and discuss the performance effects of it by comparing
the blocking times seen by clients and the overall throughput
over the PlanetLab test platform using the YCSB benchmarking
service.

REFERENCES

[1] R. Van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability.” in OSDI, vol. 4, 2004, pp. 91-104.

[2] R. Guerraoui, N. KnezZevié, V. Quéma, and M. Vukolié, “The next 700 bft
protocols,” in Proceedings of the 5th European conference on Computer
systems. ACM, 2010, pp. 363-376.

[3] R. Van Renesse, C. Ho, and N. Schiper, “Byzantine chain replication,” in
International Conference On Principles Of Distributed Systems. Springer,
2012, pp. 345-359.

[4] S. Duan, H. Meling, S. Peisert, and H. Zhang, “Bchain: Byzantine
replication with high throughput and embedded reconfiguration,” in

International Conference on Principles of Distributed Systems. Springer,
2014, pp. 91-106.



