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Abstract—Modern datacenter transports are required to sup-
port latency constraints, usually represented by various forms
of flow completion time (FCT). Most implemented congestion
control mechanisms that minimize FCT are based on SRPT prior-
ities (e.g., pFabric and Homa). However, SRPT-based scheduling
requires prior knowledge of flow sizes, making this discipline
problematic in general. Non-SRPT-based alternatives such as
LAS and PIAS are able to cope with this level of uncertainty but
suffer from their own limitations: LAS can lead to significant
starvation of concurrent elephant flows, while PIAS requires a
centralized entity for correct settings. In this work, we generalize
SRPT-based scheduling to allow flows with known and unknown
sizes to sojourn at the same time. We not only show analytic
properties of this generalization but rigorously prove important
properties of non-SRPT alternatives with competitive analysis.
Based on the proposed SRPT generalization, we introduce a
new ASCC congestion control. Our main goal is not to propose
yet another congestion control but to identify preferable and
pathological traffic patterns with unknown flow sizes for various
scheduling disciplines. Our observations are validated by an
extensive evaluation study.

I. INTRODUCTION

Efficient processing of interactive workloads in datacenters
imposes heavy constraints on response time in datacenter
fabrics. As a result, traditional datacenter fabrics based on
TCP cannot satisfy latency constraints for short flows since
they can be affected by coexisting large flows which are not
necessarily as sensitive to delays [1, 2]. Multiple datacenter
transports have been proposed with the explicit purpose of
addressing this constraint [1–8]. Most of these transports
optimize various forms of flow completion time (FCT) [9]; for
instance, average FCT is used in [6, 10, 11], average slowdown
(average normalized FCT) in [5, 8, 11], tail FCT in [12, 13].

While there is a consensus in the research community
about FCT as the optimized objective, the characteristics that
should be incorporated into final decisions depend on specific
applications, availability of flow information, and allowed
flexibility in buffer management inside switches. Many recently
proposed congestion control mechanisms exploit shortest
remaining processing time (SRPT) [5, 7, 8, 14]. According
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to [11], it is easy to achieve “near-optimal” performance with
SRPT-based scheduling disciplines as long as the rate-setting
algorithm at the endpoints is reasonable. Unfortunately, SRPT
requires prior knowledge of per-flow sizes, which can be
problematic in practice, e.g., in the case of HTTP chunked
transfers [15] (where dynamically created content is transferred
during the generation process), stream processing systems such
as Apache Storm [16], query response in database systems such
as Microsoft SQL Server [17], and many others. In general,
flow size may become available only with the last packet.

There are several approaches dealing with this level of
uncertainty. Least attained service (LAS) [18] is an alternative
to SRPT-based scheduling that processes flows according to
transmitted rather than remaining flow sizes. Unfortunately,
LAS-based scheduling can lead to significant starvation of
large flows that are concurrently active on the same path. For
instance, consider two elephant flows arriving to the same
switch and assume that the second flow arrives only after the
transmission of 99% packets in the first flow. In this case,
LAS sends 99% packets in the second flow before it finishes
transmission of the first flow. Note that this problem does not
exist in SRPT-based scheduling.

Another alternative to SRPT approximately exploiting trans-
mitted flow sizes is PIAS [6]. PIAS maintains a set of
thresholds α1,α2, . . . αk and schedules flows according to
the largest index of a threshold that does not exceed the
transmitted flow size. Such scheduling allows to use a fixed
number of priorities inside switches and can reduce starvation of
concurrent elephant flows. Note that PIAS requires a centralized
entity collecting information about the flow size distribution
to set the thresholds properly. Although non-SRPT-based
scheduling disciplines such as LAS and PIAS are valid options
allowing to deal with unknown flow sizes, in this work we
generalize SRPT to allow flows with known and unknown sizes
to sojourn simultaneously. The key idea of proposed SRPT
generalizations is to prefer transmitting flows with known sizes
first, and transmit these flows according to SRPT priority.

Our contribution is two-fold: (1) we provide analytic results
for generalized SRPT-based scheduling and other alternatives
that do not exploit flow sizes; (2) we present a comprehensive
evaluation study identifying preferable and pathological traffic
patterns for congestion control mechanisms based on the
analyzed scheduling disciplines. Our analytic results use
competitive analysis [19] that provides theoretical guarantees
in terms of the worst-case factor by which a given algorithm
is worse than the optimal offline (clairvoyant) algorithm. In
particular, we show that generalized SRPT is 2-competitive
and LAS is 3-competitive, while the competitiveness of PIASISBN 978-3-903176-39-3© 2021 IFIP



and FIFO is not bounded by any constant; to the best of our
knowledge, this is the first work providing competitive analysis
of these scheduling policies in the general case. In addition,
we develop a universal transformation that, for a given policy
with proven performance guarantees (upper competitiveness
bound) that relies on prior knowledge of flow sizes, constructs
a policy that operates on flows with unknown sizes and carries
over the competitiveness bound with only a constant factor 3.
This theoretical analysis allows to identify the limitations of
proposed policies. Next, based on SRPT generalizations, we
introduce agnostic to flow size SRPT-based congestion control
(ASCC), a new congestion control mechanism that we compare
with PIAS, LAS and SRPT-based congestion controls. Unlike
PIAS, ASCC does not require a central entity collecting traffic
statistics. The goal of this work, however, is not to simply
propose a new congestion control mechanism that works better
on specific workloads but to develop a general understanding
what is achievable in the harsh but realistic environment where
flow sizes are uncertain.

II. BIG SWITCH ABSTRACTION

Similar to near-optimal network designs [5, 8, 14], we repre-
sent the datacenter fabric as one big switch S interconnecting
servers. In this abstraction, ingress ports correspond to NICs
and egress ports to last-hop TOR switches; each ingress port
has multiple flows going to various egress ports. We consider
various scheduling policies on S that do not require prior
knowledge of flow sizes, and we prove their worst-case latency
performance guarantees. Note that we use the virtual switch
abstraction only for theoretical analysis and algorithmic descrip-
tions. Based on our analytic results, in Section VII we propose
congestion control ASCC approximating the performance of
proposed scheduling policies on S. Note that the transition
from an abstract switch model to real congestion control is
not immediate and should be extended due to rate control
dynamics, imperfect load-balancing, etc.

Let F = {f1, f2, . . . , f|F|} be a set of flows that are
transmitted by S, and let ini and outi denote respectively the
ingress and egress ports of a flow fi ∈ F . A flow f consists
of packets p1, p2, . . . pl, where l is the size of f and j is the
packet number of pj . To simplify exposition, we assume that
all packets have uniform size. We assume that time is slotted.
Each time slot consists of the arrival phase and transmission
phase. During the arrival phase, packets of a flow fi ∈ F
may arrive to S; these packets are assigned to the ingress port
ini. Packets in each flow are numbered in the order of their
arrival to S. During the transmission phase, a scheduling policy
(algorithm) A in S selects flows in F that have packets on their
ingress ports under the constraint that selected flows cannot
share either input or output ports; then A transfers the first
untransmitted packet of each selected flow fi from its ingress
port ini to its egress port outi. Let SA be an instance of S
managed by a scheduling policy A. Scheduling policies differ
in how flows are chosen for transmission. In the simplest case,
the big switch abstraction proposed below contains only one
ingress port; we denote such a switch by S1.

The arrival time of a flow packet is the time when it arrived
to S; the arrival time ai of a flow fi ∈ F is the arrival time
of its first packet. We denote by eAi the end time when A
transmits the last packet of fi from ini to outi. A flow fi is
active in SA at time t if ai ≤ t ≤ eAi . Arrival times of flow
packets are unknown to the scheduling policy. We say that A
is an oblivious online policy if it can use the size of a flow
only after its last packet has arrived to S. In this work, we
design efficient oblivious online scheduling policies.

The remaining processing time rpt(f) of a flow f is the
difference between the size of f and the packet number of
the first packet in f that still resides on the ingress port of f .
SRPT is a policy for S1 transmitting a packet from a flow f
with the smallest value of rpt(f) on every time slot. Note that
SRPT is not an oblivious online policy since it requires prior
knowledge of the size of f immediately after the arrival of its
first packet to S1. In Section V we propose oblivious online
modifications of SRPT-based policies.

In this work, we show worst-case latency performance
guarantees of scheduling policies by means of competitive
analysis. Namely, let X(A,F) be a metric representing the
total latency of all flows F in the switch SA; in Section III
we discuss examples of such metrics. We define OPTX as an
optimal offline algorithm minimizing X for any F ; OPTX is
clairvoyant, i.e., it knows flow sizes and arrival times of flow
packets in advance. A scheduling policy A is k-competitive
w.r.t. X if X(A,F) ≤ k ·X(OPTX ,F) for any F .

III. LATENCY REPRESENTATIONS

The current de-facto standard latency representation in data
center transport is the average flow completion time [5, 8].
For a given set of flows F and a scheduling policy A,
the average flow completion time (AFCT) is the average
time during which flows from F are active in the switch
SA: AFCT(A,F) = 1

F
∑|F|

i=1

(
eAi − ai + 1

)
. Below, for

ease of exposition we use the total flow completion time
FCT(A,F) = |F|·AFCT(A,F); it differs from AFCT(A,F)
by a multiplicative factor that does not depend on the algorithm
A and hence does not affect competitive analysis.

We say that a flow fi is a gapless flow if the arrival time
of the jth packet pj from fi is less than ai + j for any j (i.e.,
S receives packets of fi without gaps). It is known that for a
switch S1 containing a single ingress port, the SRPT policy is
optimal w.r.t. FCT if flows are gapless. In the general case,
SRPT is not necessary optimal. Moreover, Theorem 1 shows
that any scheduling policy for S1 (including non-oblivious
online SRPT) does not have a constant competitive factor w.r.t.
FCT in the general case (see Appendix for the proof).

Theorem 1. For any n > 0 and any scheduling policy
A managing S1, there exists a set of flows F such that
FCT(A,F) ≥ n+1

3 · FCT(OPTFCT,F).

The main reason for this negative result is that A does not
know arrival times of packets in advance. To obtain latency
performance guarantees of a scheduling policy A, we represent
the total latency of flows in F by the total flow processing



time FPT defined as follows: FPT(A,F) =
∑|F|

i=1 e
A
i . The

FPT metric is less sensitive than FCT to the differences
in arrival times of packets from the same flow, and hence,
allows to obtain worst-case latency performance guarantees for
considered policies. In this work, we will propose scheduling
policies with a constant competitive factor w.r.t. FPT.

Theorem 2. For any set of flows F , a scheduling policy A
outperforms A′ w.r.t. FPT if and only if A outperforms A′

w.r.t. FCT (in particular, OPTFPT is OPTFCT).

Proof. Note that FPT(A,F) = FCT(A,F) + c(F), where
c(F) is a function that does not depend on A. Hence,
FPT(A,F)−FPT(A′,F) = FCT(A,F)−FCT(A′,F).

Theorem 2 shows that from a practical perspective, there is
no difference between FPT and FCT since the minimization
of FPT leads to the minimization of FCT and vice versa. In
the following, we use FPT only in our theoretical analysis. In
the rest of the paper, we denote by OPT the policy OPTFPT

and by eOPT
i the end time of fi in SOPT.

Note that mice flows are more latency-sensitive than elephant
flows. Minimizing the value of FPT (and FCT) leads to
latency reductions for mice flows [9]. However, due to different
QoS requirements, latency sensitivity can differ even for flows
of the same size. The heterogeneity of latency requirements
can be incorporated into the final objective by assigning
weights wi to each flow fi ∈ F . In this case, we minimize
the total weighted flow processing time WFPT defined as
WFPT(A,F) =

∑|F|
i=1 wi · eAi . In Sections V and VI, we will

generalize proposed scheduling policies to the case of weighted
flows preserving the competitiveness of these policies.

IV. OBLIVIOUS ONLINE SCHEDULING POLICIES

The FIFO, BRR [20], LAS [18], and PIAS [6] policies
scheduling flows in a switch S1 with one ingress port are
oblivious online since they do not exploit flow sizes. In this
section, we study properties of these policies and provide their
worst case latency performance guarantees in the general case.

At every time slot, FIFO transmits a packet that had arrived
to S1 first. The main disadvantage of FIFO is that packets of
mice flows may be stuck on the ingress port since packets of
elephant flows had arrived to S1 earlier. For instance, in Fig. 1
FIFO cannot transmit packets of f2 and f3 before the end time
of f1. Theorem 3 shows that FIFO does not have a constant
competitive factor w.r.t. to FPT.

Theorem 3. For any n > 0, there exists a set of flows F such
that FPT(FIFO,F) ≥ n

2 · FPT(OPT,F).

Proof. Consider the following set F of n flows: f1 consists
of l � n2 packets arriving to S1 in the first time slot; the
other (n− 1) flows in F have one packet each and arrive to
S1 in the second time slot. FIFO transmits all packets in f1
before the transmission of a packet in any other flow in F .
Hence, FPT(FIFO,F) ≥ ln. OPT can transmit packets in all
flows in F except f1 before the second packet of f1. Thus,
FPT(OPT,F) ≤ l+cn2, where c is the some constant. Taking
l > cn2 we obtain that FPT(OPT,F) < 2l.
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Figure 1. Sample operation of four oblivious online algorithms and OPT on
three flows. Notation: packets from the same flow are shown in the same
color; a rectangle marked n denotes a group of n packets from the considered
flow; numbers in bold to the right of packets (such as +10 on time 10 for
FIFO) show how much is added to FPT at this time.

To avoid the limitations of FIFO, we can apply fair schedul-
ing policies BRR and LAS that distribute the transmission time
of S1 among all flows in F “evenly”. In this case, packets
from mice flows cannot get stuck on the ingress port of S1.

BRR processes all flows having packets on the ingress
port of SBRR

1 in a cycle; on every iteration of this cycle
BRR transmits a single packet in the current flow. In Fig. 1,
FPT(BRR,F) is significantly smaller than FPT(FIFO,F)
since BRR evenly transmits packets from all flows between
the third and tenth time slots. Unlike FIFO, the BRR policy
has a constant competitive factor w.r.t. FPT.

Theorem 4. BRR is at most 3-competitive w.r.t. FPT.

Proof. Consider a fixed set of flows F . We assume that flows
in F are enumerated in the increasing order of their sizes, i.e.,
l1 ≤ l2 ≤ . . . ≤ l|F| Let Ri be the set of all time slots when fi
has packets on the ingress port of the switch SBRR

1 . Note that
for each flow fi ∈ F , eBRR

i − |Ri| does not exceed the time
when the last packet of fi arrives to S1 and hence does not
exceed eOPT

i . Therefore, to show 3-competitiveness of BRR it
suffices to prove the following:

∑|F|
i=1 |Ri| ≤ 2 ·FPT(OPT,F).

Let Ti = t1, t2, . . . , tli be a sequence of all time slots when
BRR transmits a packet of the flow fi. Note that |Ti| = li.
Let tx−1 and tx be a pair of consecutive time slots in Ti. By
the definition of BRR, for each j > i the set Ri contains at
most one time slot t such that t ∈ Tj and tx−1 ≤ t ≤ tx
(for x = 1 we assume that tx−1 = ai). Hence, |Ri| can be
bounded as follows: |Ri| ≤ (|F| − i + 1) · |Ti| +

∑i−1
j=1 lj ,

where
∑i−1

j=1 lj is an upper bound on the number of time
slots when BRR transmits the packets of the first i− 1 flows.
Summing |Ri| over all flows in F we obtain the following:∑|F|

i=1 |Ri| ≤
∑|F|

i=1(2(|F| − i) + 1) · li.
On the other hand, the value of

∑|F|
i=1

∑i
j=1 lj =∑|F|

i=1(|F| − i + 1) · li is a lower bound on FPT(OPT,F)
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Figure 2. Sample operation of LAS, FIFO, ASRPT, and OPT on four flows;
notation is explained in the caption of Fig. 1.

since all packets of the first i flows in F cannot be transmitted
by any algorithm in time less than

∑i
j=1 lj .

Note that BRR transmits packets evenly between mice and
elephant flows. To minimize FPT in practice, an efficient
scheduling policy should prefer transmitting packets of mice
flows over packets of elephant flows. This idea is reflected in the
LAS scheduling policy [18]. At every time slot, LAS transmits
a packet with the smallest packet number. For instance, in
Fig. 1 LAS transmits the third packet of f1 only after the
transmission of the first two packets of f2 and f3.

Note that packet numbers of most packets in elephant flows
exceed the sizes of mice flows. Hence, similar to SRPT, LAS
transmits packets of mice flows first. LAS also has a constant
competitive factor w.r.t. FPT.

Theorem 5. LAS is at most 3-competitive w.r.t. FPT.

Proof. We use the same notation as in Theorem 4, replacing
BRR by LAS. Similar to Theorem 4, it suffices to show that
|Ri| ≤ (|F| − i + 1) · li +

∑i−1
j=1 lj . Note that at every time

slot in Ri, LAS transmits a packet with number at most li.
Summing the number of such packets in all flows, we obtain
the desired bound on Ri.

Unfortunately, fair policies do not schedule elephant flows of
similar sizes efficiently. For instance, consider a set F of four
flows shown in Fig. 2. In this case, LAS has the largest FPT
among all policies that transmit a packet on each of the first
20 time slots; even FIFO significantly outperforms LAS. Here
LAS transmits 4 packets from flows f1, f2, f3 during the first
12 time slots, i.e., after time slot 12 each of these three flows has
only one packet left. Despite this, LAS finishes the transmission
of the first three flows in F only after the transmission of four
packets from f4. In practice, such situations can lead to a huge
starvation of elephant flows that concurrently arrive to S1.

The scheduling policy in PIAS [6] is the combination of
FIFO and LAS. PIAS maintains k thresholds α1,α2, . . . αk

and defines the relaxed packet number of a packet p as the
largest index of the threshold not exceeding the packet number
of p. At every time slot, PIAS transmits a packet with the
smallest relaxed packet number, breaking ties by FIFO. PIAS
allows to use a fixed number of priorities in S and reduces
the starvation of elephant flows. To minimize FCT, PIAS
periodically changes the threshold values according to the
network load and the flow size distribution. However, at least
in the case when predicted thresholds mismatch arriving traffic
patterns, PIAS does not have a constant competitive factor.

Theorem 6. For any n > 0 and any fixed set of k thresh-
olds α1,α2, . . . αk, there exists a set of flows F such that
FPT(PIAS,F) ≥ n

2 · FPT(OPT,F).

Proof. Multiplying the sizes of flows in the proof of Theorem 3
by αk, we obtain that FPT(PIAS,F) ≥ n

2 · FPT(OPT,F)
since in this case, the relaxed packet number equals k for αk(l−
1) packets in f1 and the last packets in all other flows.

In the next section, we propose a pure online generalization
of SRPT overcoming the limitations of the above policies.

V. SRPT-BASED SCHEDULING WITH UNKNOWN FLOW SIZES

Recall that the SRPT policy on a switch S1 (with a single
ingress port) always transmits a packet of a flow f with the
shortest remaining processing time rpt(f). Note that SRPT
has the following two major drawbacks: (1) SRPT is not a
oblivious online policy since it requires prior knowledge of
flow sizes; (2) SRPT does not take into account gaps between
arrival times of packets in the same flow; for instance, in Fig. 3
SRPT selects f1 for transmission over f2, while OPT chooses
f2 over f1 since the last packet of f1 arrives to S1 significantly
later than its first packet.

To overcome the drawbacks of SRPT, we propose an
oblivious online algorithm agnostic SRPT (ASRPT) that splits
a set of flows having packets on the ingress port of S1 into
two groups: (1) flows whose last packets have arrived to S1;
(2) all other flows. If the first group contains at least one flow,
ASRPT transmits a packet from a flow in this group with
the shortest remaining processing time. Otherwise, ASRPT
transmits a packet from a flow in the second group in FIFO
order. Note that ASRPT is oblivious online since it calculates
rpt(f) only after the arrival of the last f ’s packet to S1.

In Fig. 3, similar to SRPT, ASRPT transmits packets from f3
on the third and fourth time slots since f3 is smaller than f1 and
f2. However, unlike SRPT, ASRPT selects f2 for transmission
over f1 after the first time slot since the last packet of f2
arrives to S1 at the second time slot. This example shows
that ASRPT takes into account the differences between arrival
times of packets in the same flow.

Typically, the last packet of an elephant flow arrives to S1

significantly later than its first packet, i.e., an elephant flow
belongs to the second group in ASRPT most of the time. Hence,
separating flows into two groups also helps to select mice flows
over elephant flows during a transmission phase.
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Figure 3. Sample operation of SRPT, ASRPT and OPT on three flows;
notation is explained in the caption of Fig. 1.

Unlike LAS, ASRPT can schedule elephant flows of similar
sizes efficiently. In Fig. 2, ASRPT obtains the sizes of f1, f2,
and f3 only at the fifth time slot. Despite such delay, ASRPT
significantly outperforms LAS and FIFO. In the evaluation
study, ASRPT significantly outperforms LAS on elephant
flows. In Fig. 1, ASRPT also outperforms all other considered
algorithms except OPT. Theorem 7 shows that theoretical
guarantees improve as well (see Appendix for the proof).

Theorem 7. ASRPT is at most 2-competitive w.r.t. FPT.

Note that flows in the second group of ASRPT can also
be scheduled by BRR, LAS or any other scheduling policy
that does not exploit flow sizes. The competitiveness of these
ASRPT implementations remains the same. Replacing rpt(fi)
by rpt(fi)

wi
in ASRPT, we obtain an extension of ASRPT to

the case of weighted flows, where wi is the weight of fi. This
extension is at most 2-competitive w.r.t. to WFPT (the proof
is the same as in Theorem 7).

VI. REMOVING DEPENDENCY ON FLOW SIZES

So far we have considered policies scheduling flows in a
switch S1 with a single ingress port. Now we turn to the case
of a switch S containing multiple ingress and egress ports. In
the following, we propose a general method transforming a
policy A on S exploiting flow sizes into the oblivious online
policy GA. The transformation of A into GA is based on the
same design principles as the transformation of SRPT into
ASRPT (see Section V). GA is shown in Algorithm 1.

Similar to ASRPT, GA divides a set of flows with packets
on their ingress ports into two groups: (1) flows whose last
packets have been arrived to S; and (2) all other flows. GA
schedules flows in the first group in the same way as A (line 3
in Algorithm 1) and flows in the second group according
to the FIFO policy (line 7 in Algorithm 1). GA prefers
transmitting packets from flows in the first group. Since selected
flows cannot share the same ingress or egress port, GA does
not consider flows in the second group sharing ports with
flows chosen by A for transmission (line 5 in Algorithm 1).
Theorem 8 shows that the competitiveness of A in the case of
gapless flows (flows whose packets arrive to S without time

Algorithm 1 GA
1: F ← set of flows having packets on their ingress ports
2: G1 ← set of flows in F whose last packets have arrived to S
3: Result1 ← flows in G1 that are chosen by A for transmission
4: G2 ← F \G1

5: G2 ← G2 \ {fi : ini = inj or outi = outj for some fj ∈ Result1}
6: Result2 ← flows in G2 that are chosen by FIFO for transmission
7: Result← Result1 ∪ Result2
8: transmit first untransmitted packets of the flows in Result

gaps) translates into the competitiveness of GA in the general
case with only a constant factor (see Appendix for the proof).

Theorem 8. If A is k-competitive w.r.t. FPT in the case of
gapless flows then GA is at most 3k-competitive w.r.t. FPT
in the general case.

Applying the proposed above transformation to SRPT we
obtain the ASRPT policy. Hence, Theorem 8 immediately
implies that ASRPT is at most 3-competitive w.r.t. FPT.
This bound on ASRPT competitiveness is weaker than in
Theorem 7 since Theorem 8 shows properties of general
scheduling policies managing a switch S that may contain
multiple ingress and egress ports. Similarly to ASRPT, GA
can also schedule flows in the second group by any scheduling
policy that does not exploit flow sizes. The competitiveness of
these GA implementations remains the same. In the case of
weighted flows, GA is at most 3k-competitive w.r.t. WFPT if
the corresponding A is k-competitive w.r.t. WFPT (the proof
is the same as in Theorem 8).

VII. ASCC DESIGN

SRPT-based congestion controls approximate the perfor-
mance of the Ideal non-oblivious online policy on a switch
S scheduling flows greedily according to remaining flow
sizes (see Algorithm 1 in [5]). The transformation from
Section VI can convert Ideal into an oblivious online policy
GIdeal. This section shows how to incorporate the proposed
SRPT generalizations into DCTCP [1] in order to approximate
the performance of the GIdeal policy. We call the resulting
congestion control ASCC and describe four general design
principles of ASCC. Below, we say that a flow f is complete
if its last packet is available for transmission at the source of
f ; otherwise, f is incomplete.

Buffer management policy. Each source implementing
ASCC marks packets by a special bit that allows other network
elements to determine whether the packet is from a complete or
an incomplete flow. Each network element maintains separate
queues for packets from complete and incomplete flows.
Packets from complete flows are transmitted according to
SRPT priorities specified by a flow’s source, and packets from
incomplete flows are transmitted according to FIFO. A network
element transmits packets from incomplete flow only if there
are no packets from complete flows. When the buffer overflows,
the ASCC buffer management policy drops the last arriving
packet from an incomplete flow; if there is no such packet, the
lowest priority packet from a complete flow is dropped.

Retransmit when complete. Let us fix a flow f . Consider
a set L of packets from f that are not acknowledged by f ’s
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Figure 4. AFCT for ASCC, SRPT, PIAS, and LAS on the data-mining workload (DM) among: (a, e) all flows; (b, f) mice flows; (c, g) medium-size flows; (d,
h) elephant flows. In (a-d) we vary α reflecting the spacing between arrival times of packets from the same flow; in (e-h) we vary the load L.

destination D and were sent by f ’s source S before f became
complete. Network elements transmit packets from L only
if their buffers do not contain packets from complete flows.
Hence, a packet from L can arrive to D with a noticeable
delay or can be dropped with a much higher probability than
packets from complete flows. Thus, when f becomes complete,
ASCC transmits copies of packets in L marking them as for
a complete flow. Note that packets in L can arrive to D later
than these retransmitted copies, but D ignores all such packets.

Adjust cwnd when complete. The congestion window
cwnd of incomplete flows can be very low since packets from
complete flows are transmitted before packets from incomplete
flows. Hence, when a flow becomes complete its congestion
window should be increased. Before the transmission of packets
from a flow that has just become complete, ASCC makes cwnd
no less than the bandwidth-delay product in the idle network.

Ignore ECN from incomplete flows. In DCTCP, a flow’s
destination transmits ECN to a flow’s source if for an incoming
packet p, in at least one network element, the number of packets
transmitted by this element between p’s enque and p’s deque
exceeds a certain threshold. Due to the same reasons as in
previous two cases, for ASCC packets from incomplete flows
are much more likely to exceed the threshold. Once a flow
becomes complete, ECNs generated for packets that are already
in the network will not reflect the queuing delay the future
packets will experience. Thus, after this point ASCC ignores all
ECNs caused by packets sent before the flow became complete.

Observe that with the growth of the network load, the perfor-
mance of ASCC w.r.t. FCT becomes close to the performance of
corresponding SRPT-based congestion controls that know flow
sizes in advance since flows become complete more frequently.
At the same time, high network load can lead to significant
performance degradation of LAS-based congestion controls due
to the mutual starvation of elephant and medium-size flows.

Intuitively, ASCC gives to complete flows as much network
resources as they need and transmits these flows according to
SRPT. The remaining network resources are used to transmit
incomplete flows. For instance, if flow fragments contain

intermediate results of SQL queries, ASCC prefers transmitting
results of queries whose execution has finished.

VIII. EXPERIMENTAL EVALUATION

In this section we present a comprehensive evaluation of
ASCC’s ability to optimize average flow completion times
(AFCT). The simulation code is publicly available at [21].

Topology. We use the same leaf-spine topology as pFab-
ric [5] and PIAS [6] with 4 spine switches, 9 ToR leaf switches,
and 16 servers connected to each ToR switch, i.e., 144 servers
in total. Server-to-ToR link rates are 10Gbps, ToR-to-spine are
40Gbps. Every two servers exchange flows independently.

Workloads. Flow sizes are generated from empirical web-
search [1] (WS) and data-mining [22] (DM) distributions that
have been extensively used in the literature (see pFabric [5] and
PIAS [6]). In the evaluation, the arrival time of a packet is the
time when it becomes available to the network for transmission
and the arrival time ai of a flow fi is the arrival time of the
fi’s first packet. Following [5] and [6], we generate flow arrival
times by Pois(λ) distribution: for a given load L ∈ (0, 1) the
flow arrival rate λ(L) is derived as in PIAS [6]. Due to the
lack of information on packet arrival times, we generate them
synthetically. Let ∆ti be the minimum possible time that it
takes to send all packets of a flow fi out of the sender’s host
interface. We distribute arrival times of fi’s packets uniformly
in [ai, ai + α∆ti], where α ≥ 0 is a parameter reflecting the
spacing between arrival times of fi’s packets.

Evaluated CCs. We compare ASCC with three other con-
gestion controls (CCs): SRPT and LAS [18] with DCTCP [1]
end host control logic and PIAS [6]. LAS and PIAS do not
rely on a priori known flow sizes, and we augment SRPT with
a clairvoyant ability to learn the flow size at the moment when
the first packet arrives to the flow source. We set buffer sizes
bs and rtomin following PIAS’s evaluations: bs = 240 pkts.
and rtomin ≈ 24RTT. Note, all four CCs use DCTCP-based
control logic at end hosts allowing for a fair comparison w.r.t.
scheduling at the switches.

Performance metric. We compare AFCT while varying L
from 0.5 to 0.9 and α from 0 to 2. As α grows from 0 to 1
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Figure 5. AFCT for ASCC, SRPT, PIAS, and LAS on the web-search workload (WS) among: (a, e) all flows; (b, f) mice flows; (c, g) medium-size flows; (d,
h) elephant flows. In (a-d) we vary α reflecting the spacing between arrival times of packets from the same flow; in (e-h) we vary the load L.

we expect PIAS, SRPT, and LAS not to change their behavior:
first, flow packets arrive to the source faster than its interface
transmits, so there are no gaps in flow data; second, none of
the three use packet arrival times to set packet priorities. At
the same time, ASCC’s AFCT grows slightly due to the true
flow size being learnt later. As α grows further to 2.0, arrival
times of flow packets become more and more dispersed in time,
affecting AFCTs for all CCs. We show AFCT among all flows
in Fig. 4(a,e) and Fig. 5(a,e), among mice flows (<100KB) in
Fig. 4(b,f) and Fig. 5(b,f), among medium-size flows (100KB
to 10MB) in Fig. 4(c,g) and Fig. 5(c,g), and, finally, among
elephant flows (>10MB) in Fig. 4(d,h) and Fig. 5(d,h).

AFCT among mice flows. In DM, the average size of mice
flows is 2.68 pkts with more than 60% having only one packet,
for that reason, mice flows’ AFCT mainly depends on FCTs of
single-packet flows. All CCs transmit single-packet flows with
near-optimal latency, so in Fig. 4(b,f) the relative difference in
AFCT never exceeds 3%.

The average size of mice flows in WS is 21.77 pkts,
that is, much larger than in DM. As a result, we see more
variability in AFCT among the considered CCs. SRPT and
LAS provide near-optimal latency for mice flows since both
tend to transmit packets from a smaller flow before transmitting
from substantially larger ones. In contrast, PIAS and ASCC
much more frequently send a packet from a smaller flow after
sending from a larger one, which leads to their lower mice-flow
performance compared to LAS and SRPT (see Fig. 5(b,f)).

Focusing further on ASCC vs PIAS performance, in Fig. 5(b)
at α = 0, we see ASCC behaving exactly as SRPT with AFCT
18% less than PIAS’s. As α increases from 0 to 2, the delay
before ASCC learns the true flow size increases and manifests
as higher AFCT. In particular, for α = 1 the AFCT of ASCC
begins to exceed that of PIAS and for α = 2 it is 9% higher.
In Fig. 5(f), where we set α = 1, PIAS slightly outperforms
ASCC, but the difference almost disappears at higher loads.
The above observations let us conclude that for mice flows
ASCC is better than PIAS at small αs and higher loads.

AFCTs of LAS and SRPT grow when α increases from
1 to 2 in Fig. 5(b) as data becomes available later in time.

Over this interval ASCC and SRPT show exactly the same rate
of AFCT growth, implying that out of the two main reasons
for ASCC’s AFCT increase, namely lack of knowledge and
lack of data, the latter is the dominant factor.

AFCT among medium-size flows. For medium-size flows
from DM SRPT and LAS continue to show near-optimal
behavior (see Fig. 4(c,g)). In Fig. 4(c) ASCC outperforms
PIAS in a majority of cases (except α ≥ 1.6). In Fig. 4(g)
ASCC is everywhere better than PIAS: ASCC’s AFCT is 10%
lower at L = 0.5 and is 33% lower at L = 0.9. Also, when
in Fig. 4(c) α ∈ [1, 2], PIAS’s rate of AFCT growth is much
lower relative to ASCC’s as PIAS suffers from its scheduling
inefficiency, while ASCC’s growth is due to delayed data.

Compared to DM there are 3.3× more medium-size flows
in WS with average size 2.5× larger. These two factors lead
to an order of magnitude higher AFCTs for all four CCs (see
Fig. 5(c,g)). In such a harsh environment, performance of PIAS
and LAS degrades substantially due to mutual starvation among
concurrent medium-size flows; e.g., at L = 0.9 their AFCTs
are, respectively, 2× and 2.3× higher than ASCC’s. In contrast,
for ASCC a more contentious environment with higher FCTs
means shorter, relative to FCTs, periods of uncertainty, which
brings it closer to SRPT, and we see in Fig. 5(g) that ASCC’s
AFCT never exceeds SRPT’s by more than 10%.

Finally, in Fig. 5(c) AFCTs of SRPT and LAS start to
decrease for α > 1. Such a counter-intuitive effect is also seen
on elephant flows, so we explain it in the next paragraph.

AFCT among elephant flows. LAS loses substantially to
other CCs in both workloads (see Fig. 5(d,h) and Fig. 4(d,h))
by starving larger flows. SRPT and ASCC are almost identical
for the same reasons as for medium-size flows in WS. PIAS’s
AFCT is up to 25% higher than SRPT’s and ASCC’s for DM
and 10% lower for WS. In the latter case, PIAS has a better
AFCT for elephant flows only because it prefers packets from
elephant flows more often than SPRT and ASCC. To verify
this hypothesis, we ran all three CCs on elephant flows only,
and indeed, both ASCC and SRPT outperformed PIAS.

The counterintuitive effect we have seen on medium-sized
flows, namely decreasing AFCT with increasing α, becomes



very pronounced for LAS on elephant flows. There are two
contributing factors. First, LAS has poor AFCT performance
for similarly-sized flows, and higher α restricts this natural
tendency of LAS. Second, larger α makes data arrival more
evenly spread, reducing instantaneous load on the network
and hence, the number of packet drops. SRPT exhibits the
same effect but to a much lesser extent thanks to SRPT’s
near-optimal behavior.

AFCT among all flows. For both workloads, among the four
approaches LAS shows the worst performance. The ASCC’s
overall performance follows closely the near-optimal behavior
of SRPT. Our ASCC approach outperforms LAS and PIAS in
all experiments with up to 30% less AFCT in WS and with up
to 25% less AFCT in DM.

The evaluation confirms that ASCC robustly deals with un-
known flow sizes avoiding starvation of concurrent elephant and
medium-size flows. In particular, as burst intensity increases,
LAS-based CCs show severe performance degradation, while
ASCC’s behavior mimics near-optimal clairvoyant SRPT.

IX. RELATED WORK

Existing approaches that have been proposed for datacenter
transports include both protocols that require knowledge of
flow sizes and protocols that do not.

Requiring flow sizes. pFabric [5] is an information-aware
transport mechanism that processes packets according to SRPT.
Fastpath [23] allows to exploit commodity network fabrics
with a centralized scheduler, but it loses many performance
benefits provided by pFabric. pHost [8] attempts to achieve
the performance of pFabric by running additional in-network
control that lets it run on commodity switches with FIFO
packet processing. HyLine [24] performs joint load balancing
and path-aware flow scheduling, looking for a balance between
centralized and distributed techniques. Sincronia [14] schedules
coflows, minimizing coflow completion time. Homa [7] is a
receiver-driven SRPT-based transport protocol expoloiting a
fixed number of different priorities in the network elements.
SRPT has also been studied under stochastic assumptions for
task scheduling in multi-server environments [25].

Not requiring flow sizes. A number of recent designs use
flow rate control to achieve desired performance characteristics.
In particular, DCTCP, a flow size agnostic solution, uses
an adaptive congestion control mechanism based on ECN
to keep queue sizes small [1]. D2TCP [2] uses rate control
to maximize the number of flows satisfying their respective
deadlines, and MCP [26] enhances D2TCP with ECN. However,
these transports do not support flow preemption and do not
proritize packet processing as pFabric does [5], which can
negatively affect performance. LAS [18] is flow size agnostic
and uses transmitted flow sizes as priorities for the flows.
PIAS [6] implements a LAS variation designed for commodity
switches [6] and is based on the DCTCP. PDQ [4] and D3 [3]
exploit network-wide arbitration but can introduce high flow
switching overhead. [27] uses machine learning to predict flow
sizes. PASE [28] is a combined solution that uses arbitration
control plane, endpoint transport protocol that is aware of

priority queues, and an adjustable rate control mechanism. [29]
propose efficient load balancing flowlet schemes.

X. CONCLUSION

In this work, we study and analyze analytically congestion
control mechanisms without prior knowledge of flow sizes.
SRPT-based policies are very attractive with respect to perfor-
mance, but by default they require flow sizes to be available
a priori. We have proposed SRPT generalizations for this
harsh environment. Extensive evaluations that we have carried
out show that proposed SRPT generalizations are not only
interesting from a theoretical perspective but also represent a
viable practical solution at least on the considered workloads.
We believe that other SRPT-based transports such as [7, 8] can
incorporate the proposed design principles as well, and they
can be tested by the commercial community under operational
conditions, moving towards real deployment scenarios.
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APPENDIX

Here, we present proofs of Theorems 1, 7 and 8. The proof
of Theorem 1 is based on Lemma 9. In the following, we
denote by active(A,F , t) the number of active flows in SA

1

at time t, where F is the set of flows arriving to S1.

Lemma 9. Assume that algorithms A, A′ satisfy the following:
active(A,F , t) = l and active(A′,F , t) = k for some F and
t; then, there is a set of flows F ′ such that FCT(A,F ′) ≥
l+1
k+2 · FCT(OPT,F ′).

Proof. We construct F ′ by F in the following way: (1) we
increase the arrival time of each flow packet in F arriving to
S1 at time t or later by a constant T exceeding FCT(A′,F);
(2) then, for each 0 ≤ i < T , we add to F ′ a flow that consists
of a single packet and arrives to S1 at time t+ i. In the case of
F ′, the switch SA has at least l+ 1 active flows at every time
slot t1 such that t ≤ t1 < t+ T . Observe that FCT(A,F ′) =∑

t active(A,F ′, t). Hence, FCT(A,F ′) ≥ T · (l + 1).
Let A′′ be the scheduling policy operating on F ′ at time t′

as follows: (1) if t′ < t then A′′ transmits the same packet as
A′ on F at time t′; (2) if t ≤ t′ < T then A′ transmits a packet
in a flow arriving to S1 at the current time slot; (3) otherwise,
A′ transmits the same packet as A′ on F at time t′ − T . SA′′

has exactly k+1 active flows at every time slot t1 such that t ≤
t1 < t+T . Hence, FCT(A′′,F ′) = T · (k+1)+FCT(A′,F).
Since T > FCT(A′,F), we obtain that FCT(A,F ′) ≥ l+1

k+2 ·
FCT(A′′,F ′) ≥ l+1

k+2 · FCT(OPT,F ′)

Proof of Theorem 1. Consider a scheduling policy A and a
fixed set F of n flows consisting of l packets each. To prove
the theorem, we define arrival times of flow packets in F and
propose an algorithm A′ such that active(A,F , t+1) = n and
active(A′,F , t + 1) = 1, where t = l · (n − 1). In this case,
the desired lower bound on the competitiveness of A directly
follows from Lemma 9. In the following we assume that l can
be divided by n2 + 1 at least 2n times i.e., l = c · (n2 + 1)2n.

First l1 = l · (1− 1
n2+1 ) packets in each flow in F arrive to

S1 at the first time slot. There is at least one flow in F such
that A transmits at most l1 · (1− 1

n ) packets from this flow in
the first t1 = l1 · (n− 1) time slots; w.l.o.g. we assume that
fn is a such flow. The remaining rn = l − l1 packets of fn
arrive to S1 at time t1 + 1. Note that fn will be active in SA

1

at time t+ 1 since the value of t− t1 + 1 is no smaller than
the number of packets in fn that are not transmitted by A in
the first t1 time slots.

Next l2 = (l− l1) · (1− 1
n2+1 ) packets in each of first n− 1

flows in F arrive to S1 at time t1 + rn + 1. Again, there is
at least one flow among first n − 1 flows in F such that A
transmits at most l1 + l2 · (1− 1

n−1 ) packets from this flow in
the first t2 = l2 ·(n−2)+t1+rn time slots; w.l.o.g. we assume
that fn−1 is a such flow. The remaining rn−1 = l − l1 − l2
packets of fn−1 arrive to S1 at time t2 + 1. Similarly to fn,
the flow fn−1 will be active in SA

1 at time t + 1 since the
value of t− t2 + 1 is no smaller than the number of packets
in fn−1 that are not transmitted by A in the first t2 time slots.

We recursively repeat the described above construction until
only one flow remains; the last packet of f1 arrives to S1 at
time t+ 1. As a result, all flows in F are active in SA at time
t+ 1. On the other hand, there is an algorithm A′ transmitting
all packets from all F flows except f1 in the first t time slots,
i.e., active(A′,F , t+ 1) = 1.

Proof of Theorem 8. Consider a fixed set of flows F =
{f1, f2, . . . , f|F|}. Assume that flows in F are ordered in
the increasing order of the end time eOPT

i in SOPT. Let
F ′ = {f ′1, f ′2, . . . , f ′|F|} be a set of gapless flows such that:
(1) the arrival time a′i of f ′i equals to the arrival time of the
last packet of fi; (2) the size l′i of f ′i equals to the size li of
fi minus the number of packets in fi transmitted by A before
the time a′i. By definition of A, FPT(GA,F) = FPT(A,F ′).
Hence, FPT(GA,F) = FPT(A,F ′) ≤ k · FPT(OPT,F ′).

Let ID be a policy that greedily selects flows in F ′
for the transmission according to the flow numbers. Since
FPT(OPT,F ′) < FPT(ID,F ′), to prove the theorem it is
sufficient to show that FPT(ID,F ′) ≤ 3 · FPT(OPT,F). Let
pini be the set of all packets in all flows f ′j ∈ F ′ such that
j < i and inj = ini. Similarly, poutj is the set of all packets
in all flows f ′j ∈ F ′ such that j < i and outj = outi. The
ID policy does not transmit a packet from a flow f ′i only if
f ′i has not arrived yet or ID transmits a packet from the set
pini ∪ pouti. Hence, the end time ẽ′i of f ′i in SID does not
exceed a′i + l′i − 1 + |pini|+ |pouti|,

Recall that a′i also equals the arrival time of the last packet
in a flow fi, and flows in F are ordered in the increasing
order of eOPT

i . The end time eOPT
i of fi in SOPT is not less than

max(a′i, |pini|, |pouti|) + li − 1 since OPT transmits the last
packet of fi no earlier than any other packet in the first i flows
of F . As a result, ẽ′i ≤ 3 · eOPT

i since l′i ≤ li and a+ b+ c ≤
3 ·max(a, b, c) for any a, b, and c. Summing over all i from 1
to |F| we obtain that FPT(ID,F ′) ≤ 3 · FPT(OPT,F)

Proof of Theorem 7. Recall that SRPT is OPT for gapless
flows on S1. Therefore, it is sufficient to prove that for S1, in
Theorem 8, the competitiveness of GA w.r.t FPT in the general
case is only two times bigger than the competitiveness of A
w.r.t. FPT in the case of gapless flows. Hence, it is sufficient
to show that in the proof of Theorem 8, FPT(ID,F ′) ≤
2 · FPT(OPT,F) if the considered switch contains a single
ingress port. In this case, pini = pouti = pini∪pouti. Hence,
ẽ′i ≤ a′i+l′i−1+ |pini| ≤ 2 ·max(a′i, |pini|, |pouti|)+li−1 ≤
2eOPT

i implying that FPT(ID,F ′) ≤ 2 · FPT(OPT,F).


