
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

AMP: An Adaptive Multipath TCP for Data Center Networks

Morteza Kheirkhah
University College London

m.kheirkhah@ucl.ac.uk

Myungjin Lee
University of Edinburgh
myungjin.lee@ed.ac.uk

Abstract—MPTCP and its ECN-capable variants such as XMP
and DCM have recently been introduced to effectively exploit the
path diversity of modern data center networks (DCNs). Although
these multipath schemes improve overall network throughput
compared to single-path schemes due to their fast, host-based,
load balancing ability, they failed to address the following two
problems: TCP incast and last hop unfairness. Firstly, these
mechanisms cause frequent TCP incast collapses when used
for workloads with a many-to-one communication pattern, com-
monly found in DCNs. Secondly, the last hop unfairness problem
severely violates network fairness as single-path flows achieve 2-5
times less throughput than multipath flows.

To effectively tackle these problems, we propose the Adaptive
MultiPath (AMP) congestion control mechanism that quickly
detects the onset of these problems and transforms its multipath
flow into a single-path flow. Once these problems disappear,
AMP safely reverses this transformation and continues data
transmission via multiple paths. Our evaluation results under
a diverse set of scenarios in a large-scale fat-tree topology
demonstrate that AMP is robust to the TCP incast problem and
improves network fairness between multipath and single-path
flows significantly with no performance loss.

I. INTRODUCTION

Data centers are a crucial component of the Internet to-
day. Large-scale data centers are comprised of hundreds of
thousands of servers, and host a diverse set of online services
that require high bandwidth, low latency or both from the
network. To meet these requirements, a large number of recent
advances [1]–[6] have focused on improving TCP congestion
control (CC) algorithms, by leveraging path diversity [2]–[4],
exploiting explicit congestion signals from switches [1], [4],
[6], and measuring delays [7], [8].

In this paper we focus on striking a balance between
throughput and latency at the transport layer. To that end, one
possible idea is to combine a multipath transport protocol such
as MPTCP [2], which usually achieves a high throughput, with
a low-latency transport protocol such as DCTCP [1], which
keeps switch buffer occupancy low by exploiting Explicit
Congestion Notification (ECN). Thus, the crux of this idea
is to combine a multipath mechanism that maintains multiple
subflows per connection with a low-latency mechanism to
govern the behavior of each subflow.

This combination of protocols makes sense due to it be-
ing difficult for any single transport protocol to meet high-
throughput and low-latency requirements. For example, Equal
Cost Multi Path (ECMP) routing would be likely to cause
collisions among (long-lived) DCTCP flows on the same link,
which can substantially degrade the throughput of all flows
sharing that bottleneck link. In contrast, MPTCP is good at

fast load balancing, overcoming the shortcomings of ECMP.
However, MPTCP tends to occupy switch buffers aggressively,
thus hurting the performance of latency-sensitive short flows.

We examine the performance of existing works such as
eXplicit MultiPath (XMP) [4] and Data Center MultiPath
(DCM) [9] (our prior work), which follow such an integration.
It turns out that these provide fast load balancing while
keeping switch buffer occupancy low. However, they perform
poorly during a TCP incast incident generated by a many-to-
one communication workload commonly observed in DCNs.

Our examination reveals that multiple subflows in multipath
flows boost the possibility of TCP incast especially when many
senders and a receiver are co-located in a single rack (§III-A).
Worse, in that setting, network resource competition between
multipath (e.g., XMP) and single-path flows (e.g., DCTCP
or XMP using one subflow) causes a serious co-existence
problem, which we call last hop unfairness (LHU). In such
scenarios flows using multiple paths consistently achieve 2-5
times greater throughput than flows using single-path, thus
severely violating fairness among the flows (§III-B). As a
result, these problems render ECN-based MPTCP variants less
practical as a transport protocol for DCNs.

To overcome these limitations, we propose the Adaptive
MultiPath (AMP) congestion control algorithm that is robust
to the TCP incast problem and effectively handles the LHU
problem with no performance compromise. In addition, the
design of AMP is simple with low overhead. The scheme
moves traffic quickly from congested paths to less congested
ones. AMP does not require hard to trace mechanisms such
as RTT-dependent congestion window (cwnd) increase, as in
standard MPTCP, or dynamic cwnd decrease, as in DCTCP.

AMP’s approach is simple and effective: it transforms a
multipath flow into a single-path flow at the onset of problems.
The key in AMP is the early detection of the problem. We
leverage the fact that all subflows of a multipath flow have
the smallest cwnd value, which is a good indicator that all
of the subflows are competing with other flows on a single
link. If the minimum window state across all subflows remains
for a small time period (e.g., 1-3 RTTs), AMP executes this
transformation by deactivating all subflows but one. If AMP
no longer receives ECN-marked packets for some time period
(e.g., 8 RTTs), it reactivates all suspended subflows (§IV).
Our evaluation shows that this neat technique greatly mitigates
TCP incast and improves fairness with no side-effects (§V-B).

AMP also simplifies congestion control operations, which
keeps AMP easily traceable and its overheads low. AMP just
increases one full-sized segment per RTT across all subflows,
similar to the behavior of single-path TCP, whereas the otherISBN 978-3-903176-16-4 c© 2019 IFIP

IFIP Networking 2019 1570512304

1

schemes consider RTTs of all subflows to update their cwnd.
In response to ECN signals, AMP cuts cwnd by a constant
factor instead of dynamically adjusting it based on the fraction
of marked packets (§IV-B). Our evaluations in a large-scale
fat-tree topology with widely used traffic matrices demonstrate
that AMP under incast-like workloads performs better than the
existing solutions, despite its simplicity (§V-C).

Overall, this paper makes the following main contributions:
• To the best of our knowledge, we explore for the first

time the shortcomings of employing ECN-based variants of
MPTCP under incast-like workloads. This includes the dis-
covery of the LHU problem. Note that all multipath schemes
considered in this paper are ECN-based (unless otherwise
stated) because other schemes (e.g. standard MPTCP) do
not co-exist with ECN-based schemes at all [10].
• We propose AMP, an adaptive (ECN-capable) multipath

congestion control algorithm for data center networks that
effectively copes with the TCP incast and ensures graceful
co-existence with single-path flows.
• We evaluate AMP over a wide variety of scenarios

in a large-scale fat-tree topology, and demonstrate that
AMP mitigates buffer inflation and achieves higher fair-
ness and comparable performance against existing multipath
schemes. Note that we have implemented AMP on top of
our custom implementation of MPTCP in NS-3 [11]. Our
code can be found in [12] with required instructions to
reproduce all results presented in this paper.

II. PRELIMINARY

A. Data Center TCP

DCTCP strives to maintain a low buffer occupancy in
switches. DCTCP employs an ECN-based CC mechanism that
adjusts its sending rate in proportion to the extent of conges-
tion, represented by the amount of ECN-marked packets. In
short, the behaviour of DCTCP is:
• For each ACK, w ← w + 1

w

• For each loss, w ← w
2

• For first marked ACK in a window, w ← w(1− α
2)

α is an estimate of the fraction of marked packets and is
updated once per RTT as follows:

α = (1− g)α+ gF (1)

F is the fraction of marked packets; g is a weight coefficient
for exponentially averaging α. When α → 0, w decreases
gently; as α→ 1, w does more aggressively.

B. eXplicit MultiPath

XMP is a multipath CC algorithm that aims to strike a bal-
ance between latency-throughput trade-offs. XMP combines
an ECN-based scheme for controlling buffer occupancy in
switches and a rate-based CC algorithm for balancing traffic
among its subflows. In short, the behaviour of XMP is:
• Every window of data on subflow s, ws ← ws + δs
• For each loss, ws ← ws

2

• For first marked ACK in a window, ws ← ws(1− 1
β)

ToR

switch

...

D

S1

S2

S3

Sn

S1

S2

S3

Sn

Fig. 1. A many-to-one communication scenario over a 10Gbps link.

 0.1

 1

 10

 100

 1000

 10000

10 20 30 40

M
e
a
n

 F
C
T

 (
m
s
)

No. of fows

DCTCP
XMP
MPTCP

Fig. 2. Impact of the TCP incast on XMP, DCTCP and standard MPTCP.
XMP and MPTCP use 4 subflows. File size is 128KB, link rate is 10Gbps,
and switch buffer size is 100 packets. The y-axis is log-scaled.

δs dictates the amount of cwnd increase for each subflow,
calculated once per window of data; and β is a fixed reduction
factor. The value for δs is calculated by the following formula:

δs =
rtts
rttmin

× ws/rtts∑
r(wr/rttr)

(2)

III. ISSUES OF MPTCP VARIANTS

A. TCP incast

There are two key issues with an ECN-capable MPTCP
variant. Firstly, it is unable to handle incast-like traffic that is
prevalent in DCNs; many applications (e.g. MapReduce [13]
and Partition/Aggregate [1]) have a many-to-one communica-
tion pattern. Secondly, it fails to gracefully coexist with single-
path flows such as DCTCP1; an ECN-capable MPTCP variant
can harm DCTCP flows by causing their throughput to be
reduced significantly (which we term LHU). The following
sections, we demonstrate the impact of these two problems
via simulation under a simple topology as shown in Figure 1.

TCP incast is a well-studied topic [1], [14] and for instance
DCTCP mitigates the problem using ECN. Unfortunately, the
ECN-capable MPTCP variants are still susceptible to TCP
incast, even when making use of ECN. To demonstrate this, we
create a simulation environment as shown in Figure 1 using
NS-3. The simulation setup is as follows. Every 1 second k
multipath flows join a 10Gbps link where k = 10, 20, 30, 40
while setting the flow size to 128KB. The switch uses a
shallow buffer with size of 100 packets. Each simulation lasts
for 20 seconds. Each multipath flow has 4 subflows. We also
separately run DCTCP and standard MPTCP as baselines.

1A multipath flow that has only one subflow behaves identically to a single-
path flow. This implies that it is possible to use a multipath transport protocol
within DCNs to deliver short flows via a single subflow and long flows via
multiple subflows (see [2], [3] for a detailed discussions about why MPTCP
with multiple subflows performs poorly for short flows).

2

S1

Switch queue

K = 4

S2

Some packets

are ECN-marked

(a) Normal situation

S1

K = 4

S2

S3

S4

S5

All packets are

ECN-marked

(b) Persistent buffer inflation

S1

K = 4

S2

S3

S4

S5

A multipath flow with 4 subflows

sends 4 packets per RTT
~
~~~
~
~~~

All packets are ECN-marked

(c) Last hop unfairness problem
Fig. 3. Illustration of the last hop unfairness problem. The LHU leads to severe unfairness and escalates the likelihood of persistent buffer inflation significantly.

Figure 2 shows that DCTCP outperforms both XMP and
standard MPTCP. In many cases the average flow completion
time (FCT) of DCTCP is almost 1-2 orders of magnitude less
than that of XMP; when k = 30, the average FCT of DCTCP
is less than 2ms whereas that of XMP and standard MPTCP is
over 800ms and 2000ms respectively. Furthermore, the FCT
distribution of DCTCP has a narrow standard deviation (as
shown by the whisker bars in the graph), but the standard
deviation of XMP and MPTCP is large (less than 1 millisecond
for DCTCP vs. above 1 second for both XMP and MPTCP).
This implies long-tailed FCT distributions with some flows ex-
periencing much higher FCTs due to retransmission timeouts.

From these results, it is evident that MPTCP and its ECN-
capable variants cannot handle the TCP incast problem. The
multipath flows maintain four subflows. Hence, one multipath
flow generates at least four packets per RTT. A greater number
of multipath flows implies a sharp increase in the probability
of losses due to packet bursts. For example, in Figure 2, 30
multipath flows generate at least 120 packets every RTT, which
are far exceeding the queue length of the bottleneck switch.

B. Last Hop Unfairness

We explore the LHU problem through examples shown in
Figure 3. We first assume that network switches ECN-marked
packets only if their instant queue length is larger than a
marking threshold K. Such switches are widely deployed in
DCNs. To keep the discussion simple, let us assume K = 4
and that there is zero propagation delay, i.e., assume that as
soon as a packet leaves the queue the sender receives an
instantaneous acknowledgment and can therefore transmit a
new packet immediately.

In Figure 3(a), two single-path flows share the bottleneck
link fairly by generating on average two packets per RTT
(bounded by queuing delay); i.e., cwnd in each flow oscillates
between 1-3 packets. Now suppose that 5 single-path flows
compete with each other as illustrated in Figure 3(b). Because
K = 4, a newly arriving packet finds the queue length is
always equal to K, meaning that it is the 5th packet in the
queue. Thus, all packets across flows are ECN-marked all the
time, and each flow is forced to reduce its cwnd to one packet.
This causes persistent buffer inflation (also discussed in [15]),
but there is no unfairness across flows. Finally, Figure 3(c)
shows a case where the single-path flow in S5 is replaced with
one multipath flow having 4 subflows. Similar to the previous
case, all packets across flows are constantly ECN-marked, and
thus the cwnd of the all flows and subflows reduces to one

��

��

��

��

��

��

��

� � � � � � �

�
�
�
�

�
�
�
�
�
�
�
��
��
�
�
�
�

���������������

����� ���

(a) (K, r) = (10, {2 . . . 8}). Average goodput of
8 DCTCP flows and one XMP flow.

��

��

��

��

� � �� ��
�
�
�
�

�
�
�
�
�
�
�
��
��
�
�
�
�

���������������

����� ���

(b) (K, r) = (20, 4). Average goodput of varying
number of DCTCP flows and one XMP flow.

Fig. 4. The last hop unfairness under various conditions. K: ECN marking
threshold, and r: the number of subflows.

packet. But, since all the subflows belong to one multipath
flow, the flow ends up sending four times more packets than
single-path ones. Furthermore, the LHU substantially escalates
the likelihood and impact of the persistent buffer inflation (see
the buffer length twice as large as K in Figure 3(c)), which
can potentially harm latency-sensitive short flows.

In reality, the BDP is a few tens of packets in DCNs [4],
[6]. Thus, to create the LHU problem, (BDP +K)/cwndmin
flows is sufficient. Given that the BDP and K are small and
the minimum congestion window size (cwndmin) is set by
default to two packets for MPTCP and TCP variants,2 a small
number of flows could easily trigger the LHU problem.

To demonstrate the LHU problem, assume a setup as in
Figure 1 where an ECN-enabled switch connects n sending
servers and one receiving server. The receiver is equipped with
DCTCP and XMP; server S1 runs XMP having r subflows,
and the remaining n− 1 servers with DCTCP (n ≥ 2). All n
senders send traffic to the receiver.

We have undertaken various simulations to study the impact

2MPTCP and XMP use two packets to probe congestion level on each path
(see a detailed discussion in [16] and Algorithm 1 in [4]). DCTCP also uses
two packets originally, but a recent study proposed to use one packet for the
value (see page 11 in [10]) and the DCTCP source was patched accordingly.
Unless otherwise stated, we set cwndmin = 2 for consistency in this paper.

3

of LHU. We alter the simulation duration from 10ms to 1 sec
and use 1Gbps and 10Gbps links. Across these variations, we
observe very similar trends and so, due to space limitations,
we concentrate on the results of our tests of 1 sec duration
over a 10Gbps link. We depict a setting as (K, r) where K is
the ECN marking threshold and r is the number of subflows.

Varying number of subflows: Given 8 DCTCP flows and one
XMP flow, we vary the number of subflows from 2 to 8, while
setting K = 10 and cwndmin = 2 as suggested in [4]; thus,
the setting is (10, {2 . . . 8}). Figure 4(a) shows that the LHU
begins as soon as the XMP flow starts to use three subflows
or more. When 4 subflows are used, the XMP flow obtains
2.3× higher goodput than DCTCP flows. The figure clearly
demonstrates that the number of subfows is a key factor that
triggers the problem. DCTCP flows seem to have no problem
in the 2-subflow case. However, the problem recurs when at
least about 16 DCTCP flows are in use (not shown for brevity).
Using two subflows costs about 10% goodput loss (e.g., 1Gbps
out of 10Gbps rate) when compared to using four subflows [4].
Also, a number of subflows (e.g., 8 subflows) are in general
beneficial when there are a large number of parallel paths in
a large DCN [2]. Thus, using a smaller number of subflows
is not a fundamental solution.

Different marking threshold: As a small marking threshold
can be a potential cause of the problem, increasing K may be
useful. However, this can also introduce an additional delay,
which may hurt the flow completion time of latency-sensitive
short flows. Nevertheless, we test K = 20. With the setting
(20, 4), we vary the number of DCTCP flows. Figure 4(b)
shows that increasing the marking threshold marginally al-
leviates the problem; given 8 DCTCP flows, a goodput gap
between DCTCP and XMP is a factor of two. In contrast,
recall that the gap is a factor of 2.3 under the same condition
in Figure 4(a). We also tested a case where cwndmin = 1
while keeping the setting as (10, 4). This slightly reduced the
likelihood of the LHU, but we observed that a slight increase
of the number of XMP flows (from 1 to 4) triggered the LHU,
when 8 DCTCP flows are given (the exact graph has been
omitted for brevity).

Summary. We obtain two key findings from these results.
Firstly, the total number of packets in flight from both mul-
tipath and single-path flows should exceed the BDP plus K
frequently. In our setup, BDP is 20 packets. In Figure 4(a), the
condition begins to hold when the setting has 3-4 subflows for
the XMP flow and 8 DCTCP flows (the average number of
packets in flight is about 30-32). Secondly, tweaking those
parameters either alleviates the problem marginally or makes
performance loss inevitable.

IV. DESIGN

We propose AMP, an multipath congestion control mecha-
nism that coexists well with ECN-capable single-path flows
and is resilient against TCP incast. In designing AMP, in
addition to the obvious objectives—high throughput and low
latency, we have the following design objectives:

DCTCP flow

[2s, 3s]

DCTCP flow

[1s, 2s]

D1

D2

D3

S1

S2

S3

Subflow 1

Subflow 2

Fig. 5. A setup for testing traffic shifting time. An orange line represents a
subflow of a multipath flow.

• Fairness: Multipath and single-path flows should be able
to achieve their fair share of bandwidth at a bottleneck
link, even in the presence of an incast-like traffic pattern.

• Fast traffic shifting: Multipath flows should be able
to avoid congested paths quickly. This especially helps
latency-sensitive short flows experience less impact due
to congestion.

• Simplicity: An algorithm should be kept as simple as
possible so that its behaviors are easily analyzed and its
overheads are kept low.

To achieve the above objectives, we study XMP (an existing
ECN-capable scheme). In analyzing XMP, we make several
key observations essential for the design of AMP.

A. Key observations

(1) The number of subflows for a multipath flow should
not be static. Multiple subflows are in general beneficial to
obtain high throughput. In the presence of the TCP incast
and last hop unfairness, it is effective to have a smaller
number of subflows (ideally, one subflow), as discussed in
§III. However this costs throughput performance. Thus having
the static number of subflows can only achieve either good
fairness against single-path flows or high throughput, but not
both of them. Thus, the number of subflows should be adjusted
adaptively, which can be done by (de)activating subflows in
an online fashion. However, it is inappropriate to deactivate
subflows incrementally because mitigating the two problems
can take too long, which may cause significant queuing delay
to latency-sensitive short flows over a longer period of time.

(2) The cwnd values in subflows are a cue for the TCP
incast and last hop unfairness. Detecting these problems
early is key to adjusting the number of subflows. We notice
that when these problems are about to occur, subflows are in
a unique status where the cwnd values across all subflows are
always equal to a minimum (e.g., two packets in [2], [4]). This
is a good indicator that these problems are in effect because
it is less likely that all subflows of a multipath flow passing
through different paths face excessive congestion, especially
in a large-scale data center that has 100s of parallel paths
between a pair of source and destination.

(3) Adaptive cutback of cwnd at subflow slows down traffic
shifting. We examine traffic shifting times for MPTCP when
it is integrated with an ECN scheme in two scenarios: (1)
MPTCP-FIX: a subflow reduces the cwnd by a constant factor
(we use β = 4) when it sees an ECN-marked packet; and (2)

4

��

���

���

���

���

�� ������ ������

�
�
�
�

�
��
�
�
�
�
��
�

��������

����
����

(a) MPTCP-FIX (β = 4)

��

���

���

���

���

�� ������ ������

�
�
�
�

�
��
�
�
�
�
��
�

��������

����
����

(b) MPTCP-ADP
Fig. 6. Traffic shifting times of MPTCP-FIX and MPTCP-ADP. MPTCP-
FIX finishes its traffic shifting at 2.003s and MPTCP-ADP does at 2.007s;
MPTCP-ADP is 4ms slower than MPTCP-FIX.

MPTCP-ADP: a subflow cuts its cwnd in proportion to the
fraction of ECN-marked packets over a window (identical to
DCTCP). Given a topology shown in Figure 5, a multipath
flow (MPTCP-FIX or MPTCP-ADP) with two subflows begins
to traverse from S2 to D2 at 0s. Then, S3 sends traffic to D3

using DCTCP within interval (1s, 2s) and another DCTCP flow
from S1 to D1 for (2s, 3s). At 2s, a multipath flow is sending
its entire traffic through the upper path and we plot how cwnd
of each subflow varies within interval (1.999s, 2.01s) after
the second DCTCP flow appears on the upper path. Figure 6
shows that with MPTCP-FIX traffic shifting about 4ms faster
than MPTCP-ADP.

The reason is because a MPTCP-ADP subflow conserva-
tively reduces cwnd based on the fraction of marked packets.
Hence, even if there exists a congestion-free path, a MPTCP-
ADP flow shifts its traffic slowly. In contrast, MPTCP-FIX
is aggressive enough to make a subflow on the congested
path quickly reduce its window, thereby achieving faster
traffic shifting than MPTCP-ADP. The conservative nature of
MPTCP-ADP that is inherited from DCTCP perfectly makes
sense if a flow traverses single path only. However, because the
subflows of a multipath flow travel through multiple different
paths in general, it is more appropriate to get rid of traffic from
the congested path rather than to withstand against congestion.

(4) RTT measurements of subflows are unnecessary for
updating their cwnd. XMP relies on RTT measurements in
increasing cwnd of subflows. It also inherits MPTCP’s design
principles, one of which targets to address the RTT mismatch
issue [16] that can occur when there are paths with high
RTT and low loss probability and paths with low RTT and
high loss probability. However, higher RTT typically means
large queuing delay and hence high loss probability in DCNs
because DCNs usually have a symmetrical structure where all
paths between a pair of servers have the same length. DCNs
thus have no paths that cause the RTT mismatch issue.

Moreover, ECN tends to equalize RTTs throughout a DCN
when switches react to instant queue length with a small
marking threshold [1], [4]. Assuming 5-hop paths with 10Gbps
links, 10 packets of marking threshold and 1500B packets,
a maximum RTT difference is just about 108µs. In average
cases, as the utilization of network links increases, the RTT
difference will become even smaller. Thus, differentiating the
sending rate of each subflow based on such a small RTT
difference would not bring much benefit. Even in a case that a

Algorithm 1: Pseudocode of AMP

1 /* Subflow suppression/release */

2 SuppressSubflows(nRound)
3 nSF = 0 /* counter for subflows */

4 for subflow s ∈ [1, . . . , n] do
5 if ws = cwndmin then nSF ← nSF + 1
6 end
7 if nSF = n then nRound ← nRound + 1
8 else nRound ← 0
9 if nRound < γ then return

10 for subflow s ∈ [2, . . . , n] /* at γ rounds */

11 do
12 actives ← false
13 end
14 ReleaseSubflows(ACK, nRound)
15 if ACK.marked then nRound ← 0
16 else nRound ← nRound + 1
17 if nRound < τ then return
18 for subflow s ∈ [2, . . . , n] /* at τ rounds */

19 do
20 actives ← true
21 end
22 /* RTT-agnostic CWND increase */

23 IncreaseCWND(s, wtotal)
24 /* For each ACK of subflow s */

25 ws ← ws + 1/wtotal
26 /* Constant factor CWND decrease to ECN

*/

27 RespondToECN(s)
28 /* For the first marked ACK of subflow

s per window */

29 ws ← max (ws(1− 1/β), cwndmin)
30 /* Response to duplicate ACKs */

31 DecreaseCWND(s)
32 ws ← max (ws/2, cwndmin)

path is highly congested, sources can quickly identify it with
ECN signals and do traffic shifting accordingly.

B. AMP algorithm

We now discuss the exact algorithm of AMP designed
with the above four observations. AMP mainly consists of
three components: (i) subflow suppression/release, (ii) constant
factor decrease of congestion window, and (iii) RTT-agnostic
congestion window increase.

The subflow suppression/release is a key mechanism that
ensures graceful coexistence between multipath and single-
path flows. The second component enables fast traffic shifting.
The final part, as its name suggests, excludes RTT mea-
surements, without any performance penalty, from the part
of increasing cwnd, which overall makes our algorithm less
complex compared to existing schemes. Algorithm 1 shows
the pseudocode of AMP, that we explain next in detail.

5

Subflow suppression/release (SSR). The SSR mechanism
permits detection of cases where all subflows belonging to
an AMP flow struggle at the same bottleneck link due to
congestion. A representative example is a many-to-one com-
munication pattern (e.g., incast) where multiple flows (and
subflows) compete for bandwidth at a last mile hop (i.e., ToR
switch). Upon detection, AMP transforms its flow to a single-
path flow. Once congestion disappears, AMP converts its flow
from a single-path flow to a multipath one.

Subflow suppression consists of two steps: detection and
suppression. (1) At detection step, AMP checks whether the
cwnd of all its subflows has been equal to a minimum
window size for γ number of consecutive RTTs (lines 3-9 in
Algorithm 1). (2) At suppression step, if the previous detection
condition is met, AMP deactivates all its subflows except for
the initial one by resetting active flag (lines 11-13).

AMP conducts subflow release similarly. If the initial
subflow does not receive any more marked packets for τ
number of consecutive RTTs (lines 15-17), AMP reactivates
all those inactivated subflows (lines 19-21). When releasing
the subflows, AMP sets active flag for each subflow.

Overall, SSR ensures fairness between multipath and single-
path flows at a shared bottleneck link. It also helps to handle
more senders during an incast-like episode or to reduce the
chance of costly timeouts. We show SSR’s efficacy in §V-B.

RTT-agnostic congestion window increase. As discussed in
§IV-A, employing an ECN-based congestion control tends to
equalize RTTs in DCNs. The difference in RTTs for paths
is at most K packets where K is a small marking threshold
at switches (say, 10 packets). In addition, the RTT mismatch
problem does not exist in DCNs, either. Based on these
insights, for each non-duplicate ACK of subflow, we simply
increase its cwnd by 1/wtotal (line 25 in Algorithm 1) where
wtotal is the total window size across all subflows. This
ensures that AMP can only increase one segment per RTT
across all subflows, preserving network fairness with single-
path flows at bottleneck links [16], [17].

The amount of cwnd increase of AMP also strikes a right
balance. Given an congestion control algorithm C, let the
amount of cwnd increase of a subflow per ACK be Cinc.
For instance, the amount, 1/wtotal, is AMPinc.

Now suppose RTT difference among all subflows is neg-
ligible. Then Eq. (2) for XMP reduces to δs ≈ ws/wtotal.
Note that δs is the amount of cwnd increase per RTT in
XMP. Since ws is the current window size of subflow s, the
subflow would receive ws number of ACKs. Thus, for every
ACK, XMP increases cwnd of a subflow by 1/wtotal, which
is XMPinc. Putting it together, we have

AMPinc ≈ XMPinc

Looking at these relationships among two algorithms, the
increment is comparable across both of them, but AMP’s
algorithm is much simpler than XMP.

Constant factor decrease of congestion window. In AMP
a subflow responds to ECN signals once every window of

data (i.e., approximately an RTT) by reducing its cwnd with
a constant factor β, as depicted at line 29 of Algorithm 1. The
parameter β should be determined such that a link is fully
utilized. In other words, a queue should not be completely
drained due to cwnd reduction. In [4], this problem of
choosing β is formulated as follows:

BDP +K

β
≤ K,

Note β ≥ 2; otherwise, it reduces cwnd more aggressively
than a standard TCP. We choose β using this formula. For
instance, consider a DCN where each link has 1Gbps speed
and RTT is about 250µs [1] (i.e., BDP is about 20 packets). If
we set K = 10, β ≥ 3. Since computing BDP even for other
link speed (e.g., 10Gbps) is easy, it is straightforward to set β
after K is first determined.

V. EVALUATION

We evaluate AMP via extensive simulations using our
custom-written simulator in NS-3.19. We have implemented
MPTCP, AMP, XMP, DCTCP, ECN, and ECMP in this simu-
lator. Our source code can be found in [12].

In this section, we first study how to tune the parameters
of AMP. We then examine AMP under a few basic scenarios.
In particular, we will answer robustness of AMP against the
TCP incast and its effectiveness to the last hop unfairness. We
finally study the overall performance of AMP under a large-
scale fat-tree topology that represents a realistic data center
network. For comparison, we use DCTCP and XMP.
Basic configuration. Throughout our simulations, the follow-
ing parameters are used without any change: (i) a link rate of
10Gbps, (ii) a link delay of 2µs, (iii) an MSS of 1400 bytes,
(iv) a maximum queue size of 100 packets, and (v) β = 4
for AMP and XMP. We also tested AMP over 1Gbps settings
(with various queue sizes) and observed that the trends were
similar to those of 10Gbps settings. We only show the results
under the 10Gbps settings (with a maximum queue size of 100
packets) in interest of space.

We set a default value for each of the following parameters:
(i) the number of subflows per multipath flow = 4, (ii) the
minimum congestion window size, cwndmin = 2 packets,
and (iii) the ECN marking threshold, K = 10 packets. When
necessary (e.g., for further analysis), we change their values.
Evaluation metrics. We have four key metrics: Jain’s fairness
index [18], goodput, flow completion time (FCT) and job
completion time (JCT). We define JCT as a time period until
all flows in a job finish their transmission from its beginning.

A. Parameter tuning

The subflow suppression/release (SSR) mechanism has two
parameters: γ to begin the subflow suppression process and τ
to finish it. We empirically determine γ and τ .

First, setting γ is relatively easy; we test different γ values
(1-10 RTTs) in the presence and absence of the TCP incast
and last hop unfairness. If there indeed exist the two problems
in the network, it is important to begin the suppression process

6

 0.1

 1

 10

 100

 1000

 10000

10 20 30 40

M
e
a
n

 F
C
T

 (
m
s
)

No. of fows

DCTCP AMP XMP

(a) Flow Size of 128KB

 1

 10

 100

 1000

 10000

10 20 30 40

M
e
a
n

 F
C
T

 (
m
s
)

No. of fows

DCTCP AMP XMP

(b) Flow Size of 256KB

 1

 10

 100

 1000

 10000

10 20 30 40

M
e
a
n

 F
C
T

 (
m
s
)

No. of fows

DCTCP AMP XMP

(c) Flow Size of 512KB
Fig. 7. Impact of the TCP incast on different multipath protocols. A multipath protocol (AMP and XMP) is only used to transfer the incast traffic. A whisker
bar denotes standard deviation. The y-axis is log-scaled.

early enough to alleviate their impact quickly. When γ ≥ 3
(in RTTs), AMP reacts these problems slowly. For instance,
under the same setting for the TCP incast shown in Figure 2,
average FCT of AMP, when γ = 3, is an order of magnitude
higher than that of DCTCP. We find AMP performs best when
γ = 2, which we use by default.

Second, setting τ (i.e., the exit threshold) should be more
cautious. If τ is too small, AMP will repeatedly begin and end
the suppression process. This oscillation may be synchronized
across AMP flows, which subsequently causes faster queue
build-up due to traffic bursts when all suspended subflows
across flows are reactivated simultaneously. This may make
all incoming packets ECN-marked, which in turn leads to the
repetition of the whole suppression process by suspending all
subflows.

To find a suitable value for τ , we conduct simulations while
varying τ (3-8 RTTs) and using 3-5 AMP flows under various
topologies, including the one shown in Figure 1. We find SSR
becomes fully stable across all tests when τ ≥ 6, with the
median queue length of about 10 packets. We thus set τ = 8 as
default (to be conservative). The exact graph has been omitted
for brevity, but it is available in [9].

B. Microbenchmarking

Robustness against the TCP incast. Multipath congestion
control mechanisms usually work poorly when they are used
for traffic that is short-lived and has a high fan-in pattern (e.g.,
TCP incast) [3]. To understand how well AMP tolerates such
a traffic pattern, we use the same simulation setup used in
§III-A. That is, there is no mix of single-path and multipath
flows; we use multipath protocols only to transfer high fan-in
short-lived traffic. This time we vary file size from 128KB to
1MB. DCTCP is used again as baseline.

AMP outperforms XMP (Figure 7); in most cases the aver-
age FCT of AMP is almost 1-2 orders of magnitude shorter
than that of XMP. For instance, Figure 7(a) shows that when
the number of flows is 30 and flow size is 128KB, the FCT
of AMP is about 2ms and that of XMP is over 800ms. In
addition, AMP has a narrow standard deviation in its FCT
distribution, but XMP has a large standard deviation (1-2ms
for AMP vs. 1 second for XMP). This confirms that AMP
presents a stable FCT performance even under various TCP
incast scenarios. Note that the y-axis of the graph is presented
in log scale. AMP also performs as good as DCTCP. This
implies that it might be attractive to use AMP with multiple

subflows for delivering both short and long flows in DCNs.
Despite this finding, AMP can still be utilized as an unified
transport protocol in DCNs if it delivers short flows with only
one subflow and long flows with multiple subflows [2], [3].

The SSR mechanism in AMP mitigates the possibility of
buffer overflow significantly, thus that of the expensive TCP
timeout. When the number of flows is 30 in Figure 7(a),
we observe that AMP has no timeout during the simulation
whereas XMP faces up to 10 timeouts (with 7 timeouts at
90th percentile). Notably, when flow size is smaller than
128KB (e.g., 64KB), all multipath schemes work as well as
DCTCP and there is little difference among the two multipath
approaches; even the SSR mechanism is not triggered as the
flow size is too small. Thus, if the flow size is at least as
large as 128KB, our approach works better than XMP as we
observe a similar trend for a flow size of 1MB (the plot has
been omitted for brevity).
Effectiveness to the last hop unfairness. We use the topology
shown in Figure 1 and test the impact of the LHU on different
schemes while varying the number of DCTCP flows and
multipath flows. All flows arrive at 0 sec and end at 1 sec.

Figure 8 shows that in almost all cases AMP outperforms
XMP. As the number of multipath flows increases, we find
the LHU aggravates fairness even in the presence of a small
number of DCTCP flows.

Since the LHU causes persistent buffer inflation, we exam-
ine queue length. From Figure 9, we make two observations.
When there is no LHU (Figure 9(a)), the queue length distri-
butions across AMP and XMP are similar. On the other hand,
when 4 XMP flows are used (Figure 9(b)), the queue length is
more than 20 packets (100% inflation at median) all the time.
On the contrary, the queue length difference of AMP is just
about 2 packets (at median, 10 packets in Figure 9(a) and 12
packets in Figure 9(b)). If the intensity of the LHU grows, the
queue length will become more inflated accordingly. Overall
AMP can mitigate the persistent buffer inflation better than
XMP even if the LHU is more intensive.

C. Large-scale simulation

We now study the overall performance of AMP with dif-
ferent workloads in a realistic data center setup. As many
data center networks employ a multi-rooted tree topology [19],
[20], we use a 3-tier fat-tree topology that has 128 servers, 32
ToR, 32 aggregate and 16 core switches. ECMP routing is
employed to select a path on a per-flow basis.

7

 0.6

 0.7

 0.8

 0.9

 1

4 8 16 32

J
a
in

 F
a
ir
n
e
s
s
 I
n
d
e
x

No. of DCTCP fows
XMP AMP

(a) No. of multipath flows = 1

 0.6

 0.7

 0.8

 0.9

 1

4 8 16 32

J
a
in

 F
a
ir
n
e
s
s
 I
n
d
e
x

No. of DCTCP fows
XMP AMP

(b) No. of multipath flows = 2

 0.6

 0.7

 0.8

 0.9

 1

4 8 16 32

J
a
in

 F
a
ir
n
e
s
s
 I
n
d
e
x

No. of DCTCP fows
XMP AMP

(c) No. of multipath flows = 4
Fig. 8. Fairness obtained when a multipath scheme competes with DCTCP flows under the last hop unfairness. Each multipath flow has 4 subflows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20 22

C
D
F

Queue Size (Packets)

XMP
AMP

(a) One multipath flow

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20 22

C
D
F

Queue Size (Packets)

XMP
AMP

(b) 4 multipath flows
Fig. 9. Queue length distribution. (a) without LHU: 4 DCTCP flows and one
multipath flow. (b) with LHU: 4 DCTCP flows and 4 multipath flows.

Incast with background traffic. We aim to examine the
performance of a high fan-in workload in the presence of
background traffic. Specifically, we use DCTCP to generate
the incast traffic and a multipath protocol for the background
traffic.3 Note that this scenario is different from one in §V-B
where a multipath protocol is used to transfer the incast traffic.

Setting: We consider a scenario where a client makes paral-
lel reads in a cluster filesystem in the presence of background
traffic. We model this as a unit of job: a client sends a 2KB
request to 10 servers, each of which in turn sends back a
64KB block of response data to the client. One job ends after
receiving all blocks. Thereafter a new job begins. There are 8
parallel jobs, and clients and servers in each job are randomly
selected. Each host sends a long flow to a randomly selected
host to generate traffic on background. The flow size is decided
by a Pareto distribution with shape parameter of 1.5 and mean
of 192MB. Once a long flow ends, a new one begins. A
simulation continues until 1000 long flows are completed [4].

Results: Figure 10 presents job completion times of short
DCTCP flows. Notice from the figure that a key in the legend
is the protocol name used for long flows. We plot, as a
baseline, the case where DCTCP is also used for long flows.

Overall, we make two observations. First, AMP does not
harm short DCTCP flows even if multipath flows use as
many as 8 subflows. The results in Figure 10 show that the
AMP case (i.e., AMP is used for long flows) obtains better
JCT performance than the baseline case across all scenarios.
Second, more number of subflows in XMP makes the JCT of
short DCTCP flows grow quickly. When XMP is used for long
flows, the 90th percentile JCT is 1.2ms in the 4-subflow case
(Figure 10(a)), 1.5ms in the 6-subflow case (Figure 10(b)), and

3We also examined scenarios where AMP with one subflow generates the
incast traffic and we observed that the trends were identical to that of DCTCP.

1.8ms in the 8-subflow case (Figure 10(c)). In contrast, the
90th percentile JCT is 1.1ms in case where AMP even has
8 subflows, thus reducing JCT by 0.6ms (39% improvement)
compared to the corresponding XMP case.

Summary: From the above observations, we conclude that
our SSR mechanism reduces buffer inflation effectively and
hence makes competing short DCTCP flows finish faster.
General workload. We now study interaction between short
and long flows. Our goal here is to confirm that, despite its
simplicity, AMP works as well as other schemes and its SSR
mechanism brings no harm.

Setting: 50% of the servers run long flows, and the re-
maining servers generate short flows scheduled by a Poisson
flow arrival with rate λ = 256 flows/s [2], [3]. Those long
flows last for 10 sec to increase chance of saturating the
network. The size for short flow is chosen between 1KB and
1MB at uniformly random. We only present results of cases
where short flows use DCTCP and long flows use a multipath
protocol because other combinations (e.g., DCTCP for long
flows and a multipath protocol for short flows) that we tested
make no significant difference in performance compared to a
base case where both short and long flows use DCTCP only.

We use permutation traffic matrix that has been used in
many previous works [2]–[4], [21], [22]. Specifically, a host
establishes at most two connections: one for receiving traffic
and the other for sending traffic. For sending traffic, the host
chooses its receiver at random.

Results: Figure 11(a) shows the FCT results of different
schemes. A key in the legend denotes a protocol used for
long flows. We observe that short DCTCP flows achieve the
best FCT result when AMP and XMP are used for long flows.
The worst FCT performance was observed when DCTCP is
used for long flows because DCTCP suffers from poor ECMP
load balancing.

The long flows of AMP and XMP show little difference in
goodput. Again, using DCTCP for long flows yields the worst
goodput performance due to the same reason in the FCT case.

Figure 11(c) shows the mean network utilization at all
layers of the fat-tree topology. As expected, the multipath
schemes perform equally well because they balance their load
among multiple paths.

We also test those schemes with realistic web search and
data mining workloads [23] and under a more intensive and
dynamic condition with an order of magnitude shorter flow
arrival rate in a 4:1 oversubscribed fat-tree topology. We make

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

C
D
F

Job Completion Time (ms)

DCTCP
XMP
AMP

(a) 4 subflows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

C
D
F

Job Completion Time (ms)

DCTCP
XMP
AMP

(b) 6 subflows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

C
D
F

Job Completion Time (ms)

DCTCP
XMP
AMP

(c) 8 subflows
Fig. 10. Job completion time of incast workloads. DCTCP is used for generating incast traffic and background traffic is generated by using AMP, XMP and
DCTCP (baseline) separately. A key in the legend denotes the protocol name used for background traffic.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

C
D
F

FCT (ms)

DCTCP
XMP
AMP

(a) Short Flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D
F

Goodput (Gbps)

DCTCP
XMP
AMP

(b) Long Flows

 0

 10

 20

 30

 40

 50

 60

CORE AGGR TOR HOST

O
v
e
ra
ll
U
til
iz
a
tio
n

 (
%
)

Topology's Layers

DCTCP XMP AMP

(c) Network utilization
Fig. 11. FCT, goodput and network utilization performance. Short flows are generated by DCTCP, and each protocol in the legend is used for long flows.
Thus, in (a), FCT is for short DCTCP flows given a different protocol for long flows. Similarly, (b) presents goodput of each protocol used for long flows.

similar observations across all cases (an extended version of
this paper is available in [9] that includes all these results).

VI. CONCLUSION

In this paper we presented that existing ECN-capable multi-
path congestion control mechanisms fail to handle (1) the TCP
incast problem that causes temporal switch buffer overflow due
to synchronized traffic arrival; and (2) the last hop unfairness
that causes persistent buffer inflation and serious unfairness.
To overcome the limitation of the existing solutions, we
proposed AMP that adaptively switches its operation between
a multiple-subflow mode and single-subflow mode. Our exten-
sive evaluation results showed that AMP is simple yet effective
to those problems and in general works well, which makes
deploying AMP in data centers attractive. Finally, AMP does
not require any changes in the network (e.g., at the network
switches) and at the MPTCP receiver, it only requires small
modifications at the MPTCP sender.

ACKNOWLEDGMENT

This research was partially supported by the H2020 5G-
MEDIA project under Grant 761699.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in
ACM SIGCOMM, 2010.

[2] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in ACM SIGCOMM, 2011.

[3] M. Kheirkhah, I. Wakeman, and G. Parisis, “MMPTCP: A Multipath
Transport Protocol for Data Centers,” in IEEE INFOCOM, 2016.

[4] Y. Cao, M. Xu, X. Fu, and E. Dong, “Explicit multipath congestion
control for data center networks,” in ACM CoNEXT, 2013.

[5] M. Kheirkhah, I. Wakeman, and G. Parisis, “Short vs. Long Flows: A
Battle That Both Can Win,” in ACM SIGCOMM, 2015.

[6] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN
for Data Center Networks,” in ACM CoNEXT, 2012.

[7] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate latency-based
congestion feedback for datacenters,” in USENIX ATC, 2015.

[8] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based Congestion
Control for the Datacenter,” in ACM SIGCOMM, 2015.

[9] M. Kheirkhah and M. Lee, “AMP: A Better Multipath TCP for
Data Center Networks,” Tech. Rep., 2019. [Online]. Available:
https://arxiv.org/pdf/1707.00322.pdf

[10] G. Judd, “Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter,” in USENIX NSDI, 2015.

[11] M. Kheirkhah, I. Wakeman, and G. Parisis, “Multipath-TCP in ns-3,”
CoRR, 2014. [Online]. Available: http://arxiv.org/abs/1510.07721

[12] https://github.com/mkheirkhah/amp, last checked: 2019-03-22.
[13] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” in USENIX OSDI, 2004.
[14] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion

control for TCP in data-center networks,” in ACM CoNEXT, 2010.
[15] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:

Stability, Convergence, and Fairness,” in ACM SIGMETRICS, 2011.
[16] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,

Implementation and Evaluation of Congestion Control for Multipath
TCP,” in USENIX NSDI, 2011.

[17] F. Kelly and T. Voice, “Stability of End-to-end Algorithms for Joint
Routing and Rate Control,” SIGCOMM Comput. Commun. Rev., vol. 35,
no. 2, pp. 5–12, 2005.

[18] R. Jain, A. Durresi, and G. Babic, “Throughput Fairness Index: An
Explanation,” 1999, aTM Forum/99-0045.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in ACM SIGCOMM, 2008.

[20] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in ACM SIGCOMM, 2011.

[21] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in
USENIX NSDI, 2010.

[22] M. Kheirkhah, “MMPTCP: A Novel Transport Protocol for Data Centre
Networks,” Ph.D. dissertation, University of Sussex, 2016.

[23] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal Near-optimal Datacenter Transport,”
in ACM SIGCOMM, 2013.

9

