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Abstract—BGP prefix hijacking is a critical threat to the
resilience and security of communications in the Internet. While
several mechanisms have been proposed to prevent, detect or
mitigate hijacking events, it has not been studied how to accu-
rately quantify the impact of an ongoing hijack. When detecting
a hijack, existing methods do not estimate how many networks
in the Internet are affected (before and/or after its mitigation).
In this paper, we study fundamental and practical aspects of
the problem of estimating the impact of an ongoing hijack
through network measurements. We derive analytical results for
the involved trade-offs and limits, and investigate the perfor-
mance of different measurement approaches (control/data-plane
measurements) and use of public measurement infrastructure.
Our findings provide useful insights for the design of accurate
hijack impact estimation methodologies. Based on these insights,
we design (i) a lightweight and practical estimation method-
ology that employs ping measurements, and (ii) an estimator
that employs public infrastructure measurements and eliminates
correlations between them to improve the accuracy. We validate
the proposed methodologies and findings against results from
hijacking experiments we conduct in the real Internet.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is used by the Au-
tonomous Systems (ASes) to establish routing paths in the
Internet. Due to its distributed nature and lack of authen-
tication in the exchanged information, BGP is susceptible
to illegitimate route advertisements. BGP prefix hijacking
is the most prominent example. Numerous hijacking events
with global impact on the availability and confidentiality of
communications, e.g., [1], [2], [3], [4], and concerns expressed
by network operators [5], show that BGP prefix hijacking is
a common and persistent threat to the Internet ecosystem.

Defenses against BGP prefix hijacking consist of (i) pre-
vention measures, such as prefix filtering or RPKI, which
block the propagation of illegitimate routes [6], [7], [8], and
(ii) detection techniques [9], [10], [11], [12] that inform
operators to proceed to counteractions or trigger mitigation
techniques [9], [13]. The efficiency that these mechanisms
are expected to have (on average) under various hijacking
scenarios has been studied in literature. However, when a
hijacking event takes place, there do not exist techniques that
can provide accurate information about its actual impact.

Knowing the impact of a hijack is important for several
reasons: (i) Inform operators about the effect of an ongoing
hijack (e.g., global, limited to a few ASes). This information
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may drive their actions, for example, to select mild (e.g., ask
other operators to filter hijacked routes) or more aggressive
(e.g., prefix de-aggregation) countermeasures to mitigate the
hijack, based on its impact [9]. (ii) Evaluate the actual ef-
ficiency of a mitigation action (which is deemed as a key
priority by operators [5]). Knowing the remaining impact of
the hijack after the mitigation, can help operating and business
decisions; for instance, to decide whether further actions are
required, or to assess the cost/value of a paid service (e.g.,
blackholing [14] or MOAS announcements [9], [13]).

These reasons highlight the need for designing hijack impact
estimation techniques, which could be incorporated in existing
defense systems and become a valuable asset for network
operations and security. In this direction, the goal of this work
is to study the problem of estimating the impact of an ongoing
hijack through measurements, and take the first steps towards
designing accurate hijack impact estimation methodologies.

Specifically, we follow an approach comprising analysis,
simulations, and real experiments and measurements: (i) We
analytically study fundamental aspects of the hijack impact
estimation, and derive results that identify limits and quantify
trade-offs on the accuracy of different estimation methods. (ii)
We employ realistic simulations to create datasets of hijack
incidents1, based on which we investigate the performance that
can be achieved by using different measurement techniques
(control/data plane) and available resources (RouteViews,
RIPE RIS, RIPE Atlas). (iii) We conduct controlled hijacking
experiments and extensive network measurements in the real
Internet to validate our theoretical/simulation findings.

The main contributions of this work are summarized as:
• Understanding of the hijack impact estimation. We study

the accuracy of the hijack impact estimation under different
types of measurements (§III). We show that very high
accuracy is possible by sampling/measuring any network
in the Internet (e.g., ∼1% estimation error with 1000 sam-
ples), while using public measurement infrastructure (RIPE,
RouteViews) results in an estimation error of around 10%.
The root cause of this error is the correlation between the
locations of public infrastructure monitors.

• Design of efficient estimators. Motivated by our findings,
we propose efficient estimation methodologies with and
without using public measurement infrastructure. We first
propose an estimator based on ping campaigns (§IV), which
does not rely on public infrastructure and can be imple-
mented by any network. We find that by pinging a couple

1To the best of our knowledge, there are no datasets with real data from
past hijacking events that could enable an extensive and in depth investigation.ISBN 978-3-903176-39-3©2021 IFIP



of reachable IP addresses in a few hundreds of ASes is
enough for achieving very low errors. Then, we design an
estimator based on public infrastructure measurements (§V),
which employs statistical learning to eliminate the effect
of correlation in measurements, and achieves an accuracy
comparable to the (best performing) ping-based estimator.

To facilitate future research we make our code and data from
our experiments available in [15].

II. PRELIMINARIES

We first define the main quantities of the considered prob-
lem (§II-A), provide an overview of the different hijack
types and their impact characteristics (§II-B) and the avail-
able network measurement techniques and services (§II-C),
and present the simulation (§II-D) and experimental (§II-E)
methodology used in the paper.

A. Definitions: Quantities and Metrics

Infected AS: an AS is infected when it routes its traffic to or
through the hijacker’s AS.
Hijack impact, I: fraction of ASes that are infected, I ∈ [0, 1].
Monitor: an AS for which it can be known (e.g., after a
measurement) if it is infected or not.
Impact estimator: a methodology that uses a set of monitors
and provides an estimation of the hijack impact.

Let I be the actual impact of a hijack, and an estimator E
whose estimation is ÎE . The main metrics to characterize the
performance of an estimator is the bias and the Root Mean
Square Error (RMSE):

BiasE = E[ÎE − I] RMSEE =

√
E[(ÎE − I)2]

The bias quantifies how far the expected value of the estimator
is from the actual value, and the RMSE quantifies the accuracy
of the estimator. The desired characteristics for an estimator
are to be unbiased (zero bias) and have low RMSE.

B. Hijack Types and Impact Characteristics

We consider an AS that owns and announces a prefix IP∗;
we denote this AS as ASV and call it “victim AS”. Let the
best path to IP∗ for an ASX be

[ASX , ASY , ..., ASV |IP∗]

where ASX has learned this path through its neighbor ASY . A
hijack takes place when another AS announces an illegitimate
path for the prefix IP∗ or for a more specific prefix. This is
the “hijacker AS” and we denote it as ASH . The hijacker’s
announcement may propagate to the Internet and “infect” some
ASes; the extent of the infection is the hijack impact.

There are different ways to perform a hijack and their
impact may vary. Below, we present a taxonomy of hijacks [9],
[16] and discuss their impact characteristics.
Origin-AS (Type-0) or Fake-path (Type-N, N ≥ 1) hijack.
In the origin-AS hijack the ASH originates the IP∗ as its own,
while in the fake-path case the ASH announces a fake path
to the IP∗ to its neighbors; e.g., for an ASX

Type-0: [ASX , ASY , ...,ASH|IP∗]
Type-N: [ASX , ASY , ...,ASH, ASZ , ..., ASV |IP∗]

where the link ASH − ASZ is fake; the number N denotes
that the hijacker’s ASN appears in the N th hop away from
the origin AS.

Impact characteristics: In Type-N cases the hijacker origi-
nates a longer path than in Type-0 (i.e., with N extra hops).
Thus, the paths to the hijacker are longer and less preferred
by some ASes; this results in a lower impact for higher N [9],
[8]. Note that this holds when no proactive measures, such as
RPKI, are deployed; for prefixes protected by RPKI (less than
20% today [17], [18]), the impact decreases in Type-0 attacks
due to route origin validation [19], while the impact of Type-N
hijacks is not affected since RPKI cannot detect fake links.
Exact prefix or Sub-prefix hijack. The hijacker can perform
a Type-0 or Type-N hijack for the same prefix IP∗ announced
by the victim (exact prefix) or for a more specific prefix in IP∗
(sub-prefix); for example, let the IP∗ be the prefix 10.0.0.0/8,
then a sub-prefix hijack takes place if the hijacker announces
the prefix 10.0.0.0/9 (or any 10.0.0.0/d with d ≥ 9).

Impact characteristics: Default routing in BGP prefers paths
to more specific prefixes [20]. Hence, the impact of a sub-
prefix hijack will be larger than an exact prefix hijack; in fact,
a sub-prefix hijack will infect the entire Internet (i.e., impact
100%) unless a proactive or filtering mechanism is applied.
Data-plane traffic manipulation. For all the aforementioned
hijack types, the hijacker can manipulate the traffic that it
attracts by: (i) dropping it (blackholing), (ii) impersonating a
service (imposture), or (iii) manipulating or eavesdropping it
and then forwarding it to the victim (man in the middle, MitM).

Impact characteristics: While the traffic manipulation in
the data plane by the hijacker does not affect the impact on
the control plane (i.e., as defined in this paper), it determines
what hijack detection and impact estimation approaches can be
applied (data/control plane measurements) as we discuss later.
C. Measuring the Hijack Infection

The hijack impact is determined by the number of infected
ASes. Hence, the basic step for an impact estimation is to
identify whether an AS/monitor is infected or not. In principle,
this can be done by applying any hijack detection method [9],
[10], [11], [12] per monitor.

Detection methods are mainly based on three network mea-
surements types. Below, we provide some indicative examples
for each type, and discuss their main characteristics. Our first
goal in this paper is to investigate how efficient is to use each
of these measurement types for impact estimation (see §III).
Route collectors (RC) - BGP routes: A monitor that provides
information about its BGP routes (BGP updates or RIBs) can
be detected as infected or not (from the AS-path or the prefix in
its selected BGP route (see [9] for a comprehensive approach).
For example, for a Type-0 hijack , if the first ASN in the path
is different than ASV , then the monitor is infected.

The RIPE RIS [21] and RouteViews [22] projects provide
BGP RIBs/updates collected from hundreds ASes. We refer to
these ASes that peer with RIPE RIS / RouteViews route col-
lectors and provide BGP feeds as “route collector monitors”,



or for brevity “RC”. In the paper, we consider a set of 228 RC
that consistently provided data in our experiments (see §II-E).

The main characteristics of this approach is that it is based
on control-plane information, it is lightweight (requires passive
measurements, which can be retrieved from public APIs [23]),
and can be real-time since several RC provide live-feed of their
BGP updates [22], [24], [25].
RIPE Atlas probes (RA) - traceroutes: Conducting a tracer-
oute from a monitor to the hijacked prefix, returns a path of IP
addresses. Mapping the IPs to ASNs, we can infer the AS-path,
and thus detect (similarly to the BGP routes) if the monitor
is infected. However, in practice the IP to ASN mapping may
be inaccurate for some hops, and advanced methods may be
needed to avoid path misinformation [26], [27].

The RIPE Atlas [23] platform comprises more than 25k
probes, i.e., devices able to run traceroutes towards certain
Internet destinations. We refer to the set of ASes with at
least one RIPE Atlas probe as “RA” monitors, which in our
experiments account for 3420 ASes.

This approach combines data plane (traceroute) and control
plane (IP-to-ASN mapping) information, and requires active
measurements (RIPE Atlas can return a batch of measurements
within a few minutes).
Pings: The victim can ping (from its network) an IP address
in a remote AS (monitor); if the ping response returns to the
victim’s network, then the AS can be inferred as not infected
(see, e.g., the techniques of [28], [10]). This inference can be
correct in blackholing and imposture hijacks, but not in MitM.

It is important to note that while the first two measurement
approaches can use only the monitors of the public services
(RC and RA), in this latter case any AS with a responsive
pingable IP address (i.e., almost every AS) can be a monitor.

Finally, this approach is based on data-plane information,
and requires active measurements (whose results can typically
be returned within a few seconds)

D. Datasets and Simulation Methodology

To study different impact estimation approaches, we would
need ground truth data about hijack events and their impact.
However, typically this information is not publicly reported,
and detailed datasets do not exist, to the best of our knowledge.
Hence, we use realistic simulations to generate datasets of
different hijack types.

Specifically, we simulate the Internet routing system using a
largely adopted methodology [8], [9], [29]: (i) we use the AS-
relationship dataset [30] that contains AS-links and inferred
inter-AS economic relationships (customer to provider, peer
to peer), based on which (ii) we build the Internet topology
graph representing each AS as a single node (a reasonable
assumption for the vast majority of ASes [31]) and (iii) we
define the routing policies as in the Gao-Rexford model [32],
where an AS prefers routes learned from its customers, then
its peers, and then its providers, and (iv) we simulate BGP
using the simulator of [29]. For each hijack type, we run 1000
scenarios with different {victim, hijacker} ({V,H}) pairs. Each
RC and RA monitor is represented by the AS that hosts it.

While, admittedly, simulations may not generate the exact
impact output per {V,H} case, they have been shown to capture
well the routing decisions for the majority of ASes [33], [29].
In this work, we study the statistical characteristics of impact
estimation rather than the per case behavior, and thus the
involved uncertainty is not expected to significantly affect
our findings. Nevertheless, we also conduct real hijacking
experiments in the Internet (§II-E), to validate our methods
and findings with real data.

E. Real-world Experiments

We conduct hijacking experiments in the real Internet using
the PEERING testbed [34]. PEERING owns ASNs and IP
prefixes, and has BGP connections with networks in several
locations (sites) around the world. The experiments consist of
the following steps:
Selection of {V,H} pair. We create two virtual ASes, assign
to them the ASNs 61574 and 61575, and connect them to two
distinct sites of the PEERING testbed. We select one of them
to be the victim AS (V) and the other the hijacker AS (H).
BGP announcements and Hijacking. We conduct Type-0
hijacks, i.e., we announce the prefix 184.164.243.0/24 from
V, and then announce (i.e., hijack) the same prefix from H.
Impact measurement: pings (ground truth). To measure the
impact of the hijack, we perform a ping campaign: We select
46k ASes and ping (from a host within PEERING) a reachable
IP address in each of them (see §IV). We monitor through
which PEERING site the ping reply returns: if it returns
through the H (or, V) site, we consider the corresponding AS
as infected (or, not infected). We use this as the ground truth
for the hijack impact of each experiment.
Impact measurement: public services. To apply the differ-
ent measurement approaches (§II-C), we conduct data-plane
(traceroutes) and control-plane (BGP updates) measurements
after the hijacking announcement: (i) We employ traceroutes
from RIPE Atlas probes towards the announced prefix. We
check in the traceroute the last IP address before it enters
PEERING. We map this IP address to an AS (using the prefix-
to-AS dataset of §IV), and if the ASN belongs to an upstream
provider of the H (or, V) site, then we infer that the AS
of the RIPE Atlas probe is infected (or, not infected). (ii)
Using CAIDA’s BGPStream tool [25] we collect BGP updates
received by RouteViews and RIPE RIS monitors. From the AS
paths in the BGP updates, we extract the origin ASNs and use
them to infer to which site the monitor AS routes its traffic.
For example, from the AS path [ASX , ASY , . . . , ASH ], we
infer that the monitor ASX is infected.

In total, we considered a set of 6 PEERING sites that:
were responsive at the time of our experiments, their BGP an-
nouncements propagated to the entire Internet, and they were
reachable through data-plane measurements (pings, tracer-
outes) from the majority of ASes. We considered all possible
combinations of pairs {V,H} for these sites. Omitting the
experiments in which the hijack impact was trivial (100% or
0%) or very small/large (> 97% or < 3%), we end up in a
set of 22 “valid” experiments with different {V,H} pairs.



III. UNDERSTANDING THE IMPACT ESTIMATION

In this section, we aim to understand the problem of hijack
impact estimation through measurements, and provide useful
insights for the design of practical estimation methodologies.

A. Naive Impact Estimation (NIE)

The most intuitive approach to estimate the impact of a
hijack is to measure a set of monitors, and estimate it as the
fraction of infected monitors. We refer to this approach as the
Naive Impact Estimation.

Definition 1 (Naive Impact Estimator (NIE)). Let a set of
monitors M (|M| = M ), and an indicator mi denoting
whether monitor i ∈M is infected (mi = 1) or not (mi = 0).
The Naive Impact Estimator estimates the hijack impact as

ÎNIE(M) =
1
M

∑
i∈Mmi (1)

The NIE can be used with any type of measurements (BGP
routes, traceroutes, pings) that can provide information to
calculate the indicator mi. In the following we study the
properties and accuracy of NIE, under different types of
measurements and monitor sets.

B. Accuracy of the NIE

1) NIE with Random Set of Monitors.
In the following theorem, we prove that, when the set of

monitors M is randomly selected, the NIE is an unbiased
estimator, and we derive an expression for its RMSE that is
a function of the number of monitors M and the hijack type.

Theorem 1. Under a randomly selected set of monitors M,
the bias and root mean square error of NIE are given by

BiasNIE = 0 RMSENIE = 1√
M
· cI

where cI =
∫ 1

0

√
I · (1− I) · f(I) · dI , is a constant that

depends on the impact distribution f(I).

Proof. The proof is given in Appendix A.

Remark: The impact distribution f(I) depends on the {V,H}
pairs that are expected to be involved in a hijack, and the hijack
type. For example, if any pair of ASes is equally probable to
be the {V,H} pair, then the impact I of a Type-0 hijack is
approximately uniformly distributed in [0, 1].

Table I gives the values of the constant cI for random {V,H}
pairs. We also consider scenarios that are closer to reported
hijacking activity: namely, scenarios where (i) the {V,H} ASes
correspond to the events identified as potential hijacks by the
BGPmon service in 2018 [35], and (ii) hijackers are from the
set of 22 ASes classified as “serial hijackers” [36] and victims
are selected randomly.

Remark: The RMSE(I) is not equal for all values of the real
impact I (see Appendix A). In fact, it is a concave function
with a maximum 1

2·
√
M

at I = 0.5 , and minimum 0 at the
corner cases of I = 0 or 1. In other words, it becomes more
difficult to estimate with high accuracy when the victim and
hijacker attract similar fractions of AS routes. This explains the

TABLE I
EXPERIMENTALLY CALCULATED cI (IN PARENTHESES, THE AVERAGE

IMPACT E[I]) FOR DIFFERENT HIJACK TYPES AND {V,H} PAIRS.
Type-0 Type-1 Type-2

random {V,H} pairs 0.39 (0.50) 0.36 (0.30) 0.31 (0.19)
BGPmon {V,H} pairs [35] 0.35 (0.43) 0.29 (0.26) 0.22 (0.17)
random V, “serial” H [36] 0.37 (0.68) 0.40 (0.49) 0.36 (0.31)
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Fig. 1. RMSE of the NIE (y-axis) vs. number of monitors (x-axis) for Type-0
hijacks and random, RC, and RA sets of monitors. (Note the different x-axes)

lower values of cI for higher-N hijack types: as N increases,
the mass of the impact distribution concentrates around smaller
values –closer to I = 0– in the area in which the RMSE(I)
takes low values.

Figure 1(a) shows the RMSE of NIE with a random set
of monitors (dashed line) for hijacks of Type-0, as calculated
from Theorem 1 (the simulation results for random monitors
almost coincide with the theoretical, i.e., the dashed line, and
thus are omitted). The curves for other hijack types and/or
{V,H} pairs have the same shape, since only the multiplicative
factor cI changes (see Table I).
2) NIE with Monitors from Public Measurement Services.

We now investigate the accuracy of NIE when using the
public infrastructure monitors RC and RA (§II-C), which are
not uniformly located in the Internet [21], [22]

Key finding: The (non-uniform) locations of the public infras-
tructure monitors heavily affect the accuracy of NIE.

Table II, where we compare simulation results for the RMSE
of the NIE using public monitors vs. random sets of (equal
number of) monitors, clearly demonstrates that the accuracy
heavily depends on the set of employed monitors.

TABLE II
RMSE FOR NIE WITH PUBLIC MONITORS (AND RANDOM SET OF

MONITORS) FOR DIFFERENT HIJACKS TYPES; SIMULATION RESULTS.
Type-0 Type-1 Type-2

RC, 228 monitors 10% (2.6%) 9% (2.4%) 8% (2.1%)
RA, 3420 monitors 9% (0.7%) 8% (0.6%) 7% (0.5%)

A NIE using the monitors of the public services has a RMSE
of 9%-10% for Type-0 hijacks, while the same estimator with
randomly selected monitors would achieve almost 5 times
(2.6%) and 10 times (< 1%) lower RMSE (for the same
number of monitors); similar results hold for all hijack types.
It is interesting to observe that despite the fact that there are
an order of magnitude more data-plane monitors (RA) than



control-plane monitors (RC), the accuracy is very similar: RA
achieves only 1% lower RMSE than RC.2

Key finding: Measuring 50 monitors of public services, is typ-
ically enough for achieving close to the(ir) highest accuracy.

Figure 1(a) compares the RMSE of NIE with random, RC,
and RA monitors for Type-0 hijacks as a function of the
number of monitors (in the RC and RA cases, we select a
random subset of size M in each simulation). We observe that
the RMSE of NIE with RC or RA reaches the plateau of
around 10% after 30-50 monitors; for the same M , the RMSE
of NIE with random monitors is two times lower (around 5%)
and further decreases with the number of monitors. Similar
findings hold for the case of hijack Types-1 and 2 as well.

The experimental results (Fig. 1(b)) are in line with the
simulations: (i) public monitors perform consistently worse
than random monitors, (ii) the RC and RA curves are similar,
and (iii) M = 50 monitors already achieve 7-8% RMSE. Note
that we use the experiments only for a qualitative validation;
the limited number of possible experiments, cannot provide
strong statistical significance for the actual RMSE values (e.g.,
confidence intervals for M = 100 are ±2.7% and ±3.4% for
RC and RA, respectively).

C. Designing Impact Estimation Methods
Below we discuss some practical aspects on the implemen-

tation of an impact estimator, which –in combination with
the above findings– drive our design for the hijack impact
estimation methodologies in §IV and §V.
Random monitors vs. Public infrastructure. Our results
show that selecting monitors randomly (among all ASes in
the Internet) results in significantly lower error. Thus, random
monitors are preferable when accuracy is the main goal.
However, this approach can be implemented only with ping
measurements, since there are no public monitors in all ASes.
Ping campaigns: challenges and limitations. Measuring with
pings whether a monitor is infected has some challenges in
practice. Pinging an IP address does not necessarily mean that
it will reply; in fact, a very small fraction of the addresses in
the IP space respond to pings [37], [38]. While there are lists
of “pingable” IP addresses per AS [39], they still not always
respond to pings. If a monitor does not reply to a ping, we may
falsely infer the monitor as infected, and thus overestimate the
impact of the hijack. To overcome this challenge, in §IV we
first study and quantify the effect of ping failures, and then
design a methodology that can still be accurate, by carefully
selecting the set and number of IPs per AS to ping.

Finally, a limitation of the ping measurements approach is
that it is not applicable to MitM hijacks: all replies will end up
to the victim, thus falsely denoting a monitor as non-infected.
This can be only overcome with control-plane approaches.
Potential of public infrastructure estimations. Using
control-plane information (e.g., BGP updates from RC moni-
tors) applies to any hijack type [9]. Moreover, it can be real-
time [22], [24], [25], and implemented by a third-party (i.e.,

2While studying the geographical distribution of RC/RA monitors is out of
our scope, Appendix C gives some results on its effect on the NIE accuracy.

not necessarily the victim network). In this context, and since
applying the basic NIE with RC monitors leads to lower ac-
curacy, in §V we design an estimator more sophisticated than
NIE, which uses public infrastructure monitors and achieves
comparable performance to the ping-based estimations.

IV. IMPACT ESTIMATION WITH PINGS

We propose a hijack impact estimation methodology based
on ping campaigns, which is summarized as follows:

Ping-IE: Hijack impact estimation with ping campaigns
1) Select randomly a set of M ASes.
2) For each AS, select a set of NIP responsive (“pingable”)

IP addresses, ping them, and monitor for the replies.
3) If at least one IP address of an AS i replies to the ping,

then set m̂i = 0, otherwise set m̂i = 1.
4) Estimate the hijack impact from the NIE expression in

Eq. (1), by using m̂i instead of mi.

Despite the simplicity of the Ping-IE steps, the accuracy
heavily depends on the parameters M and NIP , and the set
of “pingable” IP addresses. In the remainder, we study the
expected accuracy and how to carefully tune these parameters.

A. The Effect of Failed Measurements on the NIE

Let assume that we conduct ping measurements to an IP
address in the AS i to infer if it is infected (no ping reply
received) or not (ping reply received). However, if AS i is not
infected, but the selected IP address is configured to not reply
to pings, or for some other reason unrelated to the hijack a
ping reply never reaches our system, then we will incorrectly
infer that the AS i is infected. If this happens with several
ASes, the NIE will overestimate the hijack impact.

The following theorem quantifies the introduced bias (i.e.,
overestimation of hijack impact) and the RMSE of the NIE as
a function of the measurement failure probability.

Definition 2 (Measurement failure probability). Let m be an
indicator that denotes whether a monitor is infected (m = 1)
or not (m = 0), and m̂ be its measured value. The measure-
ment failure probability, p, is the probability of measuring as
infected a non-infected monitor, i.e.,

p = Prob{m̂ = 1|m = 0}

Theorem 2. Under a randomly selected set of monitors M,
and a measurement failure probability p, it holds for NIE:

BiasNIE = c
′

I · p

RMSENIE =

∫ 1

0

√
AI,p

M +BI,p · f(I) · dI

where c
′

I = 1−E[I] is a constant that depends on the impact
distribution f(I), and AI,p and BI,p are given by

AI,p = (I + (1− I) · p) · (1− I) · (1− p)
BI,p = (1− I)2 · p2

Proof. The proof is given in Appendix B.

Corollary 1. RMSENIE ≥ RMSENIE(M →∞) = c
′

I · p.
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Fig. 2. RMSE (y-axis) of the NIE / Ping-IE under random set of M monitors:
(a) theoretical results for the NIE (NIP = 1) under different ping failure
probabilities p (x-axis); (b) results from the PEERING experiments for the
Ping-IE under different number of monitors (x-axis) and NIP (legend).

The values c
′

I = 1−E[I] for the different hijack types and
{V,H} pairs can be calculated from Table I. For example, for
random {V,H} pairs and hijack Types-0, 1, and 2, the constant
c
′

I is 0.5, 0.7, and 0.81, respectively. Remark: It is interesting
to note that the RMSE of NIE increases with the hijack type
when p > 0, whereas the opposite holds when p = 0 (see §III).
This is due to the fact that p affects only the monitors that are
not infected, and thus in cases where the impact is lower, i.e.,
for higher hijack types, the error due to ping failures is higher.

Key finding: When the failure probability is larger than 20%
(p ≥ 0.2), ping campaigns –no matter how many ASes are
pinged– are less accurate than NIE with RC or RA monitors.

As expected, NIE under ping failures becomes a biased
estimator. Also its RMSE increases with the failure probability
p, which means that for high p the NIE with ping campaigns
becomes worse than the NIE with public services. To better
quantify the expected estimation error, we present in Fig. 2(a)
the RMSE for hijacks of Type-0 (for Types ≥ 1 the RMSE is
higher) as a function of the failure probability p (x-axis) and
the number of monitors M (i.e., pinged ASes).

Based on the analytical findings, we proceed to design and
fine tune a methodology by considering practical issues.

B. Practical Design of the Ping-IE

The above results indicate that for a low RMSE, we need to
have low ping failure probabilities p. One can achieve this by
(i) carefully selecting the set of IPs to be pinged so that they
are “pingable”, and/or (ii) pinging more than one IPs per AS
and waiting for a reply from at least one IP. In the methodology
we propose, we do both. Specifically, we first quantify the ping
failure probability we expect to have in practice, and based on
this, we select the set of IP addresses (which IP addresses and
how many per AS) to be pinged.
Selection of pingable IP addresses. If we select arbitrarily
an IP address within the prefixes of an AS, then the failure
probability is very large (more than 90% [37], [38]); this would
lead to a very inefficient methodology with RMSE > 45%.
Therefore, we use a list of IP addresses provided by ANT
Lab [39] that have high probability of replying to pings.
Specifically, we compile a list of pingable IP addresses per
AS, by combining the following two datasets:

• IP hitlists from ANT Lab [39]: These are lists of IP addresses
that are found to be reachable via ping with high proba-
bility, based on past measurements. We select only the IP
addresses with more than 90% confidence score.

• Prefix-to-AS mapping: We consider information from RIPE
RIS [21] (via the RIPEstat API [40]) and RouteViews [22]
(via CAIDA’s pfx2as [41]). These datasets map IP prefixes
announced in BGP to the originating ASNs. We filter out
mappings that are inconsistent within a period of a month
(e.g., due to transient incidents), and merge the two datasets.

Selection of the number of IP addresses to ping per AS
(NIP ). Pinging more than one IP addresses per AS, increases
the probability to obtain a correct inference about whether it is
infected (i.e., we need at least one ping reply to infer an AS as
non-infected). But, how many IP addresses need to be pinged
per AS to have a low error? To quantify this, we conduct a set
of measurements using the PEERING testbed: we announce
a prefix from PEERING, ping from a host within PEERING
the top 10 pingable IP addresses per AS for ∼ 46k ASes, and
monitor which IP addresses reply to the pings.

Key finding: To achieve low estimation error we need to ping
at least 2 IP addresses from the ANT Lab’s IP hitlists [39] per
AS. Pinging more than 3 IP addresses, does not significantly
improve accuracy.

Table III (top row) presents the fraction of ASes for
which we did not receive any reply from pinging their top-
x (x = 1, ..., 10) IP addresses. We can see that the failure
probability is quite high (12.8%) when pinging only one IP
address per AS, which indicates that more measurements per
AS are needed to enable an accurate impact estimation. With
3 measurements the ping failure probability decreases to 2.1%
and further decreases gradually to 0% with 10 pings per AS.
The middle rows of Table III show the lower bound for the
RMSE (M →∞) that can be achieved by Ping-IE for different
hijack types, which indicates that only one ping per AS may
not be enough to outperform NIE with public monitors.

Finally, the bottom rows give the RMSE for Type-0 hijacks
and practical values of M , calculated from the expressions
of Theorem 2 (using the values p that correspond to the NIP

from the first row of the table). While pinging only 10 ASes is
not efficient, pinging 100 ASes already achieves an accuracy
relatively close to the best achievable (M →∞).

TABLE III
TOP ROW: PROBABILITY OF PING FAILURE FOR ANT LAB’S IP

HITLISTS [39] (PEERING EXPERIMENTS). MIDDLE/BOTTOM ROWS:
RMSE OF THE PING-IE VS. NB. OF PINGED TOP IPS PER AS (THEORY).

# of pinged IP addresses per AS
1 2 3 ... 10

% ASes with no reply 12.8% 4.2% 2.1% ... 0%

RMSE
M=∞

Type-0 6.4% 2.1% 1.0% ... 0%
Type-1 9.0% 3.0% 1.4% ... 0%
Type-2 10.4% 3.4% 1.7% ... 0%

RMSE
Type-0

M=10 14.9% 12.9% 12.6% ... 12.3%
M=50 9.0% 6.2% 5.7% ... 5.5%
M=100 7.9% 4.7% 4.1% ... 3.9%



In Fig. 2(b) we present the corresponding results from
the real experiments, which are in agreement with the main
theoretical findings3. In particular, we observe that pinging
2 IP addresses per AS (NIP = 2), significantly reduces the
RMSE compared to the case of NIP = 1. However, the
improvement by further increasing the NIP (up to NIP = 10)
is marginal. Moreover, in all NIP cases, increasing the number
of pinged ASes more than M = 500 barely improves accuracy
(as was already indicated by Fig. 2(a)).

V. IMPROVING IMPACT ESTIMATION WITH PUBLIC
INFRASTRUCTURE MONITORS

The biased view of public monitors. As already discussed,
public monitors are not uniformly deployed in the Internet,
and this increases the error of NIE. Consider the following
example scenario: The victim is an AS that is located in a
geographical area where many monitors exist (e.g., with direct
peering or short paths to these monitors), and the hijacker AS
is in a different area with less monitors. The actual impact of
the hijacks is I = 50% (i.e., half of all ASes are infected),
however, the NIE underestimates the impact (i.e., ÎNIE < I)
because more monitors would prefer the paths to the victim.

Generalizing the above example, the error of NIE increases
when the monitors are not representative of the global con-
nectivity, or –more abstractly– when there are correlations be-
tween their measurements (due to locations, underlying topol-
ogy, AS-relationships, etc.). Hence, to improve the estimation
accuracy of NIE under public monitors, one needs to take into
account the correlations between the monitors. To this end, in
the following we design a statistical learning methodology that
exploits information of past events (to identify correlations
between public monitors), fits a model that diminishes the
effect of correlations, and returns an estimation for the impact.
The linear regression estimator (LRE). The methodology
we propose is summarized as follows:

LRE: Linear Regression Estimator
1) Compile a dataset from N past events (hijacks, anycast

announcements, etc.), where for each event j, j =
1, ..., N , collect the measurements m(j)

i of the monitors
i ∈M, and the actual hijack impact I(j).

2) Fit a least squares estimator, by calculating the weights
wi, i ∈M, as:

w← argminw (||M ·w − I||2)2 + α · (||w||2)2

where w = [w1, ..., wM ] and I = [I(1), ..., I(N)] are
vectors, M is the matrix with elements m(j)

i at the ith

row and jth column, and || · ||2 denotes the l2-norm.
3) Estimate the hijack impact from the current monitor

measurements mi and the calculated weights wi as

Î =
∑

i∈Mmi · wi

The first step is to collect data that contain information
about the correlations between the measurements of the dif-

3For small NIP or M , the RMSE values in our experiments are a bit lower
than the corresponding theoretical values (Table III); this is due to the small
number of experiments (confidence intervals are larger for small NIP or M ).

ferent public monitors. To do this, one can consider a set
of past/ongoing events N (|N | = N ), where two (at least)
ASes announce the same prefix. Such events can be actual
or emulated (e.g., as in our experiments; §II-E) hijacking
events, or legitimate anycasting announcements (which from
a routing point of view are equivalent to Type-0 hijacks) [28].
For each of these events j ∈ N , we collect the measurements
m

(j)
i of the public monitors i ∈ M. In the case of RC

monitors the measurements can be retrieved from the the RIPE
RIS [21] and the RouteViews [22] services directly, or from
the open-source tool BGPStream [42], [43] that aggregates
these measurements, and in the case of RA from the RIPE
Atlas API (by triggering measurements for ongoing events,
or collecting the periodic measurements for past events) [23].
Moreover, for each event we need to know the actual hijack
impact, which can be exactly measured with exhaustive ping
measurements (similarly to our methodology in §II-E for
collecting the ground-truth in our experiments, or other related
approaches [28]) or approximated well with a few thousands
of ping measurements using the methodology of §IV.

The second step is to identify any correlations between the
measurements of the monitors, and eliminate their effect in
the estimation. We select to do this, by using a least squares
approach, and, in particular, a linear regression estimator
with regularization of the weights (i.e., Ridge regression).
Our choice, is motivated by the fact that (i) the least square
estimator (i.e., linear regression) has the the lowest variance
within the class of linear unbiased estimators [44]4, and (ii)
the regularization significantly reduces the variance of the
estimations when multi-collinearity occurs; in fact, the public
monitor measurements are highly collinear, and thus large
values of the regularization parameter α are needed (e.g, we
found that values a ≥ 50 performed best)

Finally, having fitted the model (i.e., the weights wi) that
eliminates the correlations between monitor measurements, we
can apply it to any new hijacking event and estimate its impact.
LRE vs. NIE estimation accuracy. We compare the accuracy
of the impact estimations by LRE and NIE with RA monitors
in Fig. 3 (similar results hold for the RC monitors). We use
1000 simulations as the past-events dataset, from which we
collect the data to fit the LRE, and apply the LRE and NIE
to a different set of 1000 simulations.
Key finding: LRE can eliminate the effect of correlations in
public monitor measurements and achieve similar efficiency to
the (best performing) ping-based estimators.

We see that LRE has significantly lower RMSE than NIE.
In fact, in the case of Type-0 hijacks (Fig. 3(a)) LRE achieves
equal accuracy to the NIE with random monitors (Theorem 1),
or even better accuracy for small number of monitors. This
is an important finding that demonstrates that we can design
estimators based on public monitors with similar efficiency to
the ping-based estimators. LRE outperforms NIE for the case

4We tested several non-linear estimators as well (e.g., support-vectors,
random forests, neural networks). However, they had similar (or worse)
performance to LRE. We selected the LRE, as a simple model, which comes
with the advantages of interpretability, need for less training data, etc.
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Fig. 3. RMSE (y-axis) of the LRE with RA monitors and the NIE with
random or RA monitors, vs. number of monitors (x-axis), in simulations of
(a) Type-0 and (b) Type-2 hijacks.
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Fig. 4. RMSE (y-axis) of the LRE with public monitors and the NIE with
random or public monitors, vs. number of monitors (x-axis) for Type-0 hijacks
for (a) RA and (b) RC monitors in the PEERING experiments.

of Type-2 hijacks as well (Fig. 3(b)), e.g., having almost 50%
less RMSE for M ≥ 50 monitors. Comparing the RMSE of
LRE in the cases of Type-0 and Type-2 hijacks, we can see that
it increases with the hijack type; this is due to the fact that the
actual impact of higher type hijacks is lower, and thus there
are more observations mi = 0, which makes more difficult for
a model to identify the existing correlations in measurements.

We proceed to test the efficiency of LRE in the real
experiments with PEERING. We remind that we have only 22
experiments, which is a very small dataset for training a model.
Hence, this is not a conclusive evaluation (it can be rather
seen as a stress-test of LRE); nevertheless, our findings are
very promising. For each experiment {V,H}, we consider as
the dataset with past events the other 20 experiments (omitting
also the experiment {H,V}) and fit the LRE. Figure 4 presents
the results for RC and RA monitors. In the case of RA
monitors (Fig. 4(a)), we can see that LRE clearly outperforms
NIE with RA monitors, despite the very limited available
data for training the LRE. In the case of RC (Fig. 4(b)),
LRE has a similar performance to NIE with RC monitors.
These findings verify the efficiency of LRE, and indicate that
even information from only a few past events can lead to
more accurate estimations. However, they also highlight the
importance of collecting past event data for training estimators;
our experiments data [15] can contribute to this direction.

VI. RELATED WORK

The majority of works on BGP prefix hijacking (or other
types of events affecting the Internet operation, e.g., out-
ages [45], [46]) focus on the detection of an event, using

network measurements on the control plane [9] or the data
plane [10] or both [11], [12]. The difference between detection
and impact estimation lies in the fact that having information
for at least one infected AS is typically enough to enable
the detection of a hijack, however, it gives only limited
information (if any) about its overall impact. Our work focuses
on quantifying the impact of a (detected) hijack, and thus
complements the existing detection methods.

A few works studying (through simulations) the hijack
impact focus mainly on the average impact of different
hijacking attacks [47] or hijacker ASes [13], [48], whereas
our goal is to estimate (through measurements) the actual
impact of an ongoing hijack. Ballani et al. [47] consider
interception hijacks , and study when they are expected to have
significant impact, by providing coarse estimates for groups
of ASes (e.g., Tier-1) that could act as hijackers. Similarly,
the potential impact of a hijacker AS (or, conversely, the
resilience of a victim AS to a hijack) is studied in [48], where
the topological characteristics (e.g., node degree) of ASes are
used to classify potential hijackers based on the impact they
can cause. TowerDefense [13] aims to find a set of monitors
that maximizes the probability to detect a hijack (i.e., at least
one monitor is infected); a problem that is complementary to
impact estimation, whose aim is to find a representative set of
monitors (i.e., a set where the fraction of infected monitors is
close to the overall hijack impact).

Finally, the framework of [29] for predicting the catch-
ment of an anycast deployment, could be used for hijack
impact estimation (a hijack can be seen as a setup where the
pair {V,H} anycasts the same prefix). However, the routing
information that is required may not be always accurately
known in practice, which would lead to higher errors than a
measurement-based NIE (we verified this in our experiments).

VII. CONCLUSION

The problem of hijack impact estimation has not been given
attention in literature, despite its usefulness for network oper-
ations and economy, e.g., to know how an ongoing hijack af-
fects a network, or to select and evaluate the efficiency/cost of
different mitigation measures. In this paper we made the first
steps towards understanding the fundamental (limits, trade-
offs, etc.) and practical aspects (use of public infrastructure,
measurement failures, etc.) of the impact estimation problem.
We also designed accurate estimation techniques that are easy
to implement and incorporate in existing defense systems.

We believe that this work can motivate further research on
the topic; we identify and discuss two interesting directions:

A network may exchange traffic with only a subset of
ASes in the Internet (and/or different volumes of traffic per
AS). In this case, a more fine-tuned estimation of the impact
(on the exchanged traffic) can further help network operators.
Sophisticated estimators, such as weighted versions of the
NIE, Ping-IE, or LRE, can be designed. A preliminary view
in this direction is given in Fig. 5(a), where we apply NIE
to estimate the impact only on subsets of ASes: the RMSE
of NIE with random set of monitors remains almost constant
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Fig. 5. (a) RMSE (y-axis) of NIE with random set of M monitors measuring
the hijack impact on different number of ASes with traffic to the victim
AS (x-axis). (b) Correlation between LRE weights wi and AS-topology
characteristics of monitors i; average values over 30 simulation scenarios.

(we observed similar behavior for the NIE with RC and RA
monitors as well). While a formal and detailed study is needed
to draw firm conclusions, this is an indication that the main
findings of this paper can hold for more generic cases as well.

The LRE findings can motivate research on the selection
and combination of measurements from public infrastructure,
with broader applications on the Internet monitoring. To this
end, Fig. 5(b) provides some initial statistics on the corre-
lation between the LRE weights wi (i.e., the importance of
monitor i) and the topological characteristics of monitors i.
Admittedly correlations are weak, however, they reveal some
underlying trends and give rise to some interesting questions:
(i) Observations from RC and RA monitors/ASes with larger
customer cones seem to play a more important role; does
this indicate that we should deploy more monitors on such
networks? (ii) Top tier networks (e.g., Tier-1) contribute more
on the LRE, but only in the RC case; should we devise
different strategies for selecting measurements from RC and
RA? (iii) Finally, the number of neighbors a monitor has,
seems to be a less important feature; would this mean that
monitors at IXPs (where networks establish a lot of peerings)
are equally important with monitors at stub networks? Further
research and (open) data could help answering such questions.
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APPENDIX A
PROOF OF THEOREM 1

The hijack impact I is the fraction of ASes that are infected.
When choosing randomly the ASes/monitors to be measured
(and the number of measurements is much less than the total
number of ASes), we can reasonably model each measurement
as an independent Bernoulli trial with probability I , i.e., the
probability that a selected monitor is infected is I . The NIE
involves the sum of M independent Bernoulli trials, and thus
the sum follows a binomial distribution, i.e.,

∑
i∈Mmi ∼

Binomial(M, I), for which it holds that

E
[∑

i∈Mmi

]
=M · I (2)

V ar
[∑

i∈Mmi

]
=M · I · (1− I) (3)

Bias. The bias of an estimator is defined as

Bias = E[Î − I] = E[Î]− I (4)

For the NIE it holds that

E[Î] = E
[

1
M ·

∑
i∈Mmi

]
= 1

M · E
[∑

i∈Mmi

]
= I (5)

where in the last equation we used the expression of Eq. (2).
Substituting Eq. (5) in Eq. (4) gives Bias = 0.
RMSE. The RMSE of NIE, given the actual impact I , is:

RMSE(I) =

√
E[(Î − I)2] =

√
E[(Î − E[Î])2]

=

√
V ar[Î] =

√
V ar[ 1

M

∑
i∈Mmi]

=
√

1
M2 · V ar[

∑
i∈Mmi] =

√
I·(1−I)√

M
(6)

where we use the definition of the variance (V ar(x) = E[(x−
E[x])2]), and in the last equality the expression from Eq. (3).

Then, the RMSE of NIE follows by taking the expectation
of RMSE(I) in Eq. (6) over the impact distribution f(I):

RMSE =
∫ 1

0

√
I·(1−I)√

M
· f(I) · dI = 1√

M
· cI (7)

APPENDIX B
PROOF OF THEOREM 2

If mi = 1, then m̂i is 1 as well. However, if mi = 0, then
m̂i is 1 with probability p (Definition 2) and 0 with probability
1 − p. Taking into account the fact that the indicator mi

follows a Bernoulli trial with probability I (see Appendix A),
it follows that m̂i follows also a Bernoulli trial with probability

P{m̂i=1} = P{mi=1}+ p · P{mi=0} = I + (1− I)p (8)

and thus it holds

E[m̂i] = P{m̂i = 1} = I + (1− I) · p (9)

In the case of measurement failures, the expression of NIE
is calculated from the indicators m̂i. Thus, the expectation is

E[Î] = E[ 1
M

∑
i∈M m̂i] =

1
M · E[

∑
i∈M m̂i]

= 1
M ·M · (I + (1− I) · p) = I + (1− I) · p (10)

where in the third equality we used the expression of Eq. (9).
Bias. The bias follows by substituting Eq. (10) in Eq. (4):

BiasNIE = E[Î − I] = (1− I) · p (11)

RMSE. The RMSE of NIE, given the actual impact I , is:

RMSE(I) =

√
E[(Î − I)2] =

√
E[Î2] + I2 − 2 · I · E[Î]

and using the property V ar(x) = E[x2]− (E[x])2, gives:

RMSE(I) =

√
V ar[Î] + (E[Î])2 + I2 − 2 · I · E[Î]

=

√
V ar[Î] + (E[Î]− I)2

=
√
V ar[ 1

M ·
∑

i∈M m̂i] + (I + (1− I) · p− I)2

=
√

1
M2 · V ar[

∑
i∈M m̂i] + ((1− I) · p)2 (12)

The quantity
∑

i∈M m̂i is the sum of M independent
Bernoulli trials with probability given by Eq. (8). Therefore

V ar[
∑

i∈M m̂i] =M · P{m̂i = 1} · (1− P{m̂i = 1})
=M · (I + (1− I) · p) · (1− I + (1− I) · p) (13)

Substituting Eq. (13) in Eq. (12), and taking the expectation
over the distribution f(I), gives the expression of the theorem.

APPENDIX C
THE EFFECT OF THE PUBLIC MONITORS’ LOCATION ON

THE NIE ACCURACY

The simulation results in Fig. 6 validate that the lower
accuracy of public monitors is due to their non uniform
locations. We grouped hijacks based on the locations of the
{V,H} ASes (i.e., continents where their headquarters are
located5). We observe that when {V,H} reside in different
continents (left subplot), the difference in the visibility from
public monitors leads to higher RMSE (while the difference in
random monitors is much smaller). The right subplot presents
some indicative cases, where we see that when V or H are
located in Asia (where public monitors are scarce) the RMSE
is significantly higher than in the case where {V,H} are in
N./S. America; on the contrary, random monitors yield similar
accuracy in all cases.
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Fig. 6. RMSE of NIE (y-axis) using M = 100 monitors from different sets
(x-axis); comparing results where {V,H} are located in the same/different
continents (left subplot) and in N.America/S.America/Asia (right subplot).

5Retrieved from CAIDA’s AS-Rank dataset as-rank.caida.org


