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Abstract—In-band real-time telemetry is a promising direction
for management of modern programmable networks. While
network noise in the form of packet reordering and loss affects in-
band collection of distributed state, there is a need to compute
telemetry functions on the collected state correctly despite the
network noise. To address this common need, we propose
TeleNoise that equips each packet with few sync bits and offers
primitives of group affiliation and group completion to support
noise-resilient computation of per-group telemetry functions. This
paper gives real-world examples of such functions, elaborates on
the role of TeleNoise in a modular in-band telemetry architecture,
and presents algorithms for the two TeleNoise primitives. We
derive analytical guarantees on correctness and performance
of the algorithms and report a trace-driven evaluation that
corroborates the effective low-overhead profile of TeleNoise, e.g.,
the assuredly correct operation and at most 1.6 packets of the
average measurement lag for 12-packet groups and 3 sync bits.

I. INTRODUCTION

The large scale and programmability of modern computer
networks create new challenges and opportunities for network
management. On the one hand, the increasing complexity of
networks makes it harder to understand their distributed behav-
ior. On the other hand, networks become capable of allocating
more communication, storage, and computation resources for
collection and analysis of distributed state. Abstractions that
enable network telemetry include tiny packet programs [1] and
path queries [2]. Telemetry improves network management
via packet-drop localization [3], latency analytics [4], and
edge-assisted network debugging [5]. Telemetry also provides
real-time input to the execution of network protocols [6, 7].

INT [8], IOAM [9], and AM-PM [10] are prominent
representatives of in-band real-time telemetry that collect
distributed state via the data plane at line rates. The ingress
network element embeds instructions into the sent packet, and
the traversed elements follow the instructions to record data
into the packet. When the packet reaches the egress element, the
latter retrieves the collected data. Through the data collection
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and potential support of atomic functions, such in-band data-
plane frameworks enable network-management applications to
compute their metrics of interest.

In a number of real-world telemetry applications, correct
computation of a metric requires proper handling of network
noise in the form of packet reordering and loss. The loss rate
of a packet stream is an example of the metrics where network
noise is the subject of measurement. For computation of many
other metrics, network noise is a disruption to overcome
because packet reordering and loss distort the data collected
through in-band telemetry, e.g., when the egress computes the
size that the packet stream had at the ingress. Network noise
becomes especially relevant for metrics defined for a group of
packets such as a packet stream or its portion.

This paper proposes a TeleNoise module to support telemetry
functions in their common need of dealing with network noise.
TeleNoise operates on an end-to-end stream of packets from
source S to destination D, partitions the stream at S into fixed-
size groups of consecutive packets, and offers at D two atomic
functions of group affiliation and group completion. Group
affiliation determines belonging of the packet to the specific
group. Group completion decides whether D has received from
the group all the packets that can arrive from this group under
the maximum assumed level of network noise.

To implement these two atomic functions, we seek practica-
ble solutions with low communication overhead. In particular,
TeleNoise neither expects from nor inserts into the packets
any packet sequence numbers. We limit the communication
overhead of TeleNoise to few in-band sync bits which associate
the packet with its group. After discussing how real-world
telemetry functions can utilize the TeleNoise primitives of
group affiliation and group completion, we design specific
algorithms for the two TeleNoise primitives and analytically
derive guarantees on their correctness and performance. In these
algorithms, the sync bits have the same value in all packets of
a group to distinguish this group from adjacent groups. Our
work also includes an evaluation on realistic traffic traces.

Our contributions. This paper contributes to in-band real-
time telemetry as follows:

• Via the novel primitives of group affiliation and group
completion, the proposed TeleNoise module supports
robust computation of per-group metrics by telemetry
functions in the presence of network noise.
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Figure 1. TeleNoise in a modular in-band real-time telemetry architecture.

• We illustrate how real-world telemetry functions can
compute their metrics by leveraging TeleNoise.

• We develop algorithms for the TeleNoise primitives and
analyze their correctness and performance guarantees.

• Our trace-driven experiments confirm the high effective-
ness of TeleNoise despite its low communication overhead,
e.g., its assuredly correct operation and at most 1.6 packets
of the average measurement lag for 3 sync bits and 12-
packet groups.

The rest of the paper has the following structure. Section II
presents TeleNoise and its role in network telemetry. Section III
provides examples of real-world telemetry functions that benefit
from TeleNoise. Section IV designs TeleNoise algorithms for
network noise limited to packet loss. Section V extends the
work for noise comprising both loss and reordering. Section VI
reports the experimental evaluation. Section VII discusses
related work. Finally, Section VIII sums up our results.

II. TELENOISE MODULE

While INT [8] and IOAM [9] represent general frameworks
for in-band real-time telemetry, TeleNoise pursues a more spe-
cific purpose of providing support for resilient computation of
per-group metrics under network noise. We view TeleNoise as
a module that complements the general telemetry frameworks.
After introducing TeleNoise and its novel contributions, this
section discusses its role in the bigger telemetry picture.

TeleNoise functionality. TeleNoise is an end-to-end solution
that operates on stream f of packets from source S to
destination D. The module logically partitions the stream at S
into fixed-size groups of consecutive packets. For different
streams, group size G is configurable to different values
between 1 and |f | packets, i.e., a group can vary in size
from one packet to the entire stream.

To support per-group telemetry, TeleNoise offers at D two
primitives of group affiliation and group completion. Given a
packet, the primitive of group affiliation identifies the group
of the packet. For a specific group, the primitive of group
completion determines whether D has already received all
the packets that it can receive from this group under network
noise. TeleNoise guarantees to telemetry functions that the
two primitives perform correctly when network noise stays
within the maximum assumed level. Hence, the telemetry
functions at D can compute their per-group metrics with
assured correctness.

One of our design objectives is to keep the communication
overhead of TeleNoise low. TeleNoise neither assumes any
packet sequence numbers nor inserts such numbers into the
packets. The module adds only few sync bits per packet to keep
the distributed state at S and D consistent. Figure 1 illustrates
how TeleNoise at S inserts sync bits h into a packet and how
TeleNoise at D extracts the sync bits from the packet. The
specific TeleNoise algorithms that we present in Sections IV
and V set the sync bits in all packets of a group to the same
value that denotes a group type distinguishing the group from
adjacent groups. Use of the TeleNoise module is optional for
telemetry functions. In Figure 1, TeleNoise uses the same h
sync bits in each packet to support telemetry functions T1, T2,
and T3 while function T4 does not utilize TeleNoise.

TeleNoise leverages the sync bits to implement at D the
atomic functions of group affiliation and group completion.
In particular, TeleNoise defines a group as completed when
D receives either the last packet from the group or, if the
network loses all packets of this group, the first packet from
the subsequent groups. When D receives a packet, TeleNoise
at D issues a PACKETREPORT() call to the interested telemetry
functions, and this call identifies the non-completed group to
which this packet belongs. Upon determining that a group has
become completed, TeleNoise at D issues a GROUPREPORT()
call to notify the interested telemetry functions about the
completion of this group.

Unlike AM-PM [10], TeleNoise does not inject any control
packets and does not require an explicit notion of time. Instead,
TeleNoise communicates distributed state in-band only and
deals with time indirectly in regard to the orders of packet
departures from S and packet arrivals to D. In particular, we
define measurement lag λ(J) for group J as the number of
packets received by D between the moment when J became
completed and the moment when TeleNoise determines that
this group has become completed.

Architectural and system issues. While TeleNoise provides
specialized support for noise-resilient per-group telemetry, we
now discuss its role in general in-band telemetry. Telemetry
functions do not have to rely solely on TeleNoise in computing
their end-to-end metrics. For example, functions T1 and T2
in Figure 1 insert fields F1 and F2 into the packet header
respectively to communicate their function-specific state from
S to D.

Similarly, the end-to-end TeleNoise module can work along-
side in-network telemetry solutions, e.g., INT and IOAM.



To elaborate on such potential cooperation, we consider
a modular in-band telemetry architecture where a ShoveL
module supports data-plane collection of distributed state
at intermediate switches on the path of a packet from S
to D. ShoveL provides logic for computation and in-band
communication of characteristics ck that capture properties of
the distributed state. Examples of the characteristics include
the switch identification number and egress buffer occupancy.
As with TeleNoise, use of ShoveL by a telemetry function is
optional. On the other hand, a function may request ShoveL to
collect multiple characteristics. Furthermore, ShoveL efficiently
collects the same characteristic for multiple interested functions:
the module allocates a single field for the characteristic in the
packet header and processes the characteristic only once at
each switch. In Figure 1, ShoveL supports characteristics ca,
cb, and cc, function T1 requests ca and cc, function T2 does not
request any characteristics, function T3 requests ca, function T4
requests cc, and the packet header carries ca and cc.

Whereas this paper focuses on TeleNoise algorithms and
derives analytical guarantees for their correctness and perfor-
mance, we leave the design of ShoveL to future work and
only briefly comment here on system considerations. Because
TeleNoise is an event-driven solution that does not involve a
concept of time, its practical implementation would benefit
from an additional mechanism, such as an explicit signal or
timeout, to handle any non-completed groups at the end of the
stream, e.g., the last group.

III. EXAMPLES OF REAL-WORLD TELEMETRY FUNCTIONS

Before giving our full attention to the design and evaluation
of specific TeleNoise algorithms, we utilize this section to
provide several examples of real-world telemetry functions that
benefit from the TeleNoise support.

Packet-loss function Tl. The packet loss of a group refers
to the number of packets from this group that are lost on their
way from S to D. Upon a packet arrival to D, TeleNoise
notifies Tl via a PACKETREPORT call about the group of this
packet, and Tl increments its count of packets received from
the group. Whenever TeleNoise determines that a group has
become completed at D, TeleNoise issues a GROUPREPORT
call, and Tl finalizes the number of packets received from
the group. By subtracting this number from the group size,
Tl calculates the packet loss for the group.

Buffer-occupancy function Tb. A packet on its way from
S to D might be queued or dropped at the egress link of a
switch because the link buffer contains other packets awaiting
transmission. Dividing the number of these buffered packets by
the buffer size (i.e., the maximum number of packets that the
buffer can accommodate) yields the relative buffer occupancy
experienced by the arriving packet at the link. If the arriving
packet is dropped because the buffer is full, the relative buffer
occupancy experienced by the packet is 100%. With all links
considered along the end-to-end path, the maximum observed
relative buffer occupancy characterizes the most congested link
for the packet. The buffer occupancy for a group is the average

of the maximum buffer occupancies experienced by the packets
of the group.

The buffer-occupancy function exemplifies the telemetry
functions that benefit from both end-to-end TeleNoise and hop-
by-hop ShoveL modules. As a packet transits from S to D,
ShoveL at the switches updates the packet header with the
maximum buffer occupancy experienced by this packet so
far. Upon a packet arrival to D, TeleNoise informs Tb via a
PACKETREPORT call about the group of the packet, and Tb
uses ShoveL to obtain the maximum buffer occupancy recorded
in the packet. Whenever TeleNoise determines that a group
has become completed, a GROUPREPORT call from TeleNoise
notifies Tb accordingly, and Tb computes the buffer occupancy
for the completed group by averaging the maximum buffer
occupancies experienced by all its packets, with each lost
packet contributing the maximum buffer occupancy of 100%.

Although function Tb is capable of computing the buffer
occupancy without utilizing the TeleNoise support, the compu-
tations that average only the maximum buffer occupancies in
the received packets might greatly underestimate the correct
answer. For instance, if a buffer overflow discards 9 packets,
and the 10th packet arrives to D and reports the maximum
buffer occupancy of 80%, Tb without TeleNoise computes the
buffer occupancy for these packets as 80% while the correct
answer computed by Tb with TeleNoise is 98%.

Out-of-order function Tr. The out-of-order ratio for a
group is the fraction of the packet pairs that D receives
out of their original order within the group. At switch S,
function Tr inserts its field Fr into the packet header to
communicate the sequential number of the packet within its
group. When D receives a packet from the group, TeleNoise
issues a PACKETREPORT call to inform Tr about the group
of the packet, and Tr considers the packet as out-of-order if
the sequential number of the packet exceeds the number in
the previous packet received from this group. When TeleNoise
determines that a group has become completed, Tr receives a
GROUPREPORT call from TeleNoise and computes the fraction
of the out-of-order packet pairs for the group.

IV. ALGORITHMS FOR PACKET LOSS ONLY

To start designing our algorithms for TeleNoise, we consider
the special case where network noise consists of packet loss
only, i.e., there is no packet reordering. Loss parameter L
represents packet loss by imposing an upper limit on the number
of consecutively lost packets, i.e., for any packet j of stream f
such that j is less than |f | − L, destination D receives at
least one of packets j through j + L. Let A be the set of all
deterministic algorithms that implement TeleNoise for t sync
bits and group size G. Also, let hi refer to the t-bit field used by
packet i for the sync bits. The following theorem characterizes
the ability of an algorithm in A to correctly associate a packet
with its group.

Theorem 1. A deterministic algorithm from set A cannot
guarantee correct affiliation of packets with their groups if

L ≥ (2t − 2)G+ max(G, 2) packets. (1)



Proof. For a stream containing at least 2tG packets, we
construct loss patterns P1 and P2 that produce the same packet
sequence at D in regard to the sync bits of the received packets
even though P1 and P2 discard different numbers of packets for
at least one group. In this case, any algorithm in A is unable
to assuredly associate every packet with its group. To construct
such patterns, we consider two packets i and j in two different
groups such that hi = hj , i < j, and the value of j − i is
the smallest possible. Let k and m be two packets transmitted
by source S between packets i and j, i.e., i < k < m < j.
Because j − i is the smallest possible, hk can equal hm only
if packets k and m belong to the same group. Also, both hk
and hm cannot equal hi. Hence, j− i is at most (2t− 1)G+ 1
packets. Moreover, j − i can equal (2t − 1)G+ 1 packets iff
i is the last packet in its group I , j is the first packet in its
group J , and all packets belonging to groups I and J have
the same value in their the sync bits.

For the scenario where j − i equals (2t − 1)G+ 1 packets,
and G is at least 2 packets, we construct such patterns P1 and
P2 that both patterns discard packets i+ 1 through j − 1, only
P1 discards the first packet in group I , and only P2 discards
the last packet in group J . In either of the patterns, the other
packets of the stream arrive to D in order. Because all packets
in groups I and J have the same value in their sync bits,
D receives the same packet sequence in regard to the sync
bits under either P1 or P2. Since only P1 discards packets in
group I , D cannot assuredly decide on affiliation of received
packets with group I or J . At the same time, both P1 and P2

discard at most (2t−1)G consecutive packets. Thus, D cannot
guarantee correct affiliation of packets with their groups if
condition 1 holds in this scenario.

For the scenarios where j − i is at most (2t − 1)G packets,
or G equals 1 packet, the constructed P1 and P2 patterns are as
follows: only P1 discards packet i, only P2 discards packet j,
and both patterns discard packets i+ 1 through j − 1. Under
either P1 or P2, the consecutive loss is at most j − i + 1 ≤
(2t−2)G+max(G, 2) packets, and D receives the same packet
sequence. Hence, the theorem holds in these scenarios too.

Theorem 1 reveals that any TeleNoise algorithm with
t sync bits and per-packet resolution, i.e., group size G equal
to 1 packet, fails to assure correct group affiliation if the
consecutive loss is at least 2t packets, e.g., only 4 packets for
t set to 2 bits. Increasing the group size relaxes the feasibility
limit significantly. For example, when G and t are 16 packets
and 2 bits respectively, the consecutive loss has to be at least 48
packets to preclude any TeleNoise algorithm from guaranteeing
correct affiliation of packets with groups.

We now present Algorithm 1, a TeleNoise algorithm that
approaches the feasibility limit in Theorem 1. The algorithm
supports per-group telemetry functions T by implementing
the primitives of group affiliation and group completion. In
Algorithm 1, all packets of the same group have the same
value in their sync bits, and this value distinguishes the group
from adjacent groups in the stream. This t-bit value is called a
group type and varies from 0 to 2t−1. At source S, variable s

Algorithm 1 TeleNoise for packet loss only
1: procedure SOURCEINIT()
2: s← 0 . group type of the next packet
3: c← 0 . id number of the packet within its group
4: procedure SOURCEUPDATE(p)
5: p.h← s . setting the sync bits in packet p
6: c← (c+ 1) mod G
7: if c = 0 then
8: s← (s+ 1) mod 2t

9: procedure DESTINIT()
10: n← 0 . number of the first non-completed group
11: procedure DESTUPDATE(p)
12: while p.h 6= n mod 2t do
13: GROUPREPORT(n) . group n is completed
14: n← n+ 1

15: PACKETREPORT(n, p) . packet p is from group n

tracks the group type for the packet that S transmits next, and
variable c with values between 0 and G−1 stores the id number
of this packet within its group. When sending a packet of the
stream, source S copies group type s into sync-bit field p.h
of this packet p, increments c modulo G, and – if p is the last
packet in its group – increments s modulo 2t. Destination D
detects group completion by tracking the number of the first
non-completed group in variable n. Upon receiving packet p,
D compares the group type in field p.h of the packet with
the t least significant bits (LSBs) of variable n. As long as
these t-bit numbers differ, D informs functions T about the
completion of group n and increments n. When t LSBs of n
equal sync bits p.h in the packet, D notifies functions T about
receiving packet p from group n.

Theorem 2. Algorithm 1 guarantees correct group affiliation
and group completion to per-group telemetry functions T if

L ≤ (2t − 1)G− 1 packets. (2)

Proof. Consider such packets i and j from groups I and J
respectively that j is the next packet received by D after i.
Suppose that upon receiving packet i, D has n set to I . Because
of the constraint on consecutive packet loss, J − I is at most⌈
L+1
G

⌉
= 2t − 1 groups. If J 6= I , D reacts to the arrival of

packet j by detecting the completion of groups I through J−1,
notifying functions T accordingly, and setting n to J . If J = I ,
D determines that packet j is from group I of packet i. In
both cases, Algorithm 1 provides correct group affiliation and
group completion for functions T .

Theorem 2 shows that the TeleNoise implementation by
Algorithm 1 is highly resilient to packet loss. When G and t
are 16 packets and 2 bits respectively, Algorithm 1 is robust
to consecutive loss of up to 47 packets. The number of
sync bits controls a trade-off between the assured resilience
level and imposed communication overhead. In particular,
the loss resilience of Algorithm 1 more than doubles upon
incrementing t while preserving G. For fixed values of t



and L, group size G of
⌈
L+1
2t−1

⌉
or more packets ensures correct

operation of Algorithm 1.

V. ALGORITHMS FOR GENERAL NETWORK NOISE

A. Correctness guarantees

Algorithm 1 does not assure correct group affiliation and
group completion if network noise includes packet reordering.
For instance, when the network reorders packets i and i+1 from
two consecutive groups, destination D incorrectly associates
packet i with the group that follows the group of packet i+ 1.
In this section, we generalize the approach of Algorithm 1 to
provide correct TeleNoise operation for general network noise
that includes both reordering and loss of packets.

We model general network noise via loss parameter L as
defined in Section IV and reordering parameter R that captures
the maximal extent of reordering in packets: packet i may
reach destination D before packet j only if i is at most j +R.
Theorem 3 establishes the feasibility limits on assuredly correct
group affiliation for any algorithm from the A set introduced
in Section IV.

Theorem 3. A deterministic algorithm from set A cannot
guarantee correct affiliation of packets with their groups if

L > 0, R > 0, and L+ 2R ≥ (2t − 1)G packets. (3)

Proof. The proof follows the same general logic as the one
for Theorem 1: we construct two different loss patterns P1 and
P2 for the same stream with at least 2tG packets; because the
patterns discard different numbers of packets for at least one
group, and either pattern produces the same packet sequence
at destination D in regard to the sync bits of the packets, D is
unable to assuredly associate packets with their groups. We
define packets i and j as in the proof of Theorem 1. If j − i
exceeds 2R + 1 packets, we construct such loss patterns P1

and P2 that both patterns discard packets i+R + 1 through
j −R− 1, pattern P1 discards packet j and delivers packet i
to D immediately after packet i+R, and pattern P2 discards
packet i and delivers packet j to D directly before packet j−R.
With either P1 or P2, the other packets of the stream arrive
to D in order, and D receives the same packet sequence in
regard to the sync bits. Because L equals j−i−2R−1 packets,
which is at most (2t − 1)G− 2R packets, D cannot assuredly
guarantee correct association of packets with their groups if
conditions 3 hold. For j − i at most 2R+ 1 packets, we use a
similar construction to reach the same conclusion.

In accordance with Theorem 3, no algorithm in set A
can assure resilience to consecutive loss of 3 packets and
reordering by 2 packets when G and t equal 1 packet and 3 bits
respectively. As in the case with packet loss only, an increase
in the group size relaxes the feasibility limits substantially. If
we increase G to 16 packets and keep t at 3 bits, the value of
L+ 2R has to be at least 112 packets – e.g., consecutive loss
of 60 packets and reordering by 31 packets – to prevent any
algorithm in set A from ensuring correct affiliation of packets
with groups.

Algorithm 2 TeleNoise for general network noise
1: procedure DESTINIT()
2: n← 0 . number of the first non-completed group
3: procedure DESTUPDATE(p)
4: d← (p.h− n mod 2t + 2t) mod 2t

5: while d ≥ δ do
6: GROUPREPORT(n) . group n is completed
7: n← n+ 1
8: d← d− 1

9: PACKETREPORT(n+ d, p) . p is from group n+ d

Algorithm 2 generalizes Algorithm 1 to robustly implement
the TeleNoise primitives of group affiliation and group comple-
tion when network noise is general and close to the feasibility
limits in Theorem 3. At source S, Algorithms 1 and 2 operate
identically. The following assumptions underlie the operation
of Algorithm 2 at destination D: if D receives a packet from
group J , then each group that precedes J by δ or more groups
is completed; in this case, there always exists such group I that
every group preceding group I is completed and that D has not
yet received any packet from group I+δ or subsequent groups.
In Algorithm 2, destination D uses variable n to track the
number of this group I . Upon receiving a packet, D computes
d as the modulo-2t difference between sync bits p.h of this
packet p and t LSBs of n. Variable d expresses the number of
groups by which the group of packet p overshoots group n. As
long as d is at least δ groups, D informs functions T about
the completion of group n, increments n, and decrements d.
When d is less than δ groups, D notifies functions T about
receiving packet p from group n+ d.

Figure 2 illustrates the operation of Algorithm 2 for t, G,
and δ equal to 3 bits, 32 packets, and 3 groups respectively.
The first non-completed group at D is group 5. If D receives
packet p from group J where J is between 8 and 12, then
overshoot d of group J is between 3 and 7 groups respectively,
and D notifies about the completion of groups 5 through 2 +d.
If J is between 5 and 7, then the overshoot is between 0
and 2 groups respectively, and D does not issue a completion
notification for any group.

Theorem 4. Algorithm 2 guarantees correct group affiliation
and group completion to per-group telemetry functions T if

R ≤ (δ − 1)G and L+R ≤ (2t − δ)G− 1 packets. (4)

Proof. The proof uses induction to establish the invariants that
every group preceding group n is completed and that D has not
yet received any packet from group n+δ or subsequent groups.
These invariants ensure that Algorithm 2 correctly associates
each packet with its group and announces group completion
for completed groups only.

Suppose that the invariants are true immediately before the
arrival of packet p to D. Upon receiving the packet, D computes
d to capture the number of groups by which group J of packet p
overshoots group n. By induction, J is at least n. If J is less
than n + δ, then d is less than δ, and D does not announce
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Figure 2. Operation of Algorithm 2 with t = 3 sync bits, group size G = 32 packets, and δ = 3 groups. Group 5 is the first non-completed group at D.

any group completion and notifies functions T only about the
arrival of packet p from group n+ d, which is group J of this
packet p. If J is at least n+δ, then p is the first packet to reach
D among all the packets from group n + δ and subsequent
groups. Hence, at most L+R packets separate group n+ δ−1
and packet p at source S (in the worst case, the network loses
the first L of these packets and delivers the next R packets to
D after packet p), J is between n+ δ and n+ 2t − 1 due to
the L+R constraint in conditions 4, and the overshoot is at
least δ groups. In this case, D notifies functions T about the
completion of groups n through J − δ and sets n to J − δ.
Since R is less than (δ − 1)G packets, all groups that precede
group J − δ at S are completed. Therefore, both invariants
hold after D processes packet p.

Theorem 4 reveals that even small communication overhead
of several sync bits provides high assured resilience to network
noise. For example, when G is equal to 32 packets, t equals
3 bits, and δ is 2 groups, Algorithm 2 is assured to operate
correctly if R and L + R are at least 32 and 159 packets
respectively.

Parameter t, which denotes the number of sync bits, reg-
ulates a trade-off between the communication overhead and
assured network-noise resilience of Algorithm 2. For instance,
incrementing t by 1 bit without changing δ and G relaxes
the L+R constraint in conditions 4 by at least twice. Also,
changing t and δ to t + 1 and 2δ − 1 respectively enables
halving the group size without tightening conditions 4.

For fixed values of G and t, parameter δ controls a trade-off
between loss resilience and reordering resilience of Algorithm 2.
Note that network noise satisfies conditions 4 for δ exceeding
2t−1 groups only if it satisfies these conditions for δ equal to
2t−1 groups. Hence, we here consider the δ values between
1 and 2t−1 groups. When δ equals 1 group, Algorithm 2
exhibits the highest resilience to packet loss and is equivalent
to Algorithm 1, which does not guarantee correct operation
with reordering by only one packet. For δ equal to 2t−1 groups,
Algorithm 2 is guaranteed to operate correctly if R and L+R
are at least (2t−1 − 1)G and 2t−1G− 1 packets respectively.

For fixed values of L, R, and t, we define Gmin as the
minimal group size that satisfies conditions 4 for at least one

δ value. Gmin is the smallest among the G values that satisfy
the following inequality:⌈

R

G

⌉
+

⌈
L+R+ 1

G

⌉
≤ 2t − 1. (5)

For instance, when L equals 110 packets, R equals 40 packets,
and t is 3 bits, we have Gmin of 31 packets. According to the
guarantees provided by Algorithm 2 to telemetry functions T ,
the number of consecutive non-completed groups that have
delivered a packet to D is always at most δ. If a telemetry
function maintains state at D for each such group, the memory
requirements at D increase linearly with δ. Thus, when group
size G is fixed, parameter δ in Algorithm 2 presents a
trade-off between assured reordering resilience and memory
requirements of T at D. Among those values of δ that equip
Algorithm 2 with at least some assured robustness to both
reordering and loss, δ equal to 2 groups minimizes the memory
requirements of T at D. For fixed values of L, R, t, and G
satisfying inequality 5, the minimal δmin value of δ that satisfies
conditions 4 equals

⌈
R
G

⌉
+ 1 groups.

B. Performance guarantees
Since the network can lose or reorder packets, no online

algorithm at destination D can always detect the completion of
a group at the actual moment of the group completion because
of the uncertainty whether the missing packets of the group
are indeed lost or will still arrive. This section analyzes the
measurement lag of Algorithm 2. As defined in Section II,
the measurement lag for a group is the number of packets
received by D between the actual group completion and group-
completion detection by the algorithm. Below, we establish
upper bounds on the measurement lag of Algorithm 2 in relation
to B(δ,G) which denotes the total number of packets in δ − 1
groups, i.e., B(δ,G) equals (δ − 1)G packets.

Theorem 5. If conditions 4 hold, the measurement lag of
Algorithm 2 is at most 2B(δ,G) + 1 packets for each group
and at most B(δ,G) + 1 packets on average.

Proof. Consider all packets that arrive to D between the com-
pletion of group J and the detection of the group completion
by Algorithm 2. Because R is at most (δ− 1)G packets, these
packets belong to either δ − 1 groups preceding group J or



δ−1 groups following group J . Accounting also for the packet
that triggers the group-completion detection by its arrival to D,
we bound measurement lag λ(J) for group J to be at most
2B(δ,G) + 1 packets.

Now, consider a pair of groups J and I such that |J − I| is
at most δ−1 groups. The packets of group J can be accounted
towards measurement lag λ(I) of group I only if group I
becomes completed before group J . Otherwise, the packets of
group I can be accounted towards measurement lag λ(J) of
group J . Among all m groups in stream f , there are at most
m(δ−1) such pairs of groups. Therefore, the total measurement
lag for all m groups is at most m(δ − 1)G + m packets, and
the average measurement lag is at most B(δ,G)+1 packets.

In Algorithm 2, group size G controls a trade-off between
the measurement lag and assured resilience to network noise. In
particular, B(δ,G) scales linearly with G. For fixed values of
L, R, and t, we define Gλ and δλ as the group size and δ value
that minimize B(δ,G) while assuring the correct operation of
Algorithm 2.

Theorem 6. With reordering by at least 1 packet, Gλ and δλ
equal max

(⌈
L+R+1
2t−2

⌉
,R
)

packets and 2 groups respectively.

Proof. When there is reordering by at least 1 packet, δ in
conditions 4 is at least 2 groups, and these conditions hold
iff G is at least max

(⌈
L+R+1
2t−δ

⌉
,
⌈
R
δ−1

⌉)
packets. Thus,

(δ − 1) max
(⌈

L+R+1
2t−δ

⌉
,
⌈
R
δ−1

⌉)
represents the minimum

value of B(δ,G) for Algorithm 2 to operate correctly. Note
that with δ being at least 2 groups, the values of (δ −
1)
⌈
L+R+1
2t−δ

⌉
and (δ−1)

⌈
R
δ−1

⌉
are the smallest when δ equals

2 groups. Hence, we obtain δλ and Gλ as 2 groups and
max

(⌈
L+R+1
2t−2

⌉
,R
)

packets respectively.

To illustrate Theorem 6, we consider L, R, and t equal to
80 packets, 5 packets, and 3 bits respectively. In these settings,
Gλ of 15 packets and δλ of 2 groups minimize the upper
bounds on the measurement lag of Algorithm 2 at 31 packets
for each group and 16 packets on average. When there is no
packet reordering, the Gλ and δλ values that minimize the
upper bounds on the measurement lag are

⌈
L+1
2t−1

⌉
packets and

1 group respectively.
Let us now contrast Gλ and δλ, which minimize the

measurement-lag upper bounds, with the G and δ settings that
minimize the group size while assuring the correct operation
of Algorithm 2 as discussed in Section V-A. The following
theorem considers Gmin and δmin =

⌈
R

Gmin

⌉
+ 1 groups and

demonstrates that the measurement-lag upper bounds remain
close to minimal.

Theorem 7. B(δmin,Gmin) exceeds B(δλ,Gλ) by less than
Gmin packets.

Proof. Since δmin equals
⌈

R
Gmin

⌉
+ 1 groups, B(δmin,Gmin)

exceeds R by less than Gmin packets. Because B(δλ,Gλ) is
at least R packets, the result follows.

We conclude this section by presenting Algorithm 3 that
modifies Algorithm 2 at destination D to decrease the mea-
surement lag. The modification targets the scenario where D
receives all packets of a group. To announce the completion
of such group as soon as the last of its pending packets
arrives to D, Algorithm 3 at D maintains for each of groups n
through n+ δ − 1 a counter of packets that have arrived from
this group. When a packet arrival from a group brings to G
the count of packets received from the group, D announces
the completion of this group without any measurement lag.
While requiring additional δdlog2Ge bits to store the packet
counters at D, Algorithm 3 can substantially reduce the average
measurement lag.

VI. EXPERIMENTAL EVALUATION

Methodology. We adopt the method of the evaluations in
VL2 [11], pFabric [12], pHost [13] and RoDiC [14] and drive
simulations with realistic traffic traces generated from the data-
mining distribution of stream sizes [11]. We generate a total of
106 streams, with at most 2

3 · 106 packets in a stream, and use
YAPS [15] simulator in its unreliable transport configuration.
The considered leaf-spine network topology contains 4 spine
switches and 9 ToR leaf switches with 16 servers connected to
each ToR switch, i.e., 144 servers altogether. 90% of all streams
traverse a spine switch. Our simulation code is public [16].

To simulate different congestion levels, we vary congestion
parameter β that controls the expected time between the
transmissions of two consecutive packets from the same source.
While congestion becomes smaller as β increases, we consider
β values between 0.625 and 1.25. Buffer size ∆ at the
intermediate switches varies from 9 to 59 packets. In our
standard experiment settings, β and ∆ are 1 and 24 packets
respectively. Whereas t is either 2 or 3 sync bits in the
experiments, δ is between 2 and 2t−1 groups. For all considered
values of t and δ, Algorithms 2 and 3 are assured to operate
correctly on all streams with the group size of at least 33 packets
in the standard experiment. Hence, we vary G from 5 up to
33 packets and evaluate only relatively large streams where
the number of packets is at least 8 · 33 + 1, i.e., 265 packets.

Impact of group size G on algorithm correctness. Since
Algorithms 2 and 3 have identical correctness properties, our
correctness-related experiments assess only Algorithm 2. For
given t and δ, we evaluate all the considered streams in the
standard experiment in regard to two metrics: Z(t, δ) measures
the percentage of the streams for which Theorem 4 does not
assure correctness of Algorithm 2, and E(t, δ) records the
percentage of the streams for which Algorithm 2 actually
makes at least one error.

Figure 3a manifests that the assured correctness of Algo-
rithm 2 grows steeply with the group size. With t = 2 sync
bits and δ = 2 groups, more than 23% of the streams violate
conditions 4 for G equal to 5 packets, and Z(2, 2) declines
dramatically to 0.5% and 0.003% (the latter corresponds to
3 streams only) for the group size of 15 and 25 packets
respectively. The algorithm correctness is assured when G
is at least 31 packets. The E(2, 2) line shows that Algorithm 2
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Figure 4. Average measurement lag λ(t, δ) of: a) Algorithm 2 and b-d) Algorithm 3.

operates incorrectly for 19%, 0.13%, and 0.001% (1 stream
only) of the streams for the group size of 5, 15, and 25 packets
respectively. When G is at least 26 packets, Algorithm 2
operates correctly for all the streams. E(2, 2) is consistently
smaller than Z(2, 2) because conditions 4 are sufficient but
not necessary for Algorithm 2 to operate correctly.

Figure 3a also unveils that an increase in t significantly
expands the range of the group sizes for which the correct
operation of Algorithm 2 is guaranteed. Even for G equal to
5 packets, the Z(3, 4), E(3, 4), Z(3, 2), and E(3, 2) values
are below 5%, 4%, 0.5%, and 0.3% respectively. When t
and δ equal 3 bits and 2 groups respectively, the group size
of 11 or more packets is sufficient to assure correct operation
of Algorithm 2 for all streams. As δ decreases, Z(t, δ) and
E(t, δ) drop significantly because loss parameter L becomes
more dominant over reordering parameter R in the tolerated
network noise.

Impact of β and buffer size ∆ on correctness. In assessing
the impact by β and ∆, we ignore few outliers, which constitute
0.2% of the streams examined before, and report the results for
the other 99.8% of the streams in respect to the following two
metrics: GZ(t, δ) refers to the minimum group size such that
Theorem 4 assures correctness of Algorithm 2 for these streams,
and GE(t, δ) captures the minimum group size such that the
actual operation of Algorithm 2 on these streams is correct.

Figure 3b exhibits the dependencies of GZ(t, δ) and GE(t, δ)
on β when buffer size ∆ equals 24 packets. As β increases from
0.625 to 1.25, the GZ(2, 2), GE(2, 2), GZ(3, 2), and GE(3, 2)
values decrease from 20, 17, 7, and 7 packets to 15, 13, 5, and
5 packets respectively. For both kinds of metrics, the growth
of β from 0.625 to 1.25 triggers the value decline by at most
5 and 2 packets when t is 2 and 3 sync bits respectively. Thus,
Algorithm 2 can operate correctly with small groups even under
heavy congestion. The correctness of the algorithm operation is

largely indifferent to the buffer size. As ∆ increases from 19 to
59 packets with β equal 1, either GZ(t, δ) or GE(t, δ) changes
by at most 1 packet for all the examined t and δ values.

Impact of group size G on measurement lag. To evaluate
average measurement lag λ(t, δ) of Algorithms 2 and 3, we
consider only those streams on which the algorithms operate
correctly. Figures 4a and 4b show the dependence of λ(t, δ)
on the group size in the standard experiment for Algorithms 2
and 3 respectively. While the upper bound on the average
lag in Theorem 5 is linear in G, the actual average lag of
Algorithm 2 exhibits a similar dependence and numerically
stays close to this theoretical bound. The λ(2, 2) and λ(3, 2)
lines fully overlap because they depict the same setting where
δ equals 2 groups. Figures 4a and 4b reveal that Algorithm 3
reduces lag λ(t, δ) by an order of magnitude compared to
Algorithm 2. For example, lag λ(3, 2) is 11.7 and 0.6 packets
for Algorithms 2 and 3 respectively when the groups are sized
to 11 packets to assure that both algorithms operate correctly
on all the examined streams. The decrease in the average
measurement lag is dramatic because the arrival of all packets
from a group, i.e, the scenario targeted by Algorithm 3, is
a common occurrence, which becomes more frequent with
smaller groups.

Impact of β and buffer size ∆ on measurement lag.
Finally, we evaluate how β and ∆ affect lag λ(t, δ) of
Algorithms 2 and 3. For fixed values of t and δ, we select the
smallest G value such that Theorem 4 assures correctness of the
two algorithms on all streams examined in the experiments. For
Algorithm 2, lag λ(t, δ) remains close to the upper bound in
Theorem 5 regardless of the β and ∆ values. Hence, Figures 4c
and 4d focus on Algorithm 3, for which the lag is highly
sensitive to β and ∆. As β increases from 0.625 to 1.25,
Figure 4c demonstrates that the λ(2, 2), λ(3, 2), λ(3, 3), and



λ(3, 4) values significantly decline by a factor of 3.6, 2.9, 3.7
and 3.6 respectively because a larger fraction of the groups
have all their packets delivered to D when congestion decreases.
While we show above that buffer size ∆ makes only a small
impact on the minimum group size needed by the algorithm
to operate correctly, Figure 4d unveils that lag λ(t, δ) of
Algorithm 3 decreases sharply when the buffer size grows,
again due to the increasing prevalence of the scenario targeted
by the algorithm. For instance, with 3 sync bits and δ equal
to 2 groups, λ(3, 2) is 1.6 and 0.5 packets when the buffer
accommodates 9 and 59 packets respectively.

The above evaluation confirms that TeleNoise offers effective
support to per-group telemetry functions. In particular, with t,
G, and δ equal to 3 bits, 12 packets, and 2 groups respectively,
Algorithm 3 is guaranteed to operate correctly on all examined
streams and has the average measurement lag of at most
1.6 packets in all evaluated scenarios.

VII. RELATED WORK

RoDiC [14, 17] proposes packet grouping and state overlap
as the bases for robust distributed monitoring of the stream
size. TeleNoise adopts these principles to support noise-resilient
computation of general per-group telemetry functions.

TeleNoise complements prior work on data-plane telemetry
by offering the novel primitives of group affiliation and
group completion that facilitate robust computation of per-
group metrics. While INT [8] is an extensive monitoring
framework based on per-packet data collection, INT does not
offer primitives for noise-resilient per-group telemetry. Whereas
IOAM [9] defines formats and procedures for communication of
telemetry information via data packets, TeleNoise can leverage
IOAM for communication of its sync bits from the source to
the destination. With TeleNoise supporting robust telemetry for
end-to-end packet streams, OmniMon [18] deals with network-
wide telemetry. Both TeleNoise and AM-PM [10, 19–21] target
per-group telemetry. While AM-PM fixes a time interval to
delineate packet groups, TeleNoise fixes the group size and
thereby removes a need for additional packets as an out-of-
band control channel. Also, unlike our work, AM-PM does not
provide analytical guarantees for correct metric computation.

In addition to the above proposals that represent conceptual
differences of TeleNoise from related work, a much larger body
of previous research on in-band telemetry extends and applies
the representative approaches [22]. For example, PINT [6] uses
approximation methods to reduce the communication overhead
of INT and studies the impact on HPCC congestion control [7].

VIII. CONCLUSION

This paper presented TeleNoise that adds few sync bits per
packet and offers the novel primitives of group affiliation and
group completion to support per-group telemetry functions
in their common need of dealing with network noise. We
provided examples of such functions, discussed the TeleNoise
role in a modular in-band telemetry architecture, designed
specific TeleNoise algorithms, and analyzed their correctness
and performance properties. Our trace-driven evaluation of the

algorithms confirmed their high effectiveness with low com-
munication overhead, such as the assuredly correct operation
on all the examined streams and average measurement lag of
at most 1.6 packets when TeleNoise uses 3 sync bits with
groups sized to 12 packets. In future work, we will expand the
evaluation scope, e.g., experiment on other traffic traces.
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