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Abstract—Network traffic classification has been an interesting
topic of research for many years. It plays a crucial role in many
network applications including resource allocation, intrusion
detection, and quality of service. Network traffic is essentially
a sequence or flow of time-stamped packets that are exchanged
between two devices. The traffic flow also contains payload
data along with information about packet statistics such as size,
inter-arrival time, and direction. As these statistics are obtained
from the time-stamped packets, they form a Multivariate Time
Series (MTS). Such an MTS needs to be classified as early as
possible to identify an Internet application associated with the
generated traffic flow. In this paper, we propose an Early traffic
Flow Classification (EFC) approach for identifying Internet
applications using MTS. The approach estimates application-wise
minimum required packets from the training data by employing
k-means clustering and Long Short Term Memory model. We
also develop a class forwarding method to utilize correlation that
exists among different packet statistics. Additionally, we collect a
real-world traffic flow dataset to evaluate the effectiveness of the
approach. Experimental results show that EFC approach requires
only the first 15 packets of the flow to achieve an accuracy of
more than 90%.

Index Terms—Early classification, Internet applications, mul-
tivariate time series, traffic flow.

I. INTRODUCTION

Network traffic classification is one of the essential task
for resource allocation, intrusion detection, Quality of Service
(QoS) provisioning, and so on [1], [2]. It plays an important
role in identifying the network problems and thus helps the
Internet service providers to react quickly according to the
occurred problem. Literature indicates that several approaches
have been developed aiming to classify the network traffic
into categories such as normal or malicious [3], [4], type of
botnet [5], name of application (e.g., Youtube, Gmail, Skype,
etc.) [6]–[8], and so on [9], [10]. Network traffic refers to
a flow of data packets that are moving across the connected
devices. Such a flow contains sufficient amount of information
(i.e., port number, source and destination IP, packet size, inter-
arrival time, and payload) to identify its category.

With the growth of diverse applications over the Internet, it
becomes extremely important to identify the name or type of
application using its traffic flow, to meet the QoS requirements.
As the traffic flow contains a sequence of time-stamped
packets (generated by the associated application), it can be
treated as a time series [11]. Specifically, the traffic flow

consists of multiple correlated statistics (e.g., size, inter-arrival
time, direction) against each packet. These statistics form a
Multivariate Time Series (MTS) corresponding to a traffic
flow. Classification of such an MTS refers to the prediction of
its class label (or application) by using a training dataset [12].
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Fig. 1: An example of early classification for identifying an applica-
tion by using the MTS of its traffic flow.

Classification of the traffic flow is a cumbersome and
time consuming task if one wishes to use all the arrived
packets (or end of the flow) [7]. However, for real-time
traffic classification, it is essential to identify an application
(associated with the flow) as early as possible, without waiting
for all the data packets. So that the service provider can
take appropriate action (e.g., block unwanted application and
allocate demanded resources) at the earliest, according to the
identified application accessed by a device. A classification
approach that can identify an application using an incomplete
MTS (traffic flow with fewer data packets, not all) is called as
early classification of MTS [13], [14]. As an early classification
approach uses fewer packets of flow, it influences the accuracy
of classifier. It suggests that the early classification approach
should estimate Minimum Required Packets or data Points
(MRP) from training data while maintaining an adequate
level of accuracy. Fig. 1 illustrates early classification of a
traffic flow using its MTS, to identify the associated Internet
application that has generated the traffic flow.

Previous studies have proposed various classification ap-
proaches to identify the application or protocol. A compre-
hensive survey of the existing approaches can be found in [1].
We discuss some of the recent and novel contributions here.
In [15], [16], the authors attempted to identify the network
application or protocol by using the features extracted from
the packets’ contents of the traffic flow. The authors in [17]
introduced a feature based traffic flow classification approach
to distinguish the sensory data from multimedia. A waveletISBN 978-3-903176-39-3 © 2021 IFIP



based approach is proposed in [18] that considered only packet
size (within a specified time window) of the flow for classifica-
tion. In a work [11], the authors developed a sampling strategy
to filter out the zero-length packets (containing only control
information) that are used to classify the encrypted TCP flows.
Another work [8] also attempted to identify the applications
such as Bing, Slack, Youtube, etc., using encrypted packet
contents. Slightly different from above studies, the authors
in [3] developed an intrusion detection technique for protecting
network devices by classifying the network protocols such
as Message Queue Telemetry Transport (MQTT), Hyper Text
Transfer Protocol (HTTP), and Domain Name Service (DNS).
Further, deep neural networks have also been adopted for
the traffic flow classification. For example, Rezaei et al. [7]
employed a Convolutional Neural Network (CNN) to identify
the applications by using the size and inter-arrival time infor-
mation of packets. The work in [19] attempted to mitigate the
problem of traffic burst in data center networks by classifying
flows. Finally, the authors in [6] developed a CNN based traffic
classifier, to identify the application using its Quick UDP
Internet Connection (QUIC) traffic flow (may be generated
through simulation [20]) while extracting thousands of packet-
based deep features from the flow.

A. Motivation

Though the problem of traffic classification is quite mature,
there are still some research issues that are not addressed yet
by the existing work.

• As most of the existing approaches [7], [11], [15] used
univariate time series of packet-based statistics to classify
the traffic flow, they could not utilize the correlation
among time series. Such a correlation helps to obtain
better identifiable patterns in the flow and thus improves
the interpretability and accuracy of the classification
process with fewer packets.

• The content of first few packets of the flow can classify
the associated application correctly [15], [16]. However,
the approaches in [15], [16] fail to classify the flow if the
packets are encrypted.

• The existing work [7], [8] managed to achieve an accu-
racy of around 90% by using first 30 to 60 packets of flow,
they do not establish any meaningful relationship between
MRP and accuracy. Such a relation can provide a crucial
information to the service providers who is interested to
classify the flow with minimum number of packets bu
with some desired level of accuracy.

• In addition to above, some approaches [18], [21] can
classify the traffic flow only when it is ended and thus
do not provide any earliness in the classification.

With the goal of addressing the above issues, we solve the
following problem: how to identify an Internet application
by using an MTS of statistics (packet size, inter-arrival time,
and direction) of packets? In particular, this work proposes an
Early traffic Flow Classification (EFC) approach.

B. Major contributions

We make following contributions in this paper:
• We propose an early classification approach (EFC) to

identify an Internet application by using its traffic flow.
EFC approach uses the MTS of packet-based statistics
including size, inter-arrival time, and direction, without
accessing the content of packets.

• EFC approach employs k-means clustering and deep
neural networks, in particular Long Short Term Memory
(LSTM) model, to estimate class-wise MRPs using a
given training dataset. Such estimated MRPs are used to
provides earliness in the classification.

• This work also develops a class forwarding method to
incorporate the correlation between the time series during
classification. The correlation helps in improving the
accuracy as well as earliness.

• Finally, we collect a real-world traffic flow dataset for
five common Internet applications. This work carried out
several experiments to evaluate the performance of EFC
approach on the collected and two existing datasets using
accuracy, earliness, and F1 score.

The rest of the paper is structured as follows. Next sec-
tion discusses the terminologies and notations that are used
throughout this work. Section III presents the proposed early
classification approach for traffic flow using MTS. We report
the experimental results in Section IV to show the performance
of EFC approach independently and with comparison of recent
existing approaches. Finally, Section V concludes the paper.

II. PRELIMINARY

This section defines terminologies and notations to improve
the readability of the paper. We also give an intuition behind
the early classification of traffic flow later in this section.
Table I presents the list of notations used in this work.

Let D = {(X j ,Yj) | 1 ≤ j ≤ N} denote an MTS dataset
where X j is an instance of MTS belonging to class label
Yj . Each MTS in D belongs to one of the l class labels in
{y1, y2, · · · , yl}. In this work, an MTS corresponds to a traffic
flow, which consists of correlated time series of packet-based
statistics such as size, inter-arrival time, and direction. In other
words, the traffic flow is a 3-dimensional time series. A class
label corresponds an associated application or protocol that
generated the traffic flow in the network.

Definition 1 (Component). A time series is referred as
component if it is a part of MTS. It is a sequence of temporal
ordered data points taken for a fixed period of time. Let n
be the number of components in the MTS of D and X be
a component of the MTS. Now, jth MTS of D can be given
as X j = {Xji | 1 ≤ i ≤ n}. A dataset with all N time
series corresponding to one particular component of the MTS
is denoted by D = {Xj | 1 ≤ j ≤ N}.

Definition 2 (Complete MTS). An MTS is said to be complete
if it consists of the data points (packet-based statistics) corre-
sponding to all packets of a complete (or ended) flow. Let the



length of a complete MTS is denoted by T . A complete MTS
can now be given as X = {Xi | 1 ≤ i ≤ n} where Xi ∈ RT .

Definition 3 (Earliness). It is defined as the percentage of
packets (of a complete traffic flow) that are not used in the
classification of the flow. Earliness of an MTS (corresponding
to a traffic flow) is mathematically expressed as

Earliness(in %) =
T − t
T
× 100, (1)

where T and t denote length of complete MTS and number of
data points or packets used in the classification, respectively.

A. Long Short Term Memory (LSTM)

It is a type of recurrent neural network, which is capable
enough to capture long term temporal dependencies in a
given sequential input (i.e., time series) [22]. A LSTM unit
consists of different memory blocks known as cells. These
cells retain the relevant information which has occurred at
arbitrary time steps in the time series. LSTM regulates the flow
of information from input to output using a gated mechanism.
It uses three different gates (i.e., input, output, and forget) to
update the information of different cells and to decide whether
the current information should be retained or not.

For a given input time series X ∈ D, let X(t), ht−1, and
ct−1 denote a current input vector at time t, output state at
time t − 1, and cell state at time t − 1, respectively. At time
step t, a LSTM unit performs following operations:

ft = σ(WfX(t) + Vfht−1),

it = σ(WiX(t) + Viht−1),

c̃t = tanh(WcX(t) + Vcht−1),

ct = ft ⊗ ct−1 + it ⊗ c̃t,
ht = σ(WoX(t) + Voht−1)⊗ tanh(ct), (2)

where Wk and Vk denote weight matrices that are learned
by LSTM during training and k ∈ {f, i, c, o}. The symbols
σ and ⊗ denote sigmoid activation function and element-wise
product, respectively.

TABLE I: Notations used in this work.

Symbol Description Symbol Description
D Training MTS dataset X A multivariate time series
D Dataset with only one component X j jth MTS of dataset D
T Length of complete MTS Yj Class label of X j

N Number of MTS in D Xi ith component of MTS
n Number of components in MTS X

j
i ith component of X j

l Total number of classes in D Mc MRP for yc class on D
X An univariate time series Wi MRP for yc class on D
X(t) Time series of length t βββ Desired level of accuracy

B. Intuition behind early classification of traffic flow

In this work, early classification of traffic flow mainly
refers to identification of an application, associated with the
traffic flow, by using minimum number of packets. Such early
classification is required to make quick decisions about the
services that are being provided to a particular application.
In addition, it helps to save significant amount of processing
and computational power during classification as only first few

packets are to be processed. Further, MTS representation of
the traffic flow allows the incorporation of correlation that may
exist among the components. Such correlation improves the
earliness as well as interpretability of the classification process.

III. EARLY CLASSIFICATION APPROACH FOR TRAFFIC
FLOW USING MTS

In this section, we propose an early classification approach
(EFC) to identify the application associated with a traffic flow.
The approach uses MTS of packet-based statistics of the flow
for its classification. The approach consists of mainly two
phases: training and testing. In training phase, the approach
builds an early classifier by estimating class-wise MRPs using
a given MTS training dataset D. In testing phase, the classifier
predicts the class label of an incomplete MTS (corresponding
to a traffic flow) by using the obtained MRPs. The approach
assumes that the training dataset contains only labeled and
complete MTS. Fig. 2 illustrates an overview of EFC approach
where an MTS dataset is given as input, consisting of packet-
based statistics against the traffic flow generated by various
Internet applications.

A. Training phase

This phase builds an early classifier by estimating MRPs for
each class label. EFC approach employs k-means clustering
and LSTM model to compute the MRPs. For a given dataset
D, EFC approach first computes class-wise MRPs for each
component separately. Later, it estimates the MRPs for the
MTS with the help of obtained MRPs of individual compo-
nents using a correlation based similarity measure. Training
phase is summarized from Lines 1 to 18 in Algorithm 1. Let
D = {Xj ,Yj |1 ≤ j ≤ N} be a part of given dataset D,
which contains all time series (i.e., N ) of a single component,
where Xj and Yj denote jth time series and its class label
Yj ∈ {y1, y2, · · · , yl}, respectively.

1) MRP estimation for D: For a given dataset D, the objec-
tive of EFC approach is to compute an MRP corresponding to
each class label. In order to compute the MRPs, the approach
learns a mapping X(t) → Y with varying length of time series,
i.e., 1 ≤ t ≤ T , where T denotes the length of complete time
series. For a time series X ∈ D, EFC approach obtains the
MRP using following steps:

(a) Obtain prior probabilities using k-means: In this step,
EFC applies k-means clustering on the given dataset D with
k = l, where l is the total number of class labels. k-means
takes complete time series (i.e., with length T ) to obtain
the clusters of similar instances. Let H denote the confusion
matrix (of size l×l) obtained after clustering. Prior probability
of any class label yc can be obtained using H as

Pr(Gc) = Hcc, (3)

where Gc denotes the cluster obtained corresponding to the true
class label yc and 1 ≤ c ≤ l. The probability that X(t) belongs
to Gc is computed by finding its similarity with centroids of all
the l clusters using Euclidean distance. Let sc be the similarity
between time series X(t) and cluster Gc using first t data points
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Fig. 2: An overview of EFC approach for traffic flow classification using MTS of packet-based statistics.

only. Such a similarity is given as sc = dist(X(t),Gc), where
dist(·) denotes the Euclidean distance. Any other distance
metric can readily be incorporated here. Next, EFC computes
an average distance from X(t) to the clusters, as follows

S̄ =
1

l

l∑
c=1

sc. (4)

Now, the probability that X(t) belongs to a cluster Gc is

Pr

(
Gc

X(t)

)
=

δc∑l
c=1 δc

, where δc = S̄ − sc. (5)

(b) Obtain posterior probabilities using LSTM model: EFC
approach employs a LSTM model to obtain posterior probabil-
ities of the class labels. The model consists of 3 sequentially
connected LSTM units (with 16 neurons each) followed by
a Fully Connected (FC) layer and a softmax function, as
shown in Fig. 3. The softmax computes class-wise posterior
probabilities for a given training dataset D. The LSTM model
learns a mapping Γt : Rt → Y , where 1 ≤ t ≤ T . The
posterior probability that a time series X(t) belongs to a class
label yc, can be obtained using Γt as

Pr

(
yc
X(t)

)
=

ezc∑l
c=1 e

zc
, (6)

where zc = WcX(t) +bc, and the weight matrix Wc and bias
matrix bc are learned during the training of the model.
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Fig. 3: Architecture of LSTM model.

(c) MRP computation for X: This step first computes a
relative accuracy At using t data points of the time series
(i.e., X(t)). The relative accuracy that X(t) belongs to a class

label yc can be computed using Eqs. 3, 5, and 6 as

At =
Pr
(

yc
X(t)

)
· Pr

(
Gc

X(t)

)
βββPr(Gc)

, (7)

where βββ denotes a desired level of accuracy of the classifi-
cation. Now, we can estimate MRP of a time series X ∈ D,
by maximizing the tradeoff between relative accuracy At and
earliness (i.e., T−tT ) as

MRP(X) = argmax
t

{
2×At × (T−tT )

At + (T−tT )

}
. (8)

After estimating the MRPs for all the time series of D,
EFC computes a representative MRP for each class label in
{y1, y2, · · · , yl}. LetMc be the MRP for yc class label, which
is estimated using following expression

Mc =
1

Nc

Nc∑
j=1

MRP(Xj), (9)

where Nc denotes the number of time series that belongs
to class label yc. The estimated class-wise MRPs for the
dataset D (consists the time series of ith component only),
are stored into a vector MMMi = {M1,M2, · · · ,Ml}. For
the dataset D, the sets of class-wise MRPs is obtained as
MMM = {MMM1,MMM2, · · · ,MMMn}.

2) MRP estimation for whole MTS dataset D: Once
MRPs are computed for each of individual component, EFC
approach attempts to estimate class-wise MRPs for the whole
dataset D by proposing a correlation based similarity measure.
Here, the approach incorporates the correlation among the
components of MTS while computing the MRPs. In this work,
the correlation is incorporated by transforming each MTS of
the dataset D into a matrix. As the MTS has n components,
it provides a correlation matrix of size n × n. Such a matrix
is constructed by computing a correlation coefficient between
each pair of components of the MTS. For any two components
Xa and Xb, the correlation coefficient is defined as

CXa,Xb
=

∑T
t=1(Xa,(t) − µXa)(Xb,(t) − µXb

)

(T − 1)σXa
σXb

. (10)

As the dataset D consists of N MTS, we get N corresponding
correlation matrices. The EFC approach utilizes these matrices



to compute a similarity score between the MTS. For any two
MTS X j and X k in D, similarity score is defined as

Sim(X j ,X k) =

√√√√ 1

n× n

n∑
i=1

n∑
i′=1

(Cj [i, i′]− Ck[i, i′]), (11)

where Cj denotes an obtained confusion matrix for jth MTS.
Using Eq. 11, EFC constructs a similarity matrix S of size
N ×N which contains similarity scores between each pair of
the MTS using T data points. Given the set of MRPs (i.e.,
MMM) for the individual component and similarity matrix S, we
estimate the class-wise MRPs for MTS using following steps:
(a) Build a classifier Γ using LSTM model on similarity

matrix S to compute the accuracy AAAT,c for label yc.
(b) Find minimum length of MTS to start the estimation of

MRPs as start = min{MMM}.
(c) For t = start to T :

– Obtain similarity matrix S using Eq. 11 by taking
first t data points of the MTS.

– Compute accuracy AAAt,c for yc using the classifier Γt.
– If βββAAAT,c ≤ AAAt,c satisfies then t becomes the MRP

for class label yc.
By repeating above steps for all l classes, EFC gets a
separate MRP for each class label, which are denoted as
WWW = {W1,W2, · · · ,Wl}.

B. Testing phase

In this phase, EFC approach predicts class label of a new
incomplete MTS which is generated corresponding to a traffic
flow. Let X p denotes the new MTS of the packet-based
statistics of the traffic flow. For the given class-wise MRPs,
EFC approach uses a class forwarding method to incorporate
correlation among the components of X p in the classification.
The approach utilizes trained classifier Γt to predict the class
label of X p using only first t packets of the traffic flow. Let
t be the number of packets arrived in the traffic flow and t′

be the minimum required packets (MRP) that are estimated
during training phase for the correct prediction with βββ. The
class forwarding method consists of following steps:
(a) Obtain minimum number of packets of the MTS as t′ =

min{WWW}.
(b) If t′ < min{MMM1} then update t′ = min{MMM1}.
(c) For component i = 1 to n− 1:

– If t′ < t then predict the class label of ith component
of X p using Γt else wait for more packets. Let Ŷi
be the predicted class label.

– Update t′ =MMMi+1[Ŷi] for next component.
(d) Find the class label Yp predicted by majority of compo-

nents and assign it to the MTS X p.
(e) Obtain earliness by the number of packets that are used

for predicting the class label Yp ∈ {y1, y2, · · · , yl}.
Algorithm 1 summarizes the testing phase at Lines 20 and 21.

Time complexity: In Algorithm 1, as the for loop at Line
1 can be executed parallelly for different components, it can
be removed from the algorithm while computing complexity.

Algorithm 1: Early traffic flow classification approach
Input: A dataset D consists of N labeled MTS instances

corresponding to N traffic flows and each has n
components with T data points. A testing MTS
X p /∈ D for which class label is to be predicted;

Output: Set of class-wise MRLs for each component asMMMi

and for whole dataset D asWWW , and predicted class
label Yp;

1 for i← 1 to n do
/* Dataset D contains all time series of ith component */

2 Apply k-means clustering on D with k = l.
/* H is a confusion matrix of size l × l */
/* Gc is a cluster for yc class label */

3 Obtain prior probability as Pr(Gc) = Hcc.
/* X ∈ D is a time series with class label yc*/

4 for t← 1 to T do
/* X(t) is a time series with first t data points */

5 Compute Pr
(

Gc
X(t)

)
using Eq. 5.

6 Build LSTM model on D using t data points.
7 Compute Pr

(
yc

X(t)

)
using Eq. 6.

/* βββ represents the desired level of accuracy */
8 Compute relative accuracy At using Eq. 7.

9 Compute Ut =
2×At×(T−t

T
)

At+(T−t
T

)
.

10 Append U← Ut.

/* t′ is an index of maximum utility value in U */
11 Estimate MRP(X) = t′.
12 Compute MRPs of all time series of D using Lines 4− 12.

/* Obtain class-wise MRPs for D using Eq. 9 */
13 MMMi = {M1,M2, · · · ,Ml}.
14 Class-wise MRPs for D asMMM = {MMM1,MMM2, · · · ,MMMn}.

/* Obtaining MRPs for D using all components together */
15 for j ← 1 to N do
16 for k ← 1 to N do
17 Compute similarity score Sim(X j ,X k) using Eq. 11.
18 Append S ← Sim(X j ,X k).

/* Using steps (a) to (c) shown in Section III-A2 */
19 Compute class-wise MRPs asWWW = {W1,W2, · · · ,Wl}.

/* Given a testing MTS X p /∈ D */
/* Using steps (a) to (e) shown in Section III-B */

20 Predict a class label Yp for X p.
/* t′ is the number of packets of X p that are used for Yp */

21 Compute earliness as T−t′

T
× 100.

Now, the time complexity of Algorithm 1 mainly depends on
the for loop at Line 4 and the complexity of LSTM model. The
time complexity of LSTM per time step is O(W) [22], where
W is the number of weight parameters that are learned during
training. At this point, the time complexity of Algorithm 1 can
be given as O(TW).

IV. EXPERIMENTAL EVALUATION

We carried out several experiments to evaluate the per-
formance of EFC approach on three datasets: one collected
and two existing including QUIC [23], [24] and ISCX [25].
The approach is also compared with four existing approaches
including [3], [6], [7], [15] and the results are reported later
in this section.



A. Datasets

We describe each of the used datasets in detail for clear
understanding of the reported results.

1) Collected dataset: We collected traffic flow data for
five Internet applications using tcpdump utility on Linux
operating system (in particular Ubuntu 20.04). The considered
applications are Skype (A1), KTorrent (A2), Gmail desktop
(A3), Facebook messenger (A4), and Youtube viewer (A5).
We captured 1000 traffic flows for each of the applications to
keep uniform distribution of instances among the five classes.
After preprocessing, the dataset consists of 5000 labeled MTS
instances that are obtained by computing three statistics: size,
inter-arrival time, and direction. We refer the created dataset
as MTS of Flow (MTSF).

2) QUIC dataset: This dataset contains labeled traffic flow
data for five Google applications (i.e., class labels) including
Drive (B1), Youtube (B2), Docs (B3), Search (B4), and Music
(B5). The authors in [24] collected this dataset to classify
the Google applications by using their QUIC traffic flows. In
the experiments, we use pretraining directory of the available
dataset, where total 6589 labeled flows are given. The flow
consists of three statistics (packet size, inter-arrival time,
and direction) corresponding to each packet. Since a flow
contains several packets in a temporal order, it corresponds
to an MTS of correlated statistics. In order to have uniform
class distribution, this work considers 600 flows from each
application for the experimental evaluation of EFC approach.
In total, we use the QUIC dataset with 3000 labeled flows.

3) ISCX dataset: This dataset was captured to identify
various categories of traffic flow including email, streaming,
voice over IP, and so on. It contains traffic flow data of 14
different applications such as Gmail chat, Mail, Torrent, etc.
As the EFC approach builds a LSTM model, the number of
instances of each application must be sufficient to train the
classifier. We therefore consider following applications in the
experiments: Gmail chat (C1), Mail (C2), Torrent (C3), Vimeo
(C4), Youtube (C5), Facebook audio (C6), and Handgout
audio (C7). This work uses 400 instances of each of seven
applications for the performance evaluation of EFC approach.
We use the ISCX dataset with total 2800 labeled traffic flows.

B. Experimental results

This work first divides the datasets into training and testing
data with 70% and 30% instances, respectively. The proposed
approach uses training data for building EFC approach by
learning class-wise MRPs and testing data for its performance
evaluation. We preferred Python language with Keras library to
implement the approach. The deep learning classifier is trained
with following hyperparameters: batch size = 100, optimizer
= ‘sgd’, and learning rate = 10−2. This work uses following
evaluation metrics:
• Accuracy: It is percentage ratio of number of correctly

predicted flows (i.e., MTS instances) to the total number
of flows in the testing data.

• Earliness: It is computed using Eq. 1.

• F1 score: It measures the balance between quality and
relevance of the classification by taking harmonic mean
of precision and recall.

With above metrics, we attempt to answer following questions:
• What is the minimum number of packets in complete

MTS to justify the meaning of earliness? (Section IV-B1)
• What is the minimum number of epochs required to

converge the learning of classifier? (Section IV-B2)
• How does EFC approach perform on the testing data?

(Section IV-B3)
• What is the class-wise performance of the approach for

different datasets? (Section IV-B4)
• How does the desired level of accuracy (βββ) impact on the

performance? (Section IV-B5)
1) Obtaining number of packets in complete MTS (T ):

At first, the approach carried out an experiment to find the
minimum number of packets in the flows that can provide
maximum accuracy (i.e., above 99%). The EFC approach is
tested by taking varying number of packets with a difference
of 5 packets, βββ = 1, and epochs = 50. The obtained accuracy
results are shown in Table II. We observe that EFC approach
is able to classify the traffic flows with an accuracy of more
than 99%, for all the used datasets, by using only first 25 to
30 packets of the flow. This work therefore sets the length of
complete MTS to first 30 packets, i.e., T = 30. Such complete
MTS is later used to estimate the class-wise MRPs for different
values of βββ.

TABLE II: Accuracy with varying number of packets.

Dataset Number of packets
5 10 15 20 25 30

Accuracy
(%)

MTSF 80.7 91.6 97.5 98.9 99.5 99.6
QUIC 83.5 94.2 98.9 99.3 99.8 99.8
ISCX 81.2 92.3 95.5 99.0 99.3 99.3

2) Impact of number of epochs: Next, we conduct exper-
iments with different number of epochs using training data
and evaluate the learning performance of the classifier on the
same data. Fig. 4 shows the obtained accuracy and F1 score
results with varying number of epochs. It is clear from the
results that there exists a substantial rise in performance up
to 40 epochs for the datasets. Later, from 40 to 50 epochs,
we see a negligible change in the accuracy and F1 score,
as indicated by an ellipse. We therefore carried out all the
subsequent experiments with 50 epochs.

75

80

85

90

95

100

5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y
(%

)

Epoch

MTSF dataset
QUIC dataset
ISCX dataset

(a) Impact on accuracy

75

80

85

90

95

100

5 10 15 20 25 30 35 40 45 50

F 1
sc

or
e

(%
)

Epoch

MTSF dataset
QUIC dataset
ISCX dataset

(b) Impact on F1 score

Fig. 4: Impact of number of epochs on the performance.



3) Performance results on testing data: As the main
objective of EFC approach is to classify a traffic flow as early
as possible by using minimum number of packets, this work
conducts an experiment to validate the performance of EFC
along the progress of MTS. Fig. 5 shows the performance
results along the traffic flow with an interval of 10%. It is
clear from part (a) of Fig. 5 that EFC achieved an accuracy
of more than 90% by using 30% length of MTS (i.e., just
9 packets of the flow) as indicated by an ellipse. Moreover,
here the value of F1 score is 88.5%, which indicates that EFC
approach is able to maintain good balance between quality
and relevance of classification for MTSF dataset. Further, for
QUIC dataset, the approach required 40% of packets (i.e., 12
packets) of complete MTS to obtain an accuracy of 91.1%.
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Fig. 5: Performance of EFC approach along the length of traffic flow.

4) Class-wise performance of EFC approach: In order to
understand the class-wise behavior of EFC approach, this work
presents the performance results for different Internet applica-
tions in Table III. We observe that the approach achieved maxi-
mum accuracy for Gmail desktop, Docs, and Mail applications
of MTSF, QUIC, and ISCX datasets, respectively. It indicates
that traffic flow of these applications have more identifiable
patterns in their MTS. Similar observations can be made
about F1 scores. However, the applications that are classified
with maximum accuracy, have shown poor performance on
earliness metric. An interesting observation in the results is
about Youtube application where the approach obtained almost
equal accuracy using the traffic flow for all the datasets.
Moreover, the earliness is maximum (i.e., 59.7%, 61.2%, and
58.9) for Youtube application.

We also present the confusion matrices for MTSF and ISCX
datasets in Fig. 6. The EFC approach has maximum confusion
of 6.2% between A1 and A3 classes, indicating some of the
testing instances for these classes have similar patterns. On
the other hand, EFC approach can clearly distinguish C2 class
from C4 with 0% confusion, as shown in part (b) of Fig. 6.

5) Impact of βββ on performance: Next, we performed
experiments to analyze the impact of desired level of accuracy
βββ on the performance of the EFC approach and the results are
illustrated in Fig. 7. As the desired level of accuracy increases,
the earliness decreases, however the approach is still able to
manage more than 50% of earliness even at βββ = 0.9 for all
three datasets. The results clearly indicate that the proposed
approach always maintained the desired level of accuracy by
compromising the earliness, i.e., by using more number of
packets of the flow.

TABLE III: Performance of the proposed approach for different
applications (classes) with βββ = 0.9.

Dataset Application
Performance metrics

Accuracy
(%)

Earliness
(%)

F1 score
(%)

MTSF

Skype 90.4 52.3 89.5
KTorrent 87.2 53.2 85.7

Gmail desktop 92.2 50.4 91.7
Facebook messenger 89.9 54.7 90.1

Youtube viewer 88.1 59.7 86.8

QUIC

Drive 91.5 50.3 87.8
Youtube 87.4 61.2 86.1

Docs 94.2 49.1 92.5
Search 87.1 52.3 89.1
Music 87.8 59.2 90.7

ISCX

Gmail chat 92.4 49.6 89.5
Mail 93.5 45.4 91.2

Torrent 89.2 51.2 86.5
Vimeo 86.3 46.6 88.2

Youtube 87.6 58.9 86.7
Facebook audio 92.1 51.1 87.6
Handgout audio 90.2 47.2 89.2

(a) MTSF dataset (b) ISCX dataset

Fig. 6: Illustration of confusion matrices (in %) at βββ = 0.9.

Next, this work evaluates EFC approach based on the
number of packets, used during the classification, for different
applications. Fig. 8 shows the obtained results for the consid-
ered datasets at different values of βββ. In part (a) of Fig. 8,
we observe that the approach requires maximum number of
packets (i.e., 15) to identify A3 class (i.e., Gmail desktop)
with βββ = 0.9. On the other hand, if desired level of accuracy
reduces to 0.6 then only 6 packets are sufficient to classify
various applications of QUIC dataset. Similarly, 7 packets are
sufficient to classify the applications of ISCX network traffic
dataset for βββ = 0.5, as shown in part (c) of Fig. 8.

C. Comparison with existing approaches

Finally, we compare the proposed approach with four ex-
isting approaches including Early Classification of network
Traffic (ECT) [15], CNN based Traffic Classifier (CTC) [6],
Encrypted Application Classification (EAC) [8], and Ensem-
ble Intrusion Detection (EID) technique [3]. ECT approach
claimed that it can classify a traffic flow with first few packets
but it needs to access the packet contents and thus unable
to classify an encrypted traffic flow. The CTC approach can
recognize various Google services using QUIC dataset without
accessing the packet contents. Next, the EAC approach in [8]
used encrypted payload and inter-arrival time for classifying
various applications. Finally, the authors in EID approach
classified applications using their traffic flow data.
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Fig. 7: Impact of βββ on the performance of EFC approach.
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Fig. 8: Number of packets used by EFC approach for different applications.
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50

60

70

80

90

100

5 10 15 20 25 30

18.3%

A
cc

ur
ac

y
(%

)

Length of MTS (in packets)

ECT
CTC
EAC
EID

EFC

(c) Accuracy on QUIC dataset

40

50

60

70

80

90

100

5 10 15 20 25 30

F 1
S

co
re

(%
)

Length of MTS (in packets)

ECT
CTC
EAC
EID

EFC

(d) F1 score on QUIC dataset

Fig. 9: Comparison of EFC approach with existing approaches.

Fig. 9 shows the performance comparison results using
accuracy and F1 score for MTSF and QUIC datasets. We
observe the following points in the results:

• EFC approach performs remarkably well on accuracy and
F1 score metrics by using just a few packets of traffic
flow. It outperforms the existing approaches on various
evaluation metrics on both the datasets.

• With just 5 packets of flow, EFC approach is able to
achieve an accuracy of 82.2% which is substantially
higher (i.e., 18.3%) than existing approaches as shown in
part (c) of Fig. 9. It is due to the presence of correlation
between components of MTS which is utilized by EFC.

• The existing approach EID performs significantly better
than other existing approaches as it utilizes the advantage
of ensemble learning technique during classification.

• Similarly, EAC approach performs better than CTC and
ECT, which indicates that it is able extract more iden-
tifiable patterns in the traffic flows for recognizing the
various applications. Further, a substantial rise is also
seen in F1 scores between 10 to 15 packets as indicated
by an ellipse in part (d) of Fig. 9.

V. CONCLUSION

In this paper, we proposed an early classification approach
for traffic flow using the MTS of packet-based statistics
such as size, inter-arrival time, and direction. Unlike existing
approaches, the proposed approach considered the network
traffic flow as MTS and utilized the correlation between
its time series, which helps in recognizing the associated
application by using only first few packets. The approach built
an early classifier by estimating class-wise MRPs using the
given labeled network traffic dataset. The MRPs are later used
to classify a traffic flow as early as possible. Additionally, we
collected a labeled dataset using tcpdump utility to evaluate the
effective of the proposed approach for five common Internet
applications such as Gmail desktop, Youtube viewer, etc.

We carried out several experiments to validate EFC ap-
proach using the collected and two real-world existing datasets
and reported results showed that the approach is able to
maintain an adequate level of accuracy by using first 15
packets of the traffic flows. This work motivates further
research towards incorporating the concept of transfer learning
for identifying an Internet application by the classifier trained
on other applications, without accessing the packet contents.
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[12] W. Pei, H. Dibeklioğlu, D. M. J. Tax, and L. van der Maaten, “Multi-
variate time-series classification using the hidden-unit logistic model,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 29,
no. 4, pp. 920–931, 2018.

[13] A. Gupta, H. P. Gupta, B. Biswas, and T. Dutta, “A fault-tolerant
early classification approach for human activities using multivariate time
series,” IEEE Transactions on Mobile Computing, vol. 20, no. 5, pp.
1747–1760, 2021.

[14] K. Li, S. Li, and Y. Fu, “Early Classification of Ongoing Observation,”
in Proceedings of ICDM, 2014, pp. 310–319.
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