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Abstract—The emergence of programmable data planes in
Software-Defined Networks enables the execution of various
monitoring tasks directly in network devices, overcoming the
need to deliver huge amounts of information to a controller that
must then process it at scale. In this paper, we aim to solve
a fundamental problem arising when exploiting programmable
data planes for network-wide monitoring: how to estimate the
overall number of packets in the network (i.e., the traffic volume),
and the related number and size of flows, while avoiding packet
double counting. Most existing works solve this problem by
ensuring that each packet is counted only once on its path,
which limits routing or requires coordination among devices.
We propose a different approach, INVEST, a flow-based traffic
volume estimator for P4-based switches, that relies on and
can reuse commonly employed data structures while naturally
solving the double-counting problem. We theoretically analyze
and experimentally evaluate our solution, which we implemented
in a real P4 carrier-grade switch, finding that it is accurate,
memory-efficient, and can process packets at line rate.

I. INTRODUCTION

Network monitoring plays a key role in modern network
management, collecting data and inferring statistics that effec-
tively indicate whether the infrastructure behaves as intended.
In this context, the ability to precisely estimate the traffic
volume [1] (i.e., number of distinct packets flowing in the
network), and the related number of distinct flows and average
flow size (i.e., average number of packets per flow) is necessary
to support a broad range of monitoring tasks, including:
(i) heavy-hitter [1][2][3] detection, where flows that carry
a significant portion of total traffic require knowledge of
said total traffic to be correctly identified; (ii) heavy-changers
[4][5] detection, where large changes in the total number of
packets of a flow (or overall) require knowledge of the total
volume to be correctly estimated; (iii) network traffic entropy
estimation [6], which indicates traffic distribution and can be
used as part of attack detection strategies; (iv) DDoS victim [7]
and superspreader [8] detection, where nodes contacting/being
contacted by abnormally many destinations/sources are iden-
tified in relation to the total number of flows in the network.
In general, whenever a metric requires to set some global,
network-wide threshold, then an accurate estimation of the
total traffic volume is of paramount importance.

Obviously, traffic volume can be deterministically computed
as the sum of packet counts of all ingress interfaces of all

border routers. However, it cannot be used to (easily) estimate
flow count and size, also important for the tasks above.

With the emergence of Software-Defined Networks (SDNs)
and recent advancements towards the design of programmable
data planes [9], it is now possible to collect or estimate
several network measurements directly inside switches, by pro-
gramming them using domain-specific languages like P4 [9]:
this enables a plethora of novel network monitoring and
security functionalities, implementable in those programmable
switches, for a timely diagnosis of performance issues.

Several network-wide monitoring solutions exploiting pro-
grammable data planes already exist in literature [2][4][7][6].
However, as remarked in [1], most assume that each packet is
counted by a single programmable switch on its path through
the network, otherwise the proposed strategies are not accurate,
due to the packet double counting problem. Unfortunately,
such assumption either strongly limits routing options or
necessitates coordination between the programmable switches
in the network, which makes such strategies either imprecise
or impractical. Alternatively, one could mark counted packets,
but such a solution is inherently insecure since an attacker
could pre-mark its packets, avoiding detection [1].

This paper proposes INVEST (Improved Network traf-
fic Volume ESTimation), an accurate and memory-efficient
method for the estimation of network-wide traffic volume,
number of distinct flows and average flow size at the con-
troller, designed for Internet Service Provider (ISP) networks.
It (i) adopts commonly used data structures allocated and
updated in the data plane of a (potentially) reduced number
of programmable switches and (ii) is inherently robust with
respect to packet double counting. More precisely, INVEST
relies on local packet counters and distinct flow counters based
on HyperLogLog [10]. Using these, our strategy is able to
estimate, at the controller, the number of distinct flows in the
network and the average flow size, which can then be used for
total traffic volume estimation. The advantages of our method
include that it can work with only a few non-border routers
(e.g. in the core network), exploits data structures that can be
useful for a variety of flow-based monitoring tasks beyond
traffic volume estimation, and can be feasibly deployed as
a stand-alone module in existing network-wide measurement
systems relying on programmable data planes [4][7][6].

We theoretically analyze and experimentally evaluate IN-
VEST, using simulations, proving that it can estimate trafficISBN 978-3-903176-39-3©2021 IFIP



volume accurately once tuning parameters (e.g. HyperLogLog
register size and flow type) are properly set. We also im-
plement INVEST in a carrier-grade Tofino-based [11] P4-
programmable switch and test its performance in a physical
testbed; results show that the method can process packets at
line-rate with only small hardware resource usage overhead.

II. BACKGROUND ON HYPERLOGLOG

HyperLogLog (HLL) [10] is a sketch-based algorithm for
the estimation of the cardinality of a data stream. In our
context, it can be used to estimate the number of distinct flows
(i.e., flow cardinality) crossing a switch using little memory.
HLL uses an m-sized register M , where m indicates the
number of counters (each allocating d bits) included in the
register, which is updated as the data stream is processed and
then queried to get an estimation of the cardinality.

The HLL Update operation works as follows. When an
incoming packet with flow key id arrives at the switch, HLL
applies a hash function with an os-bit output to id (with
os ≥ log2m + 2d): the resulting os-bit binary string H is
denoted by H = [0 : os − 1], where 0 is the index of the
leftmost bit, while os− 1 that of the rightmost one. HLL then
updates register M . Let bucket be the leftmost log2m bits of
H and x the remaining bits, i.e., bucket = H[0 : log2m− 1]
and x = H[log2m : os − 1]; M is updated following the
rule: M [bucket] = max(M [bucket], value), where value is
the index of the rigthtmost 1 of x plus one.

The HLL Query operation is used to estimate the flow
cardinality n̂M : it is computed as a harmonic mean of the m
counters: n̂M = αm ·m2 · (

∑m−1
bucket=0 2

−M [bucket])−1, where
αm is a bias correction parameter. The standard error of HLL
has been proven to be 1.04√

m
[10].

The union property of HLL, leveraged in this work, ensures
that multiple HLL registers, e.g. Mm and Mn, can be merged
into a single register Mmn =Mm∪Mn to count the flow car-
dinality of the packet streams that have independently updated
Mm and Mn, i.e., n̂Mm∪Mn

, avoiding any double counting.

III. ESTIMATION OF TRAFFIC VOLUME

A. Problem definition

We start by formally defining the problem. Given:

• A time interval Tint;
• A packet stream S in Tint;
• The total number of packets |Si| that have traversed each

switch i at the end of Tint;
• The updated HLL register Mi (size m) for each switch i

at the end of Tint;
• The number q of programmable switches in the network;

Return an estimation of the traffic volume (i.e., the overall
number of packets from stream S), denoted by |Ŝtot|, that
have crossed the network in Tint, and related n̂tot (i.e., overall
number of distinct flows) and R̂tot (i.e., average flow size).

B. INVEST estimation method

INVEST consists of two operations, INVEST Update
and INVEST Query (see Fig. 1). INVEST Update is au-
tonomously performed during Tint by each programmable
switch’s data plane every time it is crossed by a packet, while
INVEST Query is executed by the controller at the end of
Tint using information made available by the switches. In the
following, we describe those operations.

1) INVEST Update: Each time a packet crosses a switch,
its data plane updates the counter |Si| and the HLL register
Mi. |Si| is simply increased by one, while Mi is updated using
the flow key id of the packet, as specified by the HLL Update
operation [10].

2) INVEST Query: At the end of Tint, |Si| and Mi ∀i ∈
{1, . . . , q} are retrieved by the controller. For each of the
switches, the controller estimates the number of distinct flows
n̂i

1 obtained by querying the HLL register Mi as specified by
the HLL Query operation [10]:

n̂i = HLL Query(Mi) ∀i ∈ {1, . . . , q}
Due to the union property of HLL, the overall number of

distinct flows n̂tot in the network can instead be estimated as:

n̂tot = HLL Query(M1 ∪M2 ∪ · · · ∪Mq)

Once n̂i ∀i ∈ {1, . . . , q} and n̂tot have been estimated, the
controller picks the top-k largest n̂i ∈ N = {n̂1, · · · , n̂q} with
k being the minimum value that satisfies HLL Query(M1 ∪
M2∪· · ·∪Mk) = n̂tot

2 (see Section III-C). Clearly, k ≤ q and
the more flows are concentrated on a small number of switches
(i.e., the traffic load is strongly unbalanced), the lower k is.

Then, the average number of packets per flow, denoted by
R̂i, is computed considering the switches belonging to the
top-k set in the following way:

R̂i =
|Si|
n̂i

∀i ∈ {1, . . . , k}

The average flow size R̂tot in the network is estimated as an
average of the average number of packets per flow per switch
R̂i, by only considering the top-k switches:

R̂tot =
1

k

k∑
i=1

R̂i =
1

k

k∑
i=1

|Si|
n̂i

(1)

Finally, the traffic volume |Stot| is estimated as:

|Ŝtot| = n̂totR̂tot =
n̂tot
k

k∑
i=1

|Si|
n̂i

Note that the accuracy of the estimation |Ŝtot| depends on
two aspects: 1) how accurate HLL is on estimating the exact
values of ni and ntot and 2) how accurate the estimation R̂tot
is with respect to its exact value Rtot =

|Stot|
ntot

. Taking this into
account, in the next subsection we prove that INVEST does
indeed converge to the desired values in realistic scenarios.

1In this paper, the cap symbol identifies estimated values, such as n̂i, R̂i,
|Ŝtot|. Their cap-less counterparts ni, Ri, |Stot| indicate instead exact values.

2From now on the index i will refer, without any further ambiguity, to the
switches belonging to the top-k set (also abbreviated in top-k switches).



C. Theoretical analysis

Theorem 1. The traffic volume estimator |Ŝtot| is an asymp-
totically unbiased estimator of |Stot| as m → ∞, ni → ∞
∀i ∈ {1, . . . , k} and ntot →∞.

Proof. In the considered Tint where |Stot| has to be esti-
mated, the network is characterized by a flow stream Ftot =
{f1, f2, · · · , fntot}, where fj indicates the flow packet count
of flow j and ntot = |Ftot| is the overall number of distinct
flows. It thus holds that |Stot| =

∑ntot

j=1 fj . If we define f ij as
the packet count of fj as recorded in switch i, with ni being
the number of distinct flows seen in switch i, we can also write
|Si| =

∑ni

j=1 f
i
j . With respect to the relative error of HLL,

called εHLL, it holds that P(|εHLL| ≤ 3 1.04√
m
) ≥ 0.997 [12]

and thus HLL accuracy depends on the register size m. So,
as m→∞, the estimations n̂i and n̂tot obtained by querying
the HLL registers (and their union) converge to the real values
(i.e., n̂i

ni
= 1 ∀i and n̂tot

ntot
= 1)3 with arbitrary high probability.

We now assume that the |Ftot| packet counts of distinct
flows are independent and identically distributed (i.i.d.) ran-
dom variables, meaning the number of packets generated in a
flow does not give any information on the number of packets
generated in another flow, and that the packet count random
variables have all the same probability distribution. This makes
sense in practice even if we know that there are many distinct
types of flow, e.g. short-lived HTTP requests, VoIP calls, file
transfers, etc. yielding very different packet numbers per unit
of time. Even if the distribution of an fj clearly depends on the
type of flow j, the distribution of flow types during Tint can
be viewed as fixed (though not easy to characterize), hence the
fj random variables can be seen as drawn from the combined
distribution mapping a flow to its type (or even instance) and
then the number of packets (over Tint) of that type.

We then pick k samples obtained by randomly sampling
with replacement (i.e., with the possibility that the same flow
fj is included in multiple random samples), each associated
to index i and characterized by Fi = {f i1, f i2, · · · , f ini

}. It is
here assumed that F1 ∪ F2 ∪ · · · ∪ Fk = Ftot, meaning that
each flow belongs to at least one of the k random samples. In
the practical scenario considered in this paper, this means that
any switch i among the selected top-k switches is randomly
crossed by ni flows and each flow j in Ftot is seen by at
least one switch, which is ensured by design, based on how k
is chosen in our strategy, when all q switches in the network
are programmable switches and have installed the INVEST
strategy. An additional requirement is that all packets are
always routed on the same path or, alternatively, that a different
flow key is specified for different routing paths [13] (e.g. in
the case of multicast traffic); if this latter assumption does not
hold, two different switches may count a different number of
packets for the same flow j while, to apply INVEST, f ij = fzj
must always hold if random samples Fi and Fz of i and z

3In this demonstration, the notations ni and n̂i can be used interchangeably.
The same holds for ntot and n̂tot and for Ri =

|Si|
ni

and R̂i =
|Si|
n̂i

.

both include fj4.

As already introduced, Ri =
|Si|
ni

=
∑ni

j=1 f
i
j

ni
is the average

flow packet count in random sample i. According to the
Central Limit Theorem, when ni → ∞ ∀i ∈ {1, . . . , k},
Ri =

|Si|
ni
∼ N (µ, σ

2

ni
), where µ is the expected number of

packets per flow, σ2 the expected variance of the Gaussian
distribution, and where Ri are independent random variables,
since they refer to different random samples obtained by
sampling with replacement.

As stated by the Strong Law of Large Numbers, as ntot →
∞, µ approaches the expected number of packets per flow in
Ftot, that is µ =

∑ntot
j=1 fj

ntot
= |Stot|

ntot
= Rtot.

In INVEST, the estimation |Ŝtot| requires the estimation
of Rtot, which is computed as R̂tot = 1

k

∑k
i=1Ri. R̂tot is

a Gaussian random variable, being a linear combination of
Gaussian random variables (i.e., Ri). Its expectation E[R̂tot]
can be expressed, for ni →∞ ∀i ∈ {1, . . . , k} and ntot →∞,
in the following way:

E[R̂tot] =E
[
1

k

k∑
i=1

Ri

]
=

1

k

k∑
i=1

E
[
|Si|
ni

]
=

1

k

k∑
i=1

µ =
|Stot|
ntot

R̂tot is thus an asymptotically unbiased estimator of Rtot as
ntot →∞ and ni →∞ ∀i ∈ {1, . . . , k}, since E[R̂tot]

Rtot
= 1.

|Ŝtot| is then estimated as |Ŝtot| = n̂totR̂tot. |Ŝtot| is a
Gaussian variable, being so R̂tot. Since R̂tot is an asymptot-
ically unbiased estimator of Rtot as ntot → ∞ and ni → ∞
∀i ∈ {1, . . . , k}, |Ŝtot| is asymptotically unbiased as well if
also m→∞ holds (i.e., n̂tot

ntot
= 1):

E[|Ŝtot|]
|Stot|

=
n̂totE[R̂tot]
|Stot|

=
n̂tot

|Stot|
ntot

|Stot|
= 1 �

Remark. In a practical network scenario as the one consid-
ered in this paper, ni is upper-bounded by |Si| (i.e., the number
of distinct packets crossing the switch i): in this case, the
Central Limit Theorem still holds if ni → |Si| ∀i ∈ {1, . . . , k}
and |Si| is big enough, a safe assumption for a large network
such as that of an ISP.

Theorem 2. As m → ∞, ni → ∞ ∀i ∈ {1, . . . , k} and
ntot → ∞, it holds that the relative error

∣∣ |Ŝtot|−|Stot|
|Stot|

∣∣ = 0,
i.e., the estimation |Ŝtot| equals |Stot|.

Proof. As already defined in Theorem 1, the relative error of
HLL estimation is εHLL. Additionally, we define the relative
error of the estimation R̂tot as εR̂tot

. Being n̂tot estimated by
querying a union of HLL registers, it is then possible to write:

|Ŝtot| = n̂totR̂tot = (1 + εHLL)ntot(1 + εR̂tot
)Rtot

= (1 + εHLL)(1 + εR̂tot
)|Stot|

We recall that |εHLL| decreases as m increases, where m
is the HLL register size.

4Note that, in our case, double counting a flow j does not generate any
issue in flow cardinality estimation, since the union property of HLL ensures
that a packet counted twice (e.g. by switches i and z) is considered only once
when estimating the traffic volume.



The relative error of the estimation R̂tot of Rtot can be
instead obtained by looking at the probability distribution
of R̂tot. By Theorem 1, as ntot → ∞ and ni → ∞
∀i ∈ {1, . . . , k}, R̂tot is a Gaussian random variable with
E[R̂tot] = µ = |Stot|

ntot
. The absolute value of the relative error

|εR̂tot
| is the coefficient of variation of R̂tot:

|εR̂tot
| =

√
V ar[R̂tot]

E[R̂tot]
Being R̂tot a linear combination of independent Gaussian
random variables (i.e., Ri), V ar[R̂tot] is the following:

V ar[R̂tot] = V ar

[
1

k

k∑
i=1

Ri

]
=

1

k2

k∑
i=1

V ar[Ri] =
1

k2

k∑
i=1

σ2

ni

As ni →∞ ∀i ∈ {1, . . . , k}, V ar[R̂tot] = 0 and |εR̂tot
| =

0 as well. Thus, if this condition holds, the accuracy of the
estimation |Ŝtot| is only affected by the HLL register size m
and improves as m increases:

|Ŝtot| = (1 + εHLL)|Stot|
The above formula implies:∣∣∣∣ |Ŝtot| − |Stot||Stot|

∣∣∣∣ = |εHLL|
If also m → ∞ holds, |εHLL| = 0 with arbitrary high
probability and we can finally write:∣∣∣∣ |Ŝtot| − |Stot||Stot|

∣∣∣∣ = 0 �

Remark. Theorem 2 explains why INVEST considers only the
top-k switches to estimate the traffic volume, and not all q
switches. The reason is that, to ensure good performance in a
practical scenario, ni must be large enough for all the switches
involved in the estimation of R̂tot, so that V ar[R̂tot] → 0.
In the case of networks characterized by unbalanced traffic
matrices, it is not unusual that ni is relatively small for some
of the switches i, and including such ni in the computation of
R̂tot would jeopardize the estimation. By selecting the top-k
switches (in terms of ni) that cover all the flows in the network,
such negative effect is instead strongly mitigated. This will also
be experimentally shown in Section V.

Remark. In general, Theorems 1 and 2 tell us that the bigger
m, ni and ntot are, the better the estimation of |Stot| is.
The value of m must be chosen big enough to ensure good
estimations for ni and ntot, whose value instead depends on
how a “flow” is defined. In practice, the trivial best possible
estimation of |Stot| can be obtained when ni = |Si| and
ntot = |Stot|, i.e., when each packet is considered as an inde-
pendent flow. However this solution, proposed in [14], requires
a unique identifier/marker for each packet [15][16][17] (i.e.,
unique packet id), which does not scale well and does not
permit to use HLL to support other flow-based monitoring
tasks. Our Theorems show that considering sufficiently fine-
grained flows (e.g., characterized by a {srcIP, dstIP} pair as
flow key rather than by simply srcIP or dstIP ) can effectively

enhance the estimation of |Stot|, since such a choice increases
ni and ntot.

Theorem 3. If F1 ∪ F2 ∪ · · · ∪ Fk = F ktot ⊂ Ftot and thus
nktot < ntot, as m → ∞, ni → ∞ ∀i ∈ {1, . . . , k} and
ntot → ∞, it holds that

∣∣ |Ŝk
tot|−|Stot|
|Stot|

∣∣ = ∣∣nk
tot

ntot
− 1
∣∣, where

|Ŝktot| is the estimation of the traffic volume over the k random
samples.

Proof. By definition, R̂tot is the estimation of Rtot consider-
ing the k random samples, while by Theorem 2 it holds that,
when m → ∞, ni → ∞ ∀i ∈ {1, . . . , k} and ntot → ∞,
|εR̂tot

| = 0 and |εHLL| = 0 with arbitrary high probability.
We can then write:∣∣∣∣ |Ŝktot| − |Stot||Stot|

∣∣∣∣ = ∣∣∣∣ |Ŝktot||Stot|
− 1

∣∣∣∣ = ∣∣∣∣ n̂ktotR̂totntotRtot
− 1

∣∣∣∣
=

∣∣∣∣ (1 + εHLL)n
k
tot(1 + εR̂tot

)Rtot

ntotRtot
− 1

∣∣∣∣
=

∣∣∣∣nktotntot
− 1

∣∣∣∣ (As |εR̂tot
| = |εHLL| = 0) �

Remark. Theorem 3 is relevant when it cannot be ensured that
all flows are visible to INVEST, e.g. in a partial or incremental
deployment scenario [3], where a number of programmable
switches, q, coexists with legacy non-programmable devices.
Theorem 3 shows that, in this case, it is better to first
replace those non-programmable switches that are crossed
by the largest number of distinct flows overall, so that nktot
is maximized and approaches ntot. Such a strategy has been
proposed in [3] and, as a consequence of Theorem 3, yields
the best possible estimation of |Stot| in a hybrid scenario.

IV. IMPLEMENTATION OF INVEST IN P4

We have successfully implemented our INVEST strategy,
depicted in Fig. 1, in a small testbed including a P4 pro-
grammable commodity switch with a Tofino ASIC and a
simple controller. An open-source version of the implemented
P4 16 code and controller has been released in [18].

A. Tofino-based data plane architecture

This subsection briefly describes the architecture of a
Tofino-based switch data plane [20][19], understanding which
is needed to make sense of the implementation details. For
additional information the reader is referred to [11].

Fig. 2 shows the Tofino architecture. The data plane in-
cludes different pipes (each associated to an ingress or egress
pipeline); several ports are associated to a single pipe. P4
programs are executed in different pipes and use independent
resources (computation/memory). When a packet enters the
switch, it is processed by the ingress pipeline associated with
its ingress port, then by the egress pipeline associated with its
chosen egress port. Each pipeline includes a limited number
of stages, each associated to limited computational resources
that can be used to process each packet in sequence. Therefore,
only a limited number of operations can be performed on each
packet, to ensure line rate processing with bounded latency.



Packet
stream Si

pkts

Packet counter
|Si| = |Si|+ 1

1©H[0 : 31] = CRC32(id)→ {0,1}32
H[32 : 63] = CRC32c(id)→ {0,1}32

2©bucket = H[0 : log2m− 1]

3©Ternary match table
H[log2m:log2m+31]︷ ︸︸ ︷
0 · · · 01︸ ︷︷ ︸
l-bit mask

· · · =
l−1︷ ︸︸ ︷

0 · · · 0 1︸ ︷︷ ︸
key

→ value = l

id

m-sized HyperLogLog register Mi

M [bucket]
= value

M [0] · · · · · · M [m− 1]

4©value > M [bucket]

Controller

Estimate |Ŝtot|
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Fig. 1. Scheme of the proposed INVEST strategy
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Fig. 2. Tofino-based switch data plane architecture [19]

Each stage executes operations such as applying match-action
rules for customized packet processing, reading or writing
counters/meters/registers, or calling Arithmetic Logic Units
(ALUs) for local computations. As already mentioned, each
stage has limited hardware resources, such as memory (both
Static and Ternary Random Access Memories, i.e., SRAM
and TCAM) and number of ALUs. Our prototype of IN-
VEST Update is implemented in the ingress pipeline.

B. INVEST Update (P4-enabled Switch)

1) Counting the number of packets |Si|: A register is used
(a counter could also be used) to tally all incoming packets.

2) Updating the HLL Register: Step 1 (see Fig. 1). An
m-sized HLL register with m = 2048 is considered, where
each cell is assigned d = 5 bits. A hash function with at
least log2m + 2d = 43 bit of output size is thus needed by
the HLL Update operation (see Section II). Therefore, two
32-bit outputs are obtained by hashing the flow key id with
two different supported hash functions and concatenated, thus
generating a 64-bit hash H . Specifically, id is first hashed by
the CRC32 function, setting bits H[0 : 31]; bits H[32 : 63]
are set by hashing id with the CRC32c function (see [21]).

TABLE I
TERNARY MATCH TABLE USED BY INVEST UPDATE

Mask (32 bits) Key (32 bits) Action (l value)
1000 · · · 0 0000 · · · 0 No Action (Miss)
1000 · · · 0 1000 · · · 0 1
1100 · · · 0 0100 · · · 0 2
· · · · · · · · ·

11 · · · 110 00 · · · 010 31

Step 2 The bucket to be updated in the HLL register M is
equal to the last log2m bits of H , which are easily obtained
by truncating H .

Step 3 The value, which is the index of the rightmost
1 of the bits H[log2m : log2m + 31] plus one (in brief
l), is obtained via a ternary match table where some pre-
computed values are stored, as shown in Table I. The table
includes 31 entries: for each entry a mask, a key and an action
(reporting the l value) are specified. The table is scrolled
from top to bottom: the considered mask is used, by applying
the bitwise AND operator with H[log2m : log2m + 31], to
retrieve the first l bits of H[log2m : log2m + 31]. Once the
masked H[log2m : log2m + 31] binary string is obtained,
it is compared to the corresponding key in the table. If the
masked binary string is equal to the key string, l (the value
we are looking for) is retrieved from the action column and
the search is stopped, otherwise the next row is considered.

Step 4 Finally, once value is retrieved, if it is larger than
the bucket-indexed value M [bucket] in the HLL register, the
new value replaces the old value.

C. INVEST Query (Controller)

The controller is implemented on top of the Application
Programming Interface (API) provided by the switch vendor.
In a large-scale scenario, it could pull |Si| and Mi from each
switch i in the network and estimate the traffic volume by
executing the INVEST Query operation described in Section
III-B2. We implemented the INVEST Query logic in Python.

V. PERFORMANCE EVALUATION

We implemented our entire INVEST strategy in Python to
study its performance over simulated large networks. Addition-
ally, we implemented INVEST Update in P4 16 (see Section
IV for details) in a commodity Edgecore Wedge-100BF-32X
switch equipped with Intel Tofino 3.3 Tbps ASIC [11]. The
switch supports up to 32 100 Gbps ports, but due to the
cost of 100 Gbps interfaces, we connected it to two servers
(Intel(R) Xeon(R), CPU E3-1220 V2 @ 3.10GHz, 16 GB
RAM) using 10 Gbps Ethernet interfaces. The information
collected by INVEST in the switch (i.e., packet counter |Si|
and HLL register Mi) is queried using a Command Line
Interface leveraging vendor-provided APIs.

We also implemented, in P4, a simple forwarding strategy
for benchmarking purposes. It works as follows: if the des-
tination IP of an incoming packet does not match any entry
of an exact match-action table, the packet is forwarded to a
specific egress port by applying Longest Prefix Match on the
entries of another match-action table.



In the following, we will report the results obtained by (i)
simulating INVEST in large networks and (ii) evaluating the
performance of the INVEST P4 implementation in the Tofino-
based switch.

A. Evaluation metrics and simulation settings

1) Testing flow trace and topology: In our simulations, we
used the first 50 seconds of 2018-passive CAIDA flow trace
[22] collected from a 10 Gbps backbone link. We divided the
trace into different time intervals, considering two different
widths: Tint = 1s and Tint = 5s. In the former case, each of
the 50 resulting time intervals includes around 450 thousand
packets, while, in the latter, each of the 10 resulting time
intervals includes around 2.3 million packets.

We considered two different ISP network topologies: the
45-nodes GÉANT ISP backbone topology [23] and the 100-
nodes DEFO synth100 topology [24]. The traffic matrix is
generated by adopting a CRC32 hash function to randomly
assign each packet to a source/destination node couple in the
network. Unless otherwise specified, the output size of the
CRC32 hash function is set to the number of nodes in the
considered topology (45 for GÉANT and 100 for DEFO) and
the source (destination) node is obtained by hashing the source
(destination) IP of the packet; then, each packet is forwarded
from source to destination on the shortest path (worst case for
our approach, fewest traversed switches). We call this traffic
matrix balanced, since any source/destination node couple
has almost the same probability to be chosen for a source
IP/destination IP couple.

2) Evaluated metric: We use relative error: |Stot| being
the exact number of packets in a time interval and |Ŝtot| its
estimated value, the relative error is defined as the average
value of

∣∣∣ |Ŝtot|−|Stot|
|Stot

∣∣∣ · 100% in all the consecutive time
intervals (which are 50 for Tint = 1s and 10 for Tint = 5s).

3) Tuning parameters: Unless otherwise specified, HLL
register Mi size is set to m = 211 = 2048, with bucket size
of 5 bits. The packet counters |Si| occupy 32 bit each. The
considered flow key is {srcIP, dstIP} pair.

B. Evaluation and comparison with existing strategies

We compare INVEST with three estimation methods:
1) Sum: the traffic volume is estimated by summing the

packet counters |Si| as recorded by all the switches,
thus neglecting the double counting problem. This trivial
strategy is expected to lead to large overestimations.

2) Sample: the work [3] prevented double counting by
using a sampling-based mechanism, where the packet
count of the heaviest flows is kept in the switches in
a sample list and delivered to the controller for the
estimation of the traffic volume. However, a long tail of
light flows or the existence of many heavy flows might
lead to serious traffic volume underestimations.

3) AROMA [14]: employs a HLL-based strategy similarly
to INVEST, but requires an unique packet identifier as
key (i.e., it is not flow-based like INVEST). See Section
VI-A for further details.

TABLE II
COMPARISON OF INVEST WITH EXISTING STRATEGIES

Estimation
method

Relative error
GÉANT DEFO

Tint = 1s Tint = 5s Tint = 1s Tint = 5s
INVEST 2.33% 2.05% 2.44% 2.19%

Sum 333.01% 323.00% 412.79% 412.89%
Sample [3] 33.69% 38.78% 25.78% 30.71%

AROMA [14] 0.48% 3.10% 0.48% 3.10%

TABLE III
ESTIMATION ACCURACY OF INVEST PARAMETERS

Estimated
parameter

Relative error
GÉANT DEFO

Tint = 1s Tint = 5s Tint = 1s Tint = 5s
|Stot| 2.33% 2.05% 2.44% 2.19%
Rtot 1.92% 1.91% 2.39% 2.06%
ntot 1.57% 1.91% 1.57% 1.91%

According to the parameters specified previously, the IN-
VEST data structure occupies 10272 bits of memory in each
switch (32 bits for |Si| and 2048 · 5 bits for Mi). AROMA
uses the same data structure as INVEST, but adopts a different
key. Instead, as specified in [3], each entry in a sample list of
the Sample strategy requires 96 bits (64 bits to store the flow
key, which is {srcIP, dstIP} pair, and 32 bits to store the
respective packet count). To make a fair comparison between
INVEST and Sample, we thus consider a memory occupation
for each sample list equal to the memory occupied by INVEST
(the number of entries of the list is set to 10272 bits

96 bits = 107).
Table II shows the comparison results. INVEST strongly

outperforms both Sum and Sample in all cases, its relative
error always <3%, which is considered the maximum error
to ensure accuracy in practical monitoring applications [25].
As expected, Sum is an inadequate estimator (relative error
>300%) as it does not handle the double counting problem.
Sample also exhibits unappealing performance: a sampling
list with 107 entries is not large enough to ensure good
estimation (relative error >25%). INVEST shows instead
similar performance to AROMA, with the already discussed
great advantage of being a flow-based strategy.

Table III reports the estimation accuracy of the INVEST
parameters, namely |Stot| (shown also in Table II), Rtot and
ntot. In most cases, the relative error in the estimation of Rtot
and ntot is below 2%, meaning that the adoption of Eq. 1 to
estimate Rtot and the usage of HLL to estimate ntot are both
effective means to keep the relative error of |Stot| low.

C. Sensitivity analysis

1) Sensitivity to flow key types: Table IV shows how
INVEST behaves when the HLL registers are updated con-
sidering different flow key types. As remarked in Section
III-C, as a consequence of Theorems 1 and 2 when the flows
are not sufficiently fine-grained (e.g. srcIP or dstIP ), high
relative errors in the estimation occur (between 20% and 35%),
as the number of distinct flows traversing each switch ni is
not large enough. Instead, when a flow is identified by the
{srcIP, dstIP} pair key, which implies finer-grained flows,
the relative error significantly drops and is under 3%. We
also considered as flow key {srcIP, dstIP, protocol}, where
protocol (in brief prot) is, for instance, UDP, TCP, ICMP;



TABLE IV
ACCURACY OF INVEST WITH DIFFERENT FLOW KEY TYPES

Flow key # Distinct flows ntot Variance σ2 of Ftot
Relative error

in Tint in Tint GÉANT DEFO
Tint = 1s Tint = 5s Tint = 1s Tint = 5s Tint = 1s Tint = 5s Tint = 1s Tint = 5s

srcIP ∼ 27K ∼ 67K ∼ 26K ∼ 111.7K 20.15% 26.43% 24.80% 32.35%
dstIP ∼ 22K ∼ 58K ∼ 46.5K ∼ 288K 23.94% 28.64% 29.13% 34.80%

{srcIP, dstIP} ∼ 47K ∼ 147K ∼ 13.8K ∼ 40K 2.33% 2.05% 2.44% 2.19%
{srcIP, dstIP, prot} ∼ 47.1K ∼ 147.6K ∼ 13.5K ∼ 39.8K 2.36% 2.73% 2.56% 2.37%

Unique packet id (AROMA) ∼ 450K ∼ 2300K 0 0 0.48% 3.10% 0.48% 3.10%
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in this case, the relative error is almost the same as for
{srcIP, dstIP}, without any notable improvement. We thus
decided to adopt the {srcIP, dstIP} pair as default flow
key for our evaluations, since it reduces the operations to
be performed by INVEST in the data plane with respect to
{srcIP, dstIP, prot}. For completeness, Table IV also reports
the relative error if INVEST was updated considering unique
packet ids, equivalently to AROMA as discussed above. In
this case, the relative error caused by the estimation R̂tot is
zero. However, ensuring unique packet ids in real scenarios is
challenging and this case was not implemented in hardware.

2) Sensitivity to time interval width: Table IV also shows
the relative error of INVEST with different time interval
widths. A larger width is naturally accompanied by a larger
number of monitored flows ntot, which should have a good
effect on traffic volume estimation according to Theorems 1
and 2 of Section III-C; however, a higher variance σ2 of flow
packet counts in Ftot is also expected (see the table), and
this negatively impacts on the estimation. Increasing the time
interval width has thus a counteracting effect on traffic volume
estimation but, unfortunately, the negative effect due to higher
flow packet count variance tends to dominate. Adopting fine-
grained flow keys can effectively mitigate such effect, since
considering more flows in the network leads on average to less
packets per flow and reduces the flow packet count variance.
This is still an improvement on e.g. AROMA, because we do
not need to use unique packet ids.

3) Sensitivity to network topology: If the same flow trace
and flow key type are considered, obviously the variance of
flow packet count in Ftot does not change when considering
GÉANT and DEFO topologies. Since DEFO has a larger
number of nodes, each switch i is assigned a smaller number
of flows ni. As we explained in Theorem 2 of Section III-C,
smaller number of flows ni leads to a higher variance on the
estimation of Rtot: this is why the relative error of traffic
volume estimation |Ŝtot| is generally slightly higher in DEFO.

4) Sensitivity to HLL register size m: Fig. 3 shows how
INVEST performs by varying the HLL register size m. In-
tuitively, the relative error decreases as m increases. When
the HLL register size m is small (e.g., 24 and 25), the relative
error is very significant. While increasing m, at a certain point
(i.e., when m = 211) the curve flattens to a relative error that
is always lower than 3%.

5) Sensitivity to flow distribution: As described in Section
V-A, in previous evaluations we have considered a balanced
traffic matrix, where any node in the network has the same

probability to be picked as source (ingress) or destination
(egress) of a traffic flow. Here, we want to see how INVEST
performs in the case of unbalanced traffic matrices. To do so,
instead of considering any node in the ISP topology as possible
ingress or egress node for the flows, we select a subset of nodes
with cardinality p as possible sources/destinations and we use
the CRC32 hash function (with output size p) to assign the
flows’ source and destination IPs to the nodes in that subset.
Once the flows’ source and destination IPs have been assigned
to the p switches, they are routed as before on the shortest path.
Thus, with this procedure, it is possible to tune the skewness
of the flow distribution: the smaller p is, the more skewed
the distribution is, leading to large variances on flow packet
counts in the different switches.

As remarked in Section III-C, as a consequence of Theorem
2, selecting the top-k switches for traffic volume estimation is
beneficial in the case of unbalanced traffic matrices, since it
ensures to keep V ar[R̂tot] small. To evaluate the impact of the
top-k selection on the overall INVEST strategy, we introduce
INVEST(q): INVEST(q), instead of only considering the top-k
switches in the estimation of R̂tot, considers all of them, that
is, Eq. 1 in Section III-B is replaced with R̂tot = 1

q

∑q
i=1 R̂i =

1
q

∑q
i=1

|Si|
n̂i

. In the case that |Si| = n̂i = 0, we define R̂i = 0.
Fig. 4 shows the sensitivity of INVEST to different flow

distributions when Tint = 5s. Similar results are obtained
for Tint = 1s, but we do not report them for the sake of
conciseness. For completeness, we include in the evaluation
also the Sample strategy and AROMA [14], while we do
not show results for Sum, which always leads to very large
errors. The relative error of Sample decreases as p increases.
However, when the traffic matrix is balanced, i.e., when p
is equal to the overall number of nodes in the network, the
relative error is still high (above 25%). INVEST(q) has even
worse performance than Sample when p is small in both
topologies, since the zero value of R̂i related to the nodes
that are not traversed by any flow compromises the estimated
R̂tot. In contrast, INVEST always leads to good estimation
performance as AROMA: no matter what network topology,
time interval width or flow distribution is considered, the
relative error of INVEST is always around 3%. Using the top-k
switches for estimating the traffic volume is shown to be very
effective, especially when the traffic matrix is unbalanced.

6) Sensitivity to number of programmable switches: Unlike
previous evaluations, in this subsection we consider a hybrid
network composed by both programmable switches and legacy
devices (e.g., Openflow-based or SNMP-based switches) when
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the traffic is balanced. Only some nodes are programmable
switches able to implement the INVEST Update strategy,
while the remaining legacy devices are assumed not to pro-
vide any information to the SDN controller for the estima-
tion of |Stot|. The incremental deployment of programmable
switches in the hybrid network is performed using the al-
gorithm designed in [3], where the nodes leading to the
largest union of distinct flows with previously-deployed pro-
grammable switches are iteratively replaced to ensure the
highest possible flow visibility, until a number q of switches
have been substituted with programmable equipment.

Fig. 5 reports the sensitivity of INVEST performance to a
variation on the number of programmable switches q deployed
in such a hybrid network. We include in the figure also Sample,
AROMA and INVEST(q) strategies. Also in this case, we
omit similar results obtained with Tint = 1s for the sake
of conciseness. When more programmable switches q are
deployed, the relative error of Sample decreases smoothly,
since more sampled flows are reported to the controller.
However, as before, the estimation is jeopardized by the
missing statistics on the long tail of small flows. Conversely,
INVEST, INVEST(q) and AROMA have good and comparable
performance. Another observation is that, being programmable
only 40% of the switches in a hybrid network and being them
deployed following the strategy proposed in [3], INVEST is
able to estimate |Stot| quite accurately (relative error <5%).

D. Evaluation of resource usage and processing time

Table V shows the switch’s data plane resources required
by INVEST Update and simple forwarding implementations,
as a percentage of the total resources available in the switch.
To ensure a fair comparison, the INVEST Update implemen-
tation also includes the simple forwarding logic for packet
forwarding. INVEST plus simple forwarding requires around
25% stages (see Section IV-A) more than simple forwarding.

TABLE V
NORMALIZED SWITCH RESOURCE USAGE OF INVEST

Strategy No. stages SRAM TCAM No. ALUs PHV size
Additional proc.
time w.r.t. simple

forwarding
Simple forwarding 16.67% 2.5% 8.33% 4.17% 7.30% -
INVEST Update +
Simple forwarding 41.67% 3.23% 9.03% 8.33% 7.68% 45ns

Simple forwarding needs 2.5% of the total available SRAM
and 8.33% of TCAM. Instead, INVEST Update plus simple
forwarding uses only 3.23% of total SRAM, which means
that the occupied memory by both the packet counter |Si| and
HLL register Mi is quite low. Additionally, INVEST needs
31 entries in a ternary match table (see Table I) to compute
the values in the HLL register, occupying additional 0.7% of
TCAM with respect to what is needed by simple forwarding.
The number of required ALUs measures computational re-
source usage. Only 8.33% of total ALUs are used by INVEST
plus simple forwarding to process the packets, double that
simple forwarding alone. The packet header vector (PHV)
size indicates the amount of packet header information that
can be passed across the pipeline stages. INVEST plus simple
forwarding uses only 7.68% of PHV and, compared to the
7.30% of simple forwarding, means that INVEST requires to
pass across stages only few additional customized metadata.
Moreover INVEST only requires 45 ns more than simple
forwarding to process a single packet, which is an acceptable
time overhead, and is always able to process packets at line
rate (with a throughput or around 10 Gbps).

VI. RELATED WORK

A. Traffic volume estimation

Recently, Ben Basat et al. have proposed AROMA [14],
a distributed traffic volume estimation strategy that, as ours,
rely on HLL-like cardinality estimation, is explicitly designed
to avoid the double counting problem and can be executed in
programmable switches’ data plane. AROMA requires that, to
estimate the traffic volume exploiting the merge property of
HLL, a unique identifier for each packet is needed. However,
non straightforward mechanisms have to be adopted for assign-
ing a unique key to each packet [16][17] and, for this reason,
it may be infeasible to adopt such a solution on high-speed
carrier-grade networks. Additionally, using a unique key for
each packet to update HLL, hampers the usage of such data
structure for the collection of other flow-based relevant metrics
(e.g. number of distinct flows). Conversely our solution, which
exploits the merge property of HLL as well, uses aggregated
per-flow information for an accurate estimation of the traffic
volume, being a more practical generalization of the strategy
proposed in [14]. Ding et al. [3] proposed a strategy to
estimate the traffic volume without double counting packets.
It consists on locally storing the heaviest flows in a sample
list maintained in the switches’ data plane. The controller
can prevent, when collecting the sample lists from multiple
switches, from double counting the packets belonging to the
same flow. The limitation of this solution is that the estimation
accuracy significantly depends on the size of the sample
lists. Considering available memory in current programmable



switches, the long tail of small flows is neglected in the traffic
volume estimation. Contrariwise, INVEST can estimate the
traffic volume of both large data streams and the small flows
long tail, with good accuracy and low memory occupation.

B. Network flow cardinality estimation

Many sketch-based algorithms for estimating the cardinal-
ity of large data streams have been proposed in literature,
including Linear Counting [26], LogLog [27] and Hyper-
LogLog [10]; it has been proven that HyperLogLog is able to
achieve the same accuracy of the other methods by requiring
much less memory. With the advent of programmable data
planes, estimating the cardinality of flows directly in the data
plane pipeline has become an appealing solution to enhance
network monitoring. Recently, AROMA [14] proposed and
implemented a customized HLL algorithm in P4, where each
HLL register cell requires 32 bits instead of the 5 bits required
by standard HLL [10], breaking the best trade-off between
estimation accuracy and memory occupation as evaluated
in [10]. Instead, INVEST implements the standard Update
operation of HLL in P4, without requiring additional memory.

VII. CONCLUSION

In this paper we presented INVEST, a novel traffic vol-
ume estimation method that exploits modern data-plane pro-
grammable switches to jointly estimate number of flows,
average flow size and total packet count in the network, using a
limited number of sampling locations and robust against packet
double counting. We provided the theoretical justification of
why the method is an unbiased estimator and can work with a
relatively small number of measurement locations. In addition,
we overcame the resource constraints of real P4-programmable
hardware, to implement our logic in an Edgecore commodity
switch equipped with Tofino ASIC. Our experimental evalua-
tion showed that INVEST can estimate the traffic volume with
high accuracy (relative error lower than 3%) and low memory
occupation (few KB per switch). INVEST works well (i) in the
case of strongly unbalanced traffic matrices and (ii) when only
40% of the network switches implement it. It also ensures line-
rate packet processing, with only marginal time overhead with
respect to a naı̈ve forwarding strategy, and does not require any
priori knowledge on the network topology, on routing and on
flow distribution.
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