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Abstract—While more and more antennas are integrated into a
single mobile user equipment to increase communication quality
and throughput, the number of antennas used for transmission is
commonly restricted due to the concerns on hardware complexity
and energy consumption, making it impossible to achieve the
maximum channel capacity. This paper investigates the problem
of reconstructing the full downlink channel from incomplete
uplink channel measurements in Massive MIMO systems. We
present ARDI, a scheme that builds a bridge between radio
channel and physical signal propagation environment to link
spatial information about the non-transmitting antennas with
their radio channels. By inferring locations and orientations
of the non-transmitting antennas from an incomplete set of
uplink channels, ARDI can reconstruct the downlink channels
for non-transmitting antennas. We derive closed-form solution to
reconstruct antenna orientation in both single-path and multi-
path propagation environments. The performance of ARDI is
evaluated using simulations with realistic human movement.
The results demonstrate that ARDI is capable of accurately
reconstructing full downlink channels when the signal-to-noise
ratio is higher than 15dB, thereby expanding the channel capacity
of Massive MIMO networks.

Index Terms—Massive MIMO, orientation estimation, channel
reconstruction, incomplete channel measurement

I. INTRODUCTION

The continuously increasing demand on high throughput
wireless communication has forced the communication tech-
nology to integrate more and more antennas at both Base
Station (BS) and User Equipment (UE) sides to exploit the
advantages of Multiple Input Multiple Output (MIMO) to
increase the capacity of the wireless channel. From the BS
side, Massive MIMO, as one of the key technologies for 5G
networks, tends to integrate even hundreds of antennas at
one BS. Ericsson, Huawei, and Facebook have demonstrated
Massive MIMO systems with as many as 96 to 128 antennas
[1]–[3]. From the UE side, the existing flagman smartphones
such as Samsung S8, Note9, and Sony XZ already have four
antennas [4]. In 2018 Qualcomm unveils the first mmWave 5G
antennas for smartphones, and its Snapdragon X50 modem can
support up to 16 in one smartphone [5]. It is undoubted that
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more and more antennas will be added to both UEs and BSs
in the near future.

While the trend in increasing the number of antennas at
the UE side is evident, having more antennas for transmission
will not only increase the hardware complexity and consume
more energy, but also make the pilot contamination problem
even worse [6]. Hence, the leading UE producers are putting
efforts to optimize the antenna design by limiting the number
of antennas for transmission, that is, only use a subset of
the antennas for transmission, and the others are receive-only.
The UE simply performs a weighted summation of signals
from antennas with similar channels during signal reception.
Since only a subset of antennas is used for transmission, the
BS inevitably measures an incomplete channel. Hence, the
available channel capacity becomes smaller than the capacity
of the full channel where all UE’s antennas are involved in
transmission, and the increase in throughput can be minuscule.

The question investigated in this work is: is it possible to
reconstruct the full downlink channel between all antennas at
a UE and a BS based on only the incomplete uplink channel
measurements obtained from the subset of transmitting anten-
nas at the UE? A possible approach is to use the frequency-
independent reciprocity on propagation paths, which implies
that Uplink (UL) and Downlink (DL) signals traverse through
the same paths. This approach has been proposed to eliminate
or significantly reduce the overhead caused by DL channel
estimation feedback [7], [8]. Using the parameters of the
propagation paths [9]–[12], the DL channel can be inferred
using UL channel measurements. However, such an approach
becomes inapplicable for receive-only antennas since the BS
cannot directly obtain the information about the propagation
parameters for the receive-only antennas.

Novelty&Contribution: In this paper, we present ARDI
(Antenna orientation Reconstruction and Downlink channel
Inference), a scheme that can reconstruct the full DL channel
based on incomplete UL channel measurements. The heart
of ARDI is the reconstruction of UE antenna orientation at
BS based on only UL signals. We observe that the channel
response is closely related to the mutual orientations of
transmitting and receiving antennas. Based on this observation,



we design an algorithm that allows the BS to use channel
response as a measurement and calculate the orientation of
transmitting antennas of UE based on the electromagnetic
signal propagation model. Since the layout the antennas at
a UE is known based on the UE models, the orientations and
other propagation parameters for the non-transmitting antennas
can then be inferred, based on which the full downlink channel
can be reconstructed.

To the best of our knowledge, ARDI is the first scheme
that can reconstruct the orientation of an antenna based on
a single electromagnetic impulse in both single-path and
multipath propagation environments. We derived a closed-
form solution for antenna orientation reconstruction in both
propagation environments. Although there are some works on
antenna array orientation reconstruction [13], none of them can
reconstruct the orientation of a single antenna or reconstruct
orientation of a UE based on two transmitting antennas.
Also, the proposed algorithm is the first that can reconstruct
DL channels for non-transmitting antennas. There are some
existing works on DL channel reconstruction [7], [8], but all of
them consider only a single antenna at UEs. We show that our
scheme is suitable to both Frequency Division Duplex (FDD)
and Time Division Duplex (TDD) modes, and demonstrate its
performance through simulations.

II. OVERVIEW OF ARDI

As illustrated in Fig. 1, we assume the BS has N antennas,
and the UE has M antennas but only m of them can transmit
(M = 4 and m = 2 in the example given in Fig. 1). We aim
to increase the downlink channel capacity by expanding the
downlink channel from m×N to M×N .

Fig. 1: Communication between a UE and a BS.

The key idea of ARDI is to reconstruct the full M×N DL
channel based on the spatial information such as propagation
paths, locations, and orientations of the antennas inferred
based on the UL signals from the transmitting antennas at UE
to the antennas at the BS. Fig. 2 shows the flowchart of ARDI.
Firstly, the BS estimates the propagation parameters of the
transmitting antennas such as propagation paths, antenna lo-
cation, and Doppler effect, and then it reconstructs orientations
of the transmitting antennas based on the estimated propaga-
tion parameters. Based on the orientations and the propagation
parameters, the BS further infers the multipath propagation
parameters and orientations for the non-transmitting antennas,

and finally reconstruct the full M×N DL channel based on
the estimated propagation parameters.

Input: Uplink signals from m Tx antennas

Propagation parameters and orientations
inference for m Tx antennas

Propagation parameters and orientations
inference for M − m nonTx antennas

Full M×N Downlink channel reconstruction

Fig. 2: Steps for reconstructing the full downlink channel.

Notations: We use (·) to denote the scalar product opera-
tion and (×) to represent the vector product operation. The
operation of transposition is represented with superscript T .
‖ ·‖ represents the `2-norm, and bold letters represent vectors.

III. ANTENNA ORIENTATION RECONSTRUCTION

In this section, we present the solution for the BS to
reconstruct the orientation of a transmitting antenna of the
UE based on only the measurements of the uplink signals. Our
solution is motivated by the strong relation between the voltage
induced at a receiving antenna and the mutual orientation
of the transmitting and receiving antennas. We use Fig. 3 to
explain this relation.

Fig. 3: Definition of effective lengths and the electric field projection.

As shown in Fig. 3, a transmitting antenna centered at
Tx with orientation p emits an electromagnetic signal that is
received by a receiving antenna centered at Rx with orientation
q, where p and q are unit length vectors. Let TxRx be the line
that connects the centers of the two antennas. Sp is the plane
determined by p and TxRx, and Sq is the plane determined by
q and TxRx. θtx is the angle between p and TxRx, and θrx

is the angle beween q and TxRx. The electric field generated
by the transmitting antenna is propagated in the Sp plane and
attenuated according to θtx. However, only the portion of the
electric field projected to the Sq plane can contribute to the
voltage induction at the receiving antenna, and that portion is
further attenuated according to angle θrx. It can be seen that
the mutual orientation of the communicating antennas has a
big impact on the voltage induced at the receiving antenna.

The key idea of our solution is to reconstruct the orientation
of a transmitting antenna based on the voltage measurements
by exploring the above relation. For a BS with a massive
MIMO antenna array, the voltages induced from the uplink



signals can be measured on the distributed antenna elements.
The spatially diversified voltage measurements allow recon-
structing the orientation of the transmitting antenna.

Based on the Hertzian dipole antenna model with the
length of d [14], we derive the closed-form equations for the
reconstruction of antenna orientation in the single-path Line-
of-Sight (LoS) scenario and then extend the reconstruction
methodology to the multipath propagation scenario.

A. Single-path LoS case

Let r be the Euclidean distance between the two communi-
cating antennas. As illustrated in Fig.3, we use etxr to represent
the unit vector for the direction of wave propagation from
Tx to Rx, and etxθ to represent the unit vector for signal
polarization that is always perpendicular to etxr [14]. In the
same way we have erxr and erxθ for the receiving antenna.
Since we consider the dipole antenna model, the observed
electric field from angle θtx is oscillating within plane Sp.
It means that the observed electric field can be considered as
if it is transmitted from an antenna p(θtx) with orientation etxθ
and length d sin θtx. In Fig. 3, p(θtx) is represented by a red
line in plane Sp. In the antenna theory, p(θtx) = d sin θtxetxθ
is called as the effective length of the transmitting antenna at
Tx. Let E(Rx) be the electric field oscillating in Sp near the
receiving antenna. E(Rx) can be defined as

E(Rx) =
jκη

4πr
Iine
−jκrp(θtx) = E(r)d sin θtxetxθ , (1)

where E(r) = jκη
4πr Iine

−jκr is the scalar part of the electric
field measured in Volts/meter2, and it is a function of the
propagation distance r between the two communicating anten-
nas and the amplitude of the input current to the transmitting
antenna Iin; κ = ω/c is the wavenumber, η is the characteristic
impedance of air [14].

Since the receiving antenna can receive the electric field
oscillating within plane Sq , only the portion of the electric
field projected from Sp to plane Sq can be received by the
receiving antenna and contribute to voltage induction. The
projection of the electric field from Sp into Sq is the scalar
product of E(Rx) with erxθ . Due to the reception angle θrx,
the maximum energy reception is further restricted by the ef-
fective length of the receiving antenna q(θrx) = d sin θrxerxθ ,
which is represented by a green line in Fig.3. Hence, the
voltage induced at the receiving antenna, denoted by V , can
be calculated by

V =E(Rx) · q(θrx)

=d2E(r) sin θtx sin θrx (etxθ · erxθ ). (2)

Remarks: It can be seen from Eqn. (2) that no voltage can
be induced when sin θtx = 0 and (or) sin θrx = 0, thereby
zeroing out the signal at the receiving antenna. The maximum
amplitude for the induced voltage over a given distance r can
be obtained if the two antennas are in the same plane and both
sin θtx and sin θrx are equal to 1 or −1. Hence, the mutual
orientations and locations have a direct impact on the measured

voltage through distance r, observation and reception angles
θtx and θrx.

The unit vectors etxθ and erxθ can be expressed through p
and q, respectively:

etxθ = Prtx
1

sin θtx
p, (3)

erxθ = Prrx
1

sin θrx
q, (4)

where Prtx = etxr (etxr )T − I and Prrx = erxr (erxr )T − I
are projection matrices that project vectors to etxθ and erxθ ,
respectively. The details on how Eqn. (3) and Eqn. (4) are
derived are given in the appendix. By substituting etxθ and
erxθ in Eqn. (2), we have

V = d2E(r)
(
Prrxq · Prtxp

)
= qT Prrxd2E(r)Prtx p, (5)

since scalar product a · b = aT b and (Prrx)T = Prrx.
Let Vn be the voltage measured from the n-th antenna,

and Pathn = qTnPrrxn d
2E(rn)Prtxn where rn is the distance

between the transmitting antenna at the UE and the n-th
antenna at the BS. The notation ”Path” is chosen because
it represents the transformation that a signal is experiencing
during the propagation from the transmitting antenna to the
receiving antenna. For a Massive MIMO antenna array with
N elements, Eqn. (5) can be rewritten as follows:

V1
V2
...
VN

 =


Path1

Path2
...

PathN

p. (6)

It can be seen from the system of equations (6) that the
left side of the system consists of the real measurements on
voltages from the Massive MIMO antenna array, whereas the
right side consists of the reconstructed voltages based on the
location Tx and orientation p of the transmitting antenna.
Hence, the problem to find both the location and orientation
of the transmitting antenna can be formulated as the following
minimization problem:

min
Tx,p
‖V −Pathp‖2, (7)

where Path = (PathT1 , ..,PathTN )T and V = (V1, .., VN )T .
Since both the location and orientation of each receiving
antenna at the BS are known, the unknown parameters in
(7) include: 3 parameters for the location of the transmitting
antenna and another 3 parameters for its orientation. Theoret-
ically, both the location and the orientation can be obtained
if N ≥ 6. However, it is worth noting that both Prtx and
Prrx are nonlinear functions of the location of the transmitting
antenna. Hence, problem (7) becomes a nonlinear optimization
problem, which is much harder to solve than linear programs.
In practice, the problem (7) can be solved in two stages.
The first stage is to find the location. Our previous work in
[11] demonstrates the feasibility to achieve decimeter-level
accuracy in localizing a UE. Once the location is known,
matrix Path becomes known and the only unknown in (6)



is p. In this case, the orientation p can be found using the
standard least squares method as follows:

p̃ = Re{(PathTPath)−1PathTV }. (8)

The solution given in (8) is the closed-form solution for the
reconstruction of the antenna orientation in the case of LoS
propagation. To the best of our knowledge, this is the first time
a closed-form solution for antenna orientation reconstruction
is derived.

B. Multipath Case

In a multipath propagation environment, an antenna can
receive a number of copies of the transmitted signal due to
signal reflection from reflecting objects. We use the well-
known ray tracing approach for modeling multipath propaga-
tion, by which the orientation of the transmitting antenna can
be explicitly tracked during reflection. In this paper, we do
not consider reflections with two or more bounces because, in
most practical cases, the energy of a transmitted signal drops
sharply after the second reflection according to the Fresnel
coefficients of reflection [15].

Fig. 4: Definition of vectors in the case of reflection.

As illustrated in Fig. 4, a transmitted signal is reflected
from surface S1 with normal vector n1. According to the Law
of Reflection, the reflection is proceeding in S2 with normal
vector n2, and K is the reflection point. We use superscript “b”
to indicate vectors corresponding to the signal before reflection
and superscript “a” for the vectors corresponding to the signal
after reflection. For a LoS path, etxr = −erxr . For a NLoS path,
etxr = ebr and erxr = −ear .

The main challenge for antenna orientation reconstruction
in the multipath case is to take into account the transformation
of the electric field vector Eqn. (1) during reflection. The
electric field Eb(K) at point K before the reflection can be
decomposed into the following two components that transform
differently due to the physical properties of the reflecting
surface: (1) the perpendicular component Eb

⊥(K) that is
perpendicular to S2, and (2) the parallel component Eb

‖(K)

that is within S2. We have Eb
⊥(K) = (Eb(K) · n2)n2,

and Eb
‖(K) = Eb(K) − Eb

⊥(K). Based on the property of
the scalar product that (a · b)c = bcTa, the perpendicular
component can be transformed as Eb

⊥(K) = (n2n
T
2 )Eb(K).

According to the electric field vector given in Eqn. (1) and

Eqn. (3), the two components at point K before reflection can
be computed as follows:

Eb
⊥(K) = dE(rK)(n2n

T
2 )Prbp, (9)

Eb
‖(K) = dE(rK)(I − n2n

T
2 )Prbp, (10)

where rK is the distance from Tx to reflection point K, and
Prb = ebr(e

b
r)
T − I is the projection matrix as in Eqn. (3).

After the reflection, the perpendicular component attenuates
with Fresnel reflection coefficient Γ⊥(α) [16] where α is the
angle of incident. The parallel component rotates in plane S2

clockwise with an angle π − 2α to become perpendicular to
the propagation direction ear [17] and attenuates with Fresnel
reflection coefficient Γ‖(α) [16]. Hence, the two components
after reflection can be represented as follows:

Ea
⊥(K) = Γ⊥(α)Eb

⊥(K) (11)

= Γ⊥(α) dE(rK)(n2n
T
2 )Prbp,

Ea
‖(K) = Γ‖(α)W (n2, π − 2α)Eb

‖(K) (12)

= Γ‖(α)W (n2, π − 2α)dE(rK)(I − n2n
T
2 )Prbp,

where W (n2, π−2α) is the rotation matrix that rotates vectors
around the normal vector n2 with an angle π− 2α. The main
observation is that, in case of NLoS propagation in addition
to the propagation attenuation, the electric field experiences
additional attenuation caused by the reflection phenomenon.
The Fresnel coefficients Γ⊥(α) and Γ‖(α) depend on angle of
incident α and the physical properties of the reflecting surface
[16].

The transformed electric field defined by Ea
⊥(K) and

Ea
‖(K) will experience further attenuation when propagating

in the direction ear from the reflection point K to the receiver
point Rx. The portion of the electric field received by the
receiving antenna is restricted by the effective length of the
receiving antenna, which can be expressed as q(θar ) = dPraq
based on the definition of the effective length and Eqn. (4).
In the same way as that in the LoS path case, the voltage
induced by the electric field propagating along an NLoS can
be computed as follows:

V NLoS = qTPraEa(Rx) = qTNLoSp, (13)

where Pra = ear(ear)T −I , Ea(Rx) = Ea
⊥(Rx) + Ea

‖(Rx),
and NLoS is the electric field transformation matrix defined
as follows:

NLoS = d2PraE(rNLoS)
[
Γ⊥(α)(n2n

T
2 ) +

+ Γ‖(α)W (n2, π − 2α)(I − n2n
T
2)
]
Prb. (14)

Here rNLoS is the total covered distance of the NLoS path.
For the LoS path, its transformation matrix is LoS =

d2PrrxE(rLoS) Prtx, and Eqn. (5) can be written as:

V LoS = qT LoSp. (15)

Assume the multipath signal propagation has L NLoS paths.
For each NLoS path and the LoS path, the receiving antenna
has its vector of effective length. Consequently, the total



voltage produced on the receiving antenna can be represented
as follows:

V = qT

[
LoS +

L∑
l=1

NLoSl

]
p =

= V LoS +

L∑
l=1

V NLoSl , (16)

where NLoSl is the transformation matrix for the l-th NLoS
path. Let Pathn = qTn

[
LoSn +

∑L
l=1 NLoSln

]
where n ∈

[1, .., N ]. Both the location and orientation of the transmitting
antenna can be obtained by solving Problem (7) using the same
approach as for the LoS case.

IV. FULL DOWNLINK CHANNEL RECONSTRUCTION

A. Channel Modeling

Let us consider the case where the transmitting antennas of
the UE transmit UL signals simultaneously but use different
radio resource blocks [18]. Hence, they don’t interfere with
each other at the reception side. At the physical level, signals
are transmitted via the emission of electromagnetic waves from
a transmitting antenna. The control of output electric field
defined in Eqn. (1) is done by controlling the input current in
the time domain I(t) = Iin

∑Nsym

m=1 symm(t)ejωt, where Nsym

is the number of transmitting symbols, symm(t) is nonzero in
period [(m− 1)∆t,m∆t] where ∆t is the system’s sampling
duration, and Iin is the amplitude of the input current to the
transmitting antenna. The LoS observation of the electric field
at any point X , denoted by E(t,X), is

E(t,X) =
jκη

4πr
I(t− r/c)p(θtx) =

=Iin
jκη

4πr

Nsym∑
m=1

symm(t−r/c)ejω(t−r/c)p(θtx),

where r is the distance between the antenna and the ob-
servation point. At the receiving antenna with orientation q,
this electric field induces voltage V (t) = E(t,X) · q(θrx)
according to Eqn. (2). By processing the measured voltage,
the BS can reconstruct the transmitted symbols symm by
removing the carrier wave ejωt and then estimating channel
to equalize the distorted symbols. Through the procedure of
Channel Estimation (CE) based on the channel estimation ref-
erence symbols [18], the downlink channel can be represented
as follows:

H = Iin
jκη

4πr
e−jκrp(θtx) · q(θrx) = Iinµκe

−jκr, (17)

where µ = jη
4πrq(θrx)·p(θtx) can be considered as a complex-

valued channel attenuation coefficient. In accordance with
Eqn.(2), channel given in Eqn.(17) has volt unit.

In mobility scenarios, the modeling of the downlink channel
becomes much more complicated due to the Doppler effect
since an arbitrary movement in 3D space causes different
velocities on each antenna. Hence, in a multipath propagation

environment, the signals sent from different antennas can ex-
perience different Doppler shifts depending on the propagation
path and receiving antenna [19]:

νkln = (vk · ekln)
ω

c
= Dk

lnκ, (18)

where vk is the velocity vector of the k-th antenna, κ = ω/c
is the wavenumber, and ekln is the unit length radius vector
that indicates the direction from the k-th transmitting antenna
to the n-th receiving antenna through the l-th path. Hence,
in a dynamic multipath propagation environment, the channel
for the signal that travels from the k-th transmitting antenna
to the n-th receiving antenna can be modeled based on Eqn.
(17) and Eqn. (18) as:

Hk
n = Iin

L∑
l=0

µklnκ e
−jκrkln e−jν

k
ln(r

k
ln/c), (19)

where L is the number of propagation paths. To enable
channel reconstruction, the multipath propagation parameters
{µkln, rkln, νkln} for each propagation path l from the k-th
transmitting antenna to the n-th receiving antenna have to be
identified. The total number of unknown multipath propagation
parameters becomes larger than the number of measured chan-
nels since there is only m (m < M ) transmitting antennas. To
find all the parameters, we leverage the Orthogonal Frequency
Division Multiplexing (OFDM) nature to increase the number
of measurements [10]. Consequently, the channel at subcarrier
fi = ω + i∆f can be represented as follows:

Hk
n(fi)=Iin

L∑
l=0

µklnκi e
−jκi r

k
ln e−jD

k
lnκi(r

k
ln/c), (20)

where rkln and Dk
ln are the frequency independent parameters

of distance and Doppler shift, respectively. Channel attenu-
ation coefficients µkln are frequency dependent; κi = fi/c,
fi ∈ Fk and Fk is the subset of subcarriers that is allocated
for the k-th transmitting antenna, and ∪mk=1Fk is the total
given radio resource.
Observation: The BS can reconstruct the downlink channels
once the multipath propagation parameters {µkln, rkln, Dk

ln} are
obtained from Eqn. (20) [7]. While the parameters for the
transmitting antennas can be easily inferred based on the
measurements of the UL signals, it is challenging to infer them
for the non-transmitting antennas. The following explains how
to infer these parameters.

B. Parameter Estimation for Transmitting Antennas

The propagation parameters {µkln, rkln, Dk
ln} can be esti-

mated by solving the following optimization problem:

min
{µk

ln,r
k
ln,D

k
ln}

Nk
s∑

i=1

N∑
n=1

m∑
k=1

∥∥∥Hk
n

′
(fi)−Hk

n(fi)
∥∥∥2, (21)

where Nk
s is the total number of subcarriers in Fk. Such

kind of optimization problem can be solved using one of the
standard optimization methods such as Levenberg-Marquardt,



SAGE [12], or RIMAX in a more complex propagation model
[10] with dense multipath components.

The main obstacle in estimating the propagation parameters
is that rkln and Dk

ln have to be estimated as one parameter
rkln + Dk

ln(rkln/c) since they cannot be separated from the
exponential function e−jκi(r

k
ln+D

k
ln(r

k
ln/c)). Hence, by solving

Problem (21), we can get µkln and rkln+Dk
ln(rkln/c). To further

separate rkln and Dk
ln, we perform parameters estimation twice

with a time gap τ . In fact, UL channel estimation is performed
twice every millisecond in LTE [18], which gives the required
time diversity in estimated parameters. We assume that the
change of the UE’s position between two CEs is negligible. For
100 m/s, the position change is 5 cm. Suppose the estimation
for the first CE is est1 = rkln +Dk

ln(rkln/c), and at the second
is est2 = rkln + Dk

ln(rkln/c − τ). The difference between the
two estimations is est1− est2 = Dk

lnτ . Since τ is known, we
can extract Dk

ln from the difference of two consecutive CEs.
Once Dk

ln is extracted, rkln can also be obtained.
Based on the Spherical Wave Propagation (SWP) model,

the locations of the transmitting antennas and their images
can be found from the extracted rkln [11]. As illustrated in
Fig. 5 (a), both the location of the transmitting antenna T kx
and its image Iml(T

k
x ) can be estimated using the solution

presented in [11], based on which the reflecting plane Sl can
be determined because it has to go through the middle of the
segment [T kx , Iml(T

k
x )] and be perpendicular to this segment.

Now, to calculate the NLoS transformation matrices in Eqn.
(14), ARDI needs to calculate the angle of incidence αkln,
which can be obtained based on the location of the receiving
antenna and the reflecting plane Sl. Hence, by doing the same
operations for each pair of antennas (T kx , R

n
x) and each l-th

path, ARDI can calculate the incidence angles αkln for each
NLoS path.

The CE given in Eqn. (19) can be represented in a conve-
nient form for orientation reconstruction as follows:

Hk
n = qTn

[
LoSDk

n +

L∑
l=1

NLoSDk
ln

]
pk, (22)

where the multipath transformation matrices incorporate the
estimated Doppler shifts LoSDk

n = LoSkn e
−jDk

0nκ(r
cg
0n/c) and

NLoSDk
ln = NLoSkln e

−jDk
lnκ(r

cg
ln/c).

C. Parameter Estimation for Non-transmitting Antennas

As illustrated in Fig. 5 (b), we assume at least two of
the m transmitting antennas are not parallel. During the CE
procedure, ARDI can obtain the coordinates and orientations
of the m transmitting antennas using the method introduced in
Section III, from which the orientation of the UE, denoted by
Ω, can be estimated. Suppose the layout the antennas in UE is
a priori knowledge based on the UE design, both the positions
and orientations of the non-transmitting antennas can then be
calculated based on their relative positions/orientations to the
transmitting antennas.

Inference of rkln: For the LoS path, rkln can be easily
calculated based on the locations of the transmitting and

Fig. 5: (a) Derivation of the reflection plane from a transmitting antenna
location and its image location. (b) Mobility of UE, its antennas’ orientation
and location.

receiving antennas. For the NLoS path, we use the example
given in Fig. 5 (a) to explain the inference of rkln. Suppose
nonT kx represents the location for a non-transmitting antenna.
Based on the reflecting plane Sl, the image of nonT kx , denoted
by Iml(nonT

k
x ), can be calculated since the location of nonT kx

is known. Then rkln can be obtained by calculating the distance
from the image to the receiving antenna, and the incident angle
αkln can also be obtained.

Inference of µkln: Once rkln and the orientations of the
communicating antennas have been found, µkln can be inferred
since µkln = jη

4πrkln
q(θrx) · p(θtx).

Inference of Dk
ln: To infer the Doppler effects, ARDI

needs to obtain at least two measurements of the location and
orientation of the UE. Using these measurements, it calculates
the speed and the angular velocity as follows:

vcg =
UEcg(t2)−UEcg(t1)

t2 − t1
, Ω̇ =

Ω(t2)− Ω(t1)

t2 − t1
,

where UEcg is the averaged position of the transmitting anten-
nas, which roughly coincides with the UE’s center of gravity,
t1 and t2 are moments when the location and orientation
measurements have been obtained. Consequently, speeds of
antennas are inferred as vk = vcg + Ω̇T kx , and Doppler shifts
are calculated according to Eqn. (18).

After inference the multipath propagation parameters
{µkln, rkln, Dk

ln}, ARDI reconstructs the DL channels using
Eqn. (20) for non-transmitting antennas. Fig. 6 gives an
example with 2 transmitting antennas and 2 non-transmitting
antennas, where the red lines represent the measured channels
and the black lines represent the reconstructed channels. For
uplink transmission, the full radio resource is equally allocated
to the two transmitting antennas. For DL channel inference,
each antenna occupies the full radio resource.

D. Feasibility for FDD and TDD modes

It can be seen that our scheme reconstructs the full DL
channel based on the environmental parameters: propagation
paths, mobility, location, and orientation of the UE’s anten-
nas. Based on the incomplete uplink channel measurements,
ARDI infers these parameters and reconstructs the channels
separately for all UE antennas. This means that ARDI creates



Fig. 6: Example with estimated and inferred channels for a UE with four
antennas two of them are transmitting in LTE TDD transmission mode.

a separate model of the environment for each antenna where
the antenna is the only transmitting antenna. In this way,
without interference from other antennas, each antenna can
occupy the full radio resource and transmit signals from its
estimated position with estimated orientation. This feature
makes ARDI capable of inferring DL channel in both TDD
and FDD transmission modes since there is no difference in
frequency choice from the inference perspective.

V. PERFORMANCE EVALUATION

In this section, we present the results for simulation-based
evaluation of ARDI based on realistic UE movement.

A. Simulation Setup

Fig. 7: Simulation environment for signal propagation.

As shown in Fig. 7, the UE is kept in the human’s right
hand, and we use the well-known eigenwalker model [20]
to model the movement of a human body. The yellow lines
represent the propagation paths. During a random walk, in
addition to the ground reflection, six reflecting planes are
simulated by randomly positioning and arbitrarily orienting
them in the 3D space. However, we depict only one reflector
in the example since adding the other planes, and propagation
paths can make the plot messy. The signals are propagated

according to the SWP model and reflected based on the law
of reflection.

1) Signal specification: we simulate the typical LTE com-
munication with carrier frequency ω = 2.4 GHz. The UE is
a cellphone with four antennas, and only two of them can
transmit. The LTE signals from two transmitting antennas
occupy 100 resource blocks, with 12 subcarriers in each
and 15 kHz separation between subcarriers [18]. In total,
1200 subcarriers are equally shared by the two transmitting
antennas. Additive Gaussian noise with zero mean value is
applied at the BS side. The intensity of the noise is defined
by the Signal to Noise Ratio (SNR) relative to the strength
of the LoS signal. Even in the case where the LoS path is
blocked, the noise intensity is calculated relative to the LoS
signal as if it has been delivered to the BS.

2) Geometry specification: as illustrated in Fig. 7, the BS
has a planar antenna array that consists of 256 antennas,
16 rows in horizontal and 16 columns in vertical directions.
Antennas are half wavelength separated in both directions.
Orientations of antennas are set in the way that each next
antenna has alternated orientation {East, North, Up}. The
location of the BS is fixed, and the height is 20 meters above
the ground. The UE is modeled as a red rectangular polygon
with 120× 70 millimeters in length and width. Four antennas
are located on the edges of the polygon in two parallel pairs,
as shown in Fig. 5 (b). The height of the human is 1.65 meters.
The distance between the BS and UE varies from 50 to 100
meters. The average moving speed is set to 5 kilometers per
hour. Due to a realistic motion of the human’s model and 3D
motion of the UE, the speeds of antennas on the UE differ from
each other. This creates different Doppler effects for different
antennas.

3) Physical parameters of the environment: The ground is
assumed to be bricked. The reflectors are made from concrete.
Relative permittivity and conductivity parameters of these
materials are taken from the Material properties Table in [16].
The air attenuation is considered as free space attenuation.

We use the Levenberg-Marquardt algorithm based on the
standard Matlab function lsqnonlin to extract the parameters
from Eqn. (21) [11]. Once the algorithm converges, we feed
the extracted results to ARDI to analyze the accuracy of
antenna orientation reconstruction and channel reconstruction.
We consider two propagation scenarios: scenario 1 - multipath
propagation with LoS when the LoS path is observable;
scenario 2 - multipath propagation without LoS when the LoS
path and the path reflected from the ground are blocked.

B. Results on antenna orientation reconstruction

Fig. 8 (a) plots the median and standard deviation of the
antenna orientation reconstruction error measured in degrees
under different setting of SNR. Each point is calculated based
on the results of 500 iterations. It is well seen that the antenna
orientation reconstruction error tends to converge to zero with
the increase of SNR in both scenarios. The accuracy of antenna
orientation reconstruction is worse in scenario 2. This is an
expected result caused by the blockage of the strong LoS
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Fig. 8: (a) Accuracy of antenna orientation estimation; (b) CDF of antenna orientation estimation; (c) accuracy of DL channel reconstruction.

path, which leads to a less accurate estimation of propagation
parameters. In addition, transformation matrix Path in Eqn.
(16) accumulates less observation, which additionally degrades
the overall reconstruction performance. However, such kind of
accuracy is enough to achieve good accuracy on DL channel
reconstruction, which will be demonstrated in the following
subsection. Fig. 8 (b) shows the Cumulative Distribution
Function (CDF) of the orientation reconstruction errors for the
considered SNRs. The median estimation error is less than 2◦

even for scenario 2. This capability can be used in different
types of application such as the elimination of DL channel
feedback in beamforming, human motion tracking, localization
refining, etc.

C. Results on full downlink channel reconstruction

In this section, we evaluate the performance of ARDI for
DL channel reconstruction in TDD mode. In the simulation,
we first measure the channels separately for each pair of
communicating antennas Hk

n = (Hk
n(f1), ..,Hk

n(fNs
))T where

n ∈ [1, ..., 256], k ∈ [1, ..., 4], Ns = 1200, and Hk
n(fi) is

defined in Eqn. (19). Then we crop the measured channels
for the two transmitting antennas (H1

n,H
2
n) by providing

each antenna with 600 subcarriers. As illustrated in Fig.
6, the first antenna occupies the first 600 subcarriers, and
the second occupies the rest part of subcarriers. After the
crop, ARDI extracts propagation parameters {µkln, rkln, Dk

ln}
from the cropped channels. Then, ARDI performs antenna
orientation reconstruction and DL channel inference for the
non-transmitting antennas (H3

n,H
4
n), which are further com-

pared with the measured channels (H3
n,H

4
n). We compare

ARDI with an “old” approach in which the BS just uses the
measured channels for the transmitting antennas as predictions
for the corresponding parallel non-transmitting ones. In other
words, the measured channels H1

n are used to predict channels
for non-transmitting antenna #3, and H2

n is used to predict
channels for non-transmitting antenna #4.

We aim to analyze the difference between the reconstructed
channel and the measured channel in terms of both amplitude
and phase. However, the absolute difference between the mea-
sured and reconstructed channels is not representative since
the absolute values of the channels for different distances may

differ by the orders of magnitudes. The channel differences for
locations that are far from the BS can be much smaller than
the differences for locations that are close to the BS. Due to
this, we propose to use the following metric, which can be
considered as a normalized difference between reconstructed
and measured channels:

εkn =
‖Hk

n −Hk
n‖

‖Hk
n‖

, n ∈ [1, .., 256], k ∈ [3, 4], (23)

where Hk
n is the measured channel and Hk

n is the reconstructed
channel. It can be seen that the closer the reconstructed
channel to the measured channel, the smaller the value of ε.
This metric takes into account not only the correlation of the
channels but also the similarity of amplitudes and complex
phases of the channels. For example, the channels may be
well correlated with coefficient of correlation ρ(Hk

n,H
k
n) ≈ 1

while Hk
n = βHk

n where β can be any complex number. It is
also critical to make β close to one especially in a precoding
procedure [18], which means the difference ‖Hk

n−Hk
n‖ has to

be close to zero. Let us consider the case where the amplitudes
of Hk

n and Hk
n are quite similar, which is possible when

localization is performed accurately. We can define Hk
n =

ΦHk
n where Φ is a unitary matrix in the vector space CNs .

The metric can be re-written as εkn = ‖(INs
−Φ)Hk

n‖/‖Hk
n‖.

Since the amplitudes are similar, the difference on phase will
dominate the reconstruction error. Hence, if Φ = INs

, εkn = 0,
which indicates that the channel is accurately reconstructed. If
Φ = −INs , εkn = 2, which is the worst case. Consequently, if
the amplitudes of the measured and the reconstructed channels
are similar, εkn ∈ [0, 2]. For the case where the amplitudes
are quite different, it is possible when there is a big error on
localization. For such a case, the difference on amplitude can
dominate the reconstruction error, and εkn can be any positive
value fenced from zero.

To examine the overall channel reconstruction performance,
we run 100 iteration. For each iteration we calculate median
and standard deviation of {εkn} n ∈ [1, ..256], k ∈ [3, 4], and
then average all the obtained medians and standard deviations.
Fig. 8 (c) shows the average medians and standard deviations
under different settings on SNR. It can be seen that the



reconstructed channels converge to the measured channels in
both scenarios with the increase of SNR. One observation
from this figure is that the “old” approach does not give good
channel prediction for any SNR. Note, if the metric is far above
zero, the reconstructed channel is less likely related to the real
channel. Another interesting observation can be seen from
the standard deviation. For lower SNRs, ARDI has a larger
standard deviation than the “old” approach. This is because,
for lower SNRs, ARDI reconstructs DL channel inaccurately
because of the large errors in estimating the propagation
parameters and antenna orientation and locations. Instead of
reconstructing the channel near the UE, ARDI reconstructs
the channel for a distant place from the UE. In such kind of
situations, the value of ε can significantly increase and can
be higher than 2. However, in most cases, ARDI still can
correctly reconstruct DL channel, and this is why the median
is lower than that in the “old” approach. As expected, the
performance of DL channel reconstruction is slightly weaker
in Scenario 2. For higher SNRs starting from 15 dB, ARDI
performs similarly in both cases. Based on the obtained results
we can conclude that ARDI is capable of reconstructing the
full DL channel with reasonable accuracy for SNRs higher
than 15 dB. This revolutionary ability of ARDI can become
very helpful in the reconstruction of the full Massive MIMO
channel from the incomplete channel measurements.

VI. CONCLUSION

In this paper, we introduce ARDI, a scheme that is capable
of reconstructing the full downlink channel in Massive MIMO
systems from incomplete UL channel measurements in both
FDD and TDD communication modes. ARDI enables the
increase of Massive MIMO channel capacity without further
growth of the number of transmitting antennas. Our work can
have implication for other types of wireless communication
systems such as WiFi and mmWave networks since the same
physical principles are used in all of them. Further develop-
ment of this research lays in the extension of the antenna
orientation reconstruction method towards realistic antenna
models and experimental validation.

VII. APPENDIX

Following the rules of vector product, it is well seen that
the unit vector etxθ is defined by the antenna orientation p and
the radius vector etxr as follows:

etxθ =
(p× etxr )× etxr
‖(p× etxr )× etxr ‖

. (24)

The numerator can be rewritten as
(
(etxr (etxr )T )− I3

)
p where

I3 is the identity matrix in 3D space, and the denominator as
sin θtx since (p× etxr ) = sin θtxetxϕ , where etxϕ compliments
etxr , e

tx
θ to a right-handed triple (etxr , e

tx
θ , e

tx
ϕ ), and etxϕ ×

etxr = etxθ . We define a matrix Prtx =
(
(etxr (etxr )T )− I

)
. The

meaning of this matrix is that it projects orientation vector p
to etxθ . Hence, we can get Eqn. (3) and Eqn. (4).
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