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Abstract—Learning performance models for network and
cloud services is challenging due to the dynamics of the opera-
tional environment stemming from network changes, and scaling
and migration decisions in the cloud. This requires exchange
or adaptation of the models in order to maintain prediction
accuracy over time. Approaches that incorporate previously
acquired knowledge using transfer learning is a viable technique
for timely and robust model adaptation, especially when the
training data is limited.

In this paper, we study the challenge of source selection in
transfer learning for improved service performance prediction.
We quantify the impact of different source domains on the
accuracy of a target model in another domain. The evaluation
is performed using data traces obtained from a testbed that
runs a Video-on-Demand service and a Key-Value Store under
various load conditions. We find that the choice of source domain
can yield a transfer gain, and sometimes a substantial transfer
penalty. To mitigate this, we propose and evaluate two source-
selection approaches with the aim of selecting a source domain
with relevant knowledge for the target domain. A key result is that
such source selection should encourage source-domain diversity
rather than domain similarity in scenarios with few samples in
the target domain.

Index Terms—Network Automation and Management, Perfor-
mance Modeling, Machine Learning, Transfer Learning.

I. INTRODUCTION

Telecommunication operators and providers deliver many
of their services under strict Service-Level Agreements (SLA),
and it is well-known that automation and management of such
systems is challenging and demanding. A promising approach
enabling intelligent network and service management is the
use of data-driven performance models that can predict and
forecast the service quality at the client side, as well as other
performance indicators, based on available observations in
the network infrastructure. The ability to learn performance
models from observations simplifies management tasks such
as service on-boarding, network slice dimensioning, proactive
service assurance, and root-cause analysis.

A key challenge in data-driven modelling for dynamic
environments is the difficulty to maintain the relevance of the
model over time. For example, services executed in a cloud
environment generally rely on a virtualization layer that allows
service components to migrate between physical execution
environments, and the resources assigned to the service can
dynamically be scaled up or down based on operator poli-
cies or user requirements. This is exemplified in Figure 1
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Fig. 1. Prediction of service metrics Y at the client given observations of
network and cloud infrastructure state and utilization {Xnyw, Xpc1..3}-
The execution environment changes from source to target domain.

where the service execution environment changes from one
configuration to another (source and target domains). Further,
the network path and assigned resources may also change as
illustrated in Figure 1. Such changes reduce the accuracy of
a performance model (or even makes it obsolete) which has
been trained for a specific configuration and environmental
condition. As a consequence, management functions that rely
on a performance model are negatively affected, unless the
model is appropriately updated. Further, extensive measure-
ments and data collection is usually required for training
machine-learning models. The data collection process takes
time and the overhead associated with measurements and data
collection can adversely affect the service itself and potentially
co-located services as well. For certain services, such as short-
lived Virtual Network Functions (VNFs), there is often not
enough time to gather the data required for training a model.

Transfer learning has been proposed for several types of
problems as an approach to overcome the above challenges
[1], where the knowledge embedded in a model and learned
for one environment (source domain) is transferred to facilitate
timely predictions in a changed execution environment (target
domain). Transfer learning is also a key technology for reusing
models where the predictive task, such as the service quality
metric, changes over time.

Since transfer learning is an approach that aims at incor-
porating knowledge gained in a source domain into the target
domain, the transferred knowledge from the sources must be
relevant to the target domain in order to avoid negative transfer
[2]. Figure 2 illustrates the concept of source selection, where
the aim is to improve target model accuracy.
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Fig. 2. Timely and accurate deployment of a target model Mg_, requires
transfer of relevant source-domain knowledge embedded in Mg  n.

This paper addresses the challenges of source selection in
transfer learning for network and cloud service scenarios,
and makes the following contributions. First, we provide
insights from experimental results quantifying the impact of
different source domains on the target domain, with a varying
number of available samples. A source domain can either
yield improved accuracy in the target domain, or result in
negative transfer. Secondly, we elaborate on two strategies for
source selection, namely diversity of the source domain, and
similarity between the source and target domains. Our results
indicate that relying on the similarity between the target and
the source domains as the sole criterion for source selection
in transfer learning may not be reliable, in particular when we
have a limited understanding of the target domain (i.e., few
samples). Rather, methods that encourage diversity provide
better source selection for the studied scenarios.

The rest of the paper is organized as follows. Section
IT describes the problem setting. Section III describes the
evaluation methodology and the source-selection approach.
Section IV describes the testbed and traces, whereas Section V
contains evaluation results and discussions. Section VI reviews
related work, and conclusions are located in Section VII.

II. PROBLEM SETTING

Figure 1 outlines the system under consideration, where
clients are interacting, over a network, with services that are
being executed in a data center. For the purpose of this paper,
we consider data traces originating from testbed experiments
where clients access two network services executing in one
data center; a Video-on-Demand (VoD) service and a Key-
Value Store (KVS) service.

In this work, we predict the service-level metrics Y; at
time ¢ on the clients accessing VoD and KVS services, based
on knowing the infrastructure metrics X;. Using supervised
machine learning, we train and evaluate models M : X; — }Aft,
such that Y, closely approximate Y; for a given Xj.

In [3], it was shown that the accuracy of prediction models
decreases over time if the execution environment changes, for
example, due to the scaling of resources, service migration,
changed hardware platform, or other infrastructure dynamics.
To mitigate the problem, a transfer learning approach was
proposed and evaluated. However, this work did not investigate
the impact of a source domain on the target domain, nor did
they propose source-selection approaches.

In this paper, we use the definition of transfer learning from
[1] to formalize the challenges of source selection in transfer
learning for dynamic clouds. A domain D = {X,P(X)}
consists of two components: (1) a feature space X, and (2) a
marginal probability distribution P(X), where X corresponds
to the infrastructure metrics. Further, a task T = {Y, M}
consists of two components: a target space Y corresponding
to service-level metrics, and an objective predictive model M.

Transfer learning is then defined as follows. Given a source
domain Dg and learning task Tg, a target domain Dp and
learning task 77, transfer learning aims at reducing the cost
of learning the predictive model M in Dt using the knowledge
in Dg and Tg, where Dg # D7, or Ts # Tr. A model that
is transferred from Dg to D7 is denoted Mg_, 7, to separate
it from a model Mg or My that is trained in isolation either
in the source or the target domain.

This paper studies how the performance of the target model
Mg _,7 varies with the choice of source domain Dg, and the
number of available samples /N, at time ¢ in Dp. Recall that
the number of samples in the target domain may be limited
due to overhead or time constraints, as discussed in Section I,
which limits our understanding of the target domain. Transfer
learning aims at addressing the problem by incorporating
knowledge gained from other source domains into the target
domain. Hence, the transferred knowledge from other sources
should be relevant to the target domain which implies the
need for source selection in transfer learning. The concept is
illustrated in Figure 2.

Conceptually, a relevant source to a target domain is the one
that “improves” the information content of the target domain
and thus improves our understanding of it. To improve the in-
formation content of the target domain, the information content
of the candidate source must be complementary. Hence, on the
one hand, one would need to encourage the diversity factor
by selecting a source with high enough information content.
On the other hand, one would need to select the source whose
information content agrees just enough with the target domain,
or more formally, the source domain whose underlying distri-
bution is of sufficient similarity to that of the target domain.
Thus, in order to select the relevant source Dg to the target
D7, we need to consider the two components of diversity of
the source domains and similarity between the domains at the
same time. Diversity is a marginalized quantity, meaning that
we can measure the information content of a source domain
independently from the target domain. However, similarity is
a conditional quantity, meaning that we can only measure the
similarity in underlying distributions of the target domain and
a source domain if we have sufficient representative data from
each respective domain. Our hypothesis is that the success
of the transfer learning in dynamic network environments
ultimately depends on how well we can meet the balance
between these two competing objectives.

Thus, a challenge targeted by this paper is where data in the
target domain is scarce and poorly representative of the target
domain. In such scenarios, we may not be able to reliably
measure the similarity in between underlying distributions of
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the source domains. Given the inherited limitations in the
availability of data, having its origin in the nature of dynamic
networks and infrastructures, and difficulties in robustly mea-
suring the similarity component, we argue in favor of methods
for source selection which encourage the diversity component.

III. APPROACH

In this paper, the transfer learning approach builds upon
re-training of a feed-forward neural-network model M, that
is transferred from a source domain, inspired by the work in
[4]. Such a model consists of an input layer, corresponding
to samples Xy, n — 1 hidden layers Lq,..., L,_1, weights
wy, ..., Wy, and an output layer L,, corresponding to Y;.

The weights w; for a neural-network model Mg, called
the source model, are trained using backpropagation [5] with
samples from the source domain Dg. In this paper, the knowl-
edge transfer corresponds to training a target model where
the weights of layers Lq,...,L,_1 are initialized with the
weights from the source model Mg, whereas the weights of L,
are randomly initialized to allow the target model to quickly
adapt to the new domain. The target model is then trained
using available samples from the target domain Dp. After
knowledge transfer, the resulting neural network is denoted
Mg_,7 and is thus used for service-level metric prediction in
D1 . In this paper we specifically study the challenging transfer
scenarios where Ts # T. Note also that the neural-network
architecture of Mg and Mg_,p are identical in this study.

In the following, we describe the methodology for quanti-
fying the source-domain impact on Mg_,r accuracy, and two
heuristic strategies for selecting a source domain.

A. Quantifying source-domain impact

We assess the choice of source domain Dg and its impact
on model accuracy in Dp by training target models Mg_,1
for each source model Mg. For each combination of Dg and
Dp, we evaluate the model accuracy given the number of
available samples N; at time ¢ in Dp. See an illustration of
the evaluation process in Figure 3.

As a baseline, we train a neural network from scratch, with
randomly initialized weights, solely using samples from Dp
that are available at time ¢, and this model is denoted by M.

We use the concept of transfer gain G to quantify the
impact of Dg on Mg_,7, which we define as:

G=er—esor, (D

where ep and eg_,r are the model errors for M and Mg_, 1,
respectively. The transfer gain is inspired by the negative
transfer gap defined in [2]. Transfer gain occurs when the
accuracy of the transferred model Mg_,7 is higher than M,
whereas a negative transfer gap means the opposite.

B. Source selection

In this paper, we consider two different heuristic source-
selection methods which consider the similarity between do-
mains and the diversity for source domains. The intention is
to determine which source domains are most fitted despite the
limited number of available samples V; in the target domain
Dr at time ¢, or even no samples at all.

In order to quantify the diversity we utilize the concept of
differential Shannon entropy h(Xg) for the source domain
Dg, which is calculated as:

h(Xs) = */Ps(l’) log ps(z)dz, ()

where p(z) is a probability density function for the source
domain trace Xg. We plan to investigate other diversity
metrics in future work.

In order to measure similarity between the observed tar-
get domain and a source domain, we use the symmetrized
Kullback-Leibler divergence Dsy, [6]. It is calculated as:

1
Dsym(Ps, Pr) = 3 (Drr(Ps||Pr) + Dkr(Pr||Ps)), (3)

where Pg and Pr correspond to the probability density
functions for the source and target domains, respectively, and

ps(z)
Dics(Psl|Pr) = [ ps(a)log 222,
pr(z)
In Section VI, we discuss different similarity metrics. As
for diversity, we plan to investigate other similarity metrics in
future work.

IV. TESTBED AND DATA TRACES
A. Testbed and services

The work presented in this paper is based on realistic traces
obtained from a testbed environment. This section provides an
overview of the experimental infrastructure, and the structure
of the data traces. We also describe the services that run on
the infrastructure; a Video-on-Demand (VoD) service and a
Key-Value Store (KVS) service. Further, we describe the load
patterns we use and experiments we run to obtain the traces
on which this paper relies. More details are available in [7].

The testbed consists of a server cluster and a set of clients.
The server cluster is deployed on a rack with ten high-
performance machines interconnected by a Gigabit Ethernet.
Nine machines are Dell PowerEdge R715 2U servers, each



TABLE I
TRACES USED FOR EVALUATION. RAVG = READ AVERAGE, WAVG =
WRITE AVERAGE, FR = FRAME RATE, AND ABR = AUDIO BUFFER RATE.

Trace ID Service(s) Load pattern Target Y # samples ‘
KIP KVS Periodic RAvg, WAvg 28962
KI1F KVS Flashcrowd | RAvg, WAvg 19444
K2P KVS + VoD Periodic RAvg, WAvg 26488
K2F KVS + VoD Flashcrowd RAvg, WAvg 24225
VIP VoD Periodic FR, ABR 37036
V1F VoD Flashcrowd FR, ABR 36633
V2p VoD + KVS Periodic FR, ABR 27699
V2F VoD + KVS Flashcrowd FR, ABR 29151

with 64 GB RAM, two 12-core AMD Opteron processors, a
500 GB hard disk, and four 1 Gb network interfaces. The tenth
machine is a Dell PowerEdge R630 2U with 256 GB RAM,
two 12-core Intel Xeon E5-2680 processors, two 1.2 TB hard
disks, and twelve 1 Gb network interfaces. All machines run
NPT-synchronized Ubuntu Servers (14.04 64 bits).

The VoD service uses a modified VLC media player soft-
ware [8], which provides single-representation streaming with
a varying frame rate. The VoD service is executed on six
PowerEdge R715 machines.

The KVS service uses the Voldemort software [9]. It is
installed on the same machines as the VoD service, and can
execute in parallel. Six of the machines act as KVS nodes
in a peer-to-peer fashion and the rest act as load generators
emulating client populations.

B. Collected data and traces

This subsection provides a description of the data collected
on the testbed, namely the input feature set X as well as the
specific service-level metrics Yy ,p and Yivs.

Features X are extracted from the Linux kernels that
run on the machines. To access the kernel data, we use
System Activity Report (SAR), a popular open-source Linux
library [10], which provides approximately 1700 features per
server. Examples of such statistics are CPU utilization per
core, memory utilization, and disk 1/O.

The Yy ,p service-level metrics are measured on the client.
In the experiments the following two metrics were captured:
the number of displayed video frames per second (FrameRate,
FR) and the number of audio buffers per second (Audio Buffer
Rate, ABR).

The Yxiyv s service-level metrics are also measured on the
clients. During an experiment two main metrics are captured,
namely the Read Response Time as the average read latency
for obtaining responses over a set of operations performed
per second (RAvg), and a corresponding metric for the Write
Response Time (WAvg). The metric is computed using a
customized benchmark tool of Voldemort.

A trace is generated by executing testbed experiments with
different configurations where statistics are collected every
second; specifically it includes features X, and service-level
metrics Yy ,p and Ygvys.

The 8 traces used in this paper are summarized in Table I.
The trace ID is encoded according to service under investiga-
tion (KVS or VoD), number of concurrent services (1 or 2),
and load pattern (periodic or flashcrowd load). For example,
K2F corresponds to a trace where KVS is under investigation,
that both services are executing in parallel, and that the load
generators are operating in flashcrowd mode.

C. Generating load on the testbed

Two load generators are running in parallel in the testbed,
one for the VoD application and another for the KVS applica-
tion. The VoD load generator dynamically controls the number
of active VoD sessions, spawning and terminating VLC clients.
The KVS load generator controls the rate of KVS operations
issued per second. Both generators produce load according to
two distinct load patterns described below:

1) Periodic-load: the load generator produces requests fol-
lowing a Poisson process whose arrival rate is modulated
by a sinusoidal function with a starting load level,
amplitude, and period of 60 minutes.

2) Flashcrowd-load: the load generator produces requests
following a Poisson process whose arrival rate is modu-
lated by a flashcrowd model [11]. The arrival rate starts
at a low load level and peaks at flash events.

All traces we used in the considered scenarios have been
created using stochastic models in an attempt to approximate
real scenarios.

V. EVALUATION AND RESULTS

We apply the evaluation methodology and source-selection
approaches described in Section III to a set of transfer scenar-
ios for VoD and KVS, respectively. The evaluation studies the
need for selecting a good source domain, and the feasibility of
two heuristic approaches for selecting a source domain prior
transfer to the target domain.

A source domain Dg, and its corresponding model Mg,
is created for each trace of Table I. The 8 different source
domains are listed in Table II. A target domain corresponds
to a change in the prediction task, i.e., Ts # Trp. That is, in
the KVS scenario the read average time is predicted in the
source domain, whereas in the target domain the assumption
is that the service provider would like to predict the write re-
sponse time instead. Corresponding change is studied for VoD.
Further, depending on which source is selected in the end,
additional scenario-dependent changes include the number of
services executing on the platform, and/or the distribution of
samples P(X), that depends on the load pattern for a specific
trace. The target domains are defined in Table III. Note that in
Tables II and III we use the terms Periodic and FlashCrowd
to describe P(X) to indicate the origin of the distribution of
the samples.

Based on the source and target domains we define 8 transfer
scenarios, summarized in Table IV. That is, for each target
domain D there are 4 different source domains to select from.

Further, the Normalized Mean Absolute Error is used as the
metric for quantifying model performance, and is defined as:
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where ¢, is the model prediction for the measured performance
metric y;, and ¥ is the average of the samples y; of the test
set of size m.

We manually reduced the number of features to 18 using
domain knowledge following the approach in [12]. Manual
feature selection across traces ensures an identical feature
space, enabling homogeneous transfer [13], for source and
target domains.

For the purpose of this evaluation, we have selected a
feed-forward neural-network model architecture with an input
layer with 18 nodes corresponding to the features, 3 hidden
layers with 256 nodes each, and one output layer. The same
architecture is applied for both VoD and KVS. Note that the
ambition is not to find the optimal neural-network architecture,
but rather to evaluate the impact of source domains.

To obtain the source models Mg;,i € [1,..,8] for each
source domain, the neural networks are initialized with random
weights and are trained on samples (X;,Y;) from the source
domains. For training, the source domains are reduced to
the same size of 16000 samples randomly split into training
(80%) and validation (20%) sets. The model and its weights
are then transferred for tuning and predictions in the target
domain. Similarly, in the target domain the samples are split
into training, validation, and test sets. The training set is
varied between 10 and 100 samples to emulate the shortage
of samples in the target domain, and is used to either update
the transferred source model Mg_,7 or to train a new target
model Mrp. The test set always corresponds to 20% of the
samples in the trace, and the remaining samples are used for
the validation set. Note that the validation set is used for early
stopping and the test set is used for evaluation.

For the implementation of the neural networks, Keras library
[14] running on top of TensorFlow [15] was used. We used
the rectified linear unit (ReLLU) activation function for all the
layers, Adam optimizer [16] with a learning rate starting at
0.001 using exponential decay with decay rate 85, 1000 decay
steps and staircase function, and mean absolute error (MAE)
as the loss function. Each experiment was run for a maximum
of 200 epochs, with early stopping using a patience of 10
epochs and weight restoring, with a batch size of 32.

A. Quantifying the impact of source domains

We quantify the impact of source domains on the error
of Mg_,7 for each transfer scenario described in Table IV,
following the methodology illustrated in Figure 3. For each
scenario, we select 10, 25, 50, 75 and 100 samples from the
target domain. Using the selected target samples, we train a
baseline model Mt and at the same time update the transferred
models Mg, _,r for each source Dg,. The data from the source
domain is normalized, and the target domain data used for
the fine tuning is scaled using the same transformation. For
training the baseline model My, the selected target samples

TABLE II
THE SOURCE DOMAINS DEFINED USING THE TRACES IN TABLE I.

’ Source domain ‘ Trace ‘ Service ‘ P(Xgs) ‘ Ts ‘
Dg1 KIP KVS Periodic RAvg
Dgs KIF KVS FlashCrowd | RAvg
Dgs K2P KVS + VoD Periodic RAvg
Dga K2F KVS + VoD | FlashCrowd | RAvg
Dgs V1P VoD Periodic FR
Dgg VIF VoD FlashCrowd FR
Dg7 V2P VoD + KVS Periodic FR
Dgsg V2F VoD + KVS | FlashCrowd FR
TABLE III
THE TARGET DOMAINS DEFINED USING THE TRACES IN TABLE I.
Target domain ‘ Trace ‘ Service ‘ P(Xr) ‘ Tr ‘
Dy KI1P KVS Periodic WAvg
Do KIF KVS FlashCrowd | WAvg
Dr3 K2P | KVS + VoD Periodic WAvg
Dpy K2F | KVS + VoD | FlashCrowd | WAvg
Drs VIP VoD Periodic ABR
D¢ VIF VoD FlashCrowd | ABR
Drpr V2P | VoD + KVS Periodic ABR
Drs V2F VoD + KVS | FlashCrowd | ABR

are normalized according to the full target data set. Once the
models are trained, the transfer gain G can be computed by
evaluating Mg, ,7 and M7 on the same test set. Note that
the test set is scaled differently for evaluating Mg, .7 and
M due to the origin of training data. This evaluation process
is repeated 25 times with different randomly chosen target
samples for each target sample size.

The evaluation results are shown in Figure 4, where each
graph plots the mean of the transfer gain and its 95% confi-
dence interval versus the number of available samples in the
target domain, for different source domains.

The results for transfer scenarios 1 - 4, corresponding to
the task of predicting Write Response Time (WAvg), for KVS,
are shown in the graphs of the upper row in Figure 4. In all
4 scenarios, transfer learning gives a transfer gain G > 0. The

TABLE IV
THE TRANSFER SCENARIOS STUDIED IN THIS WORK. FOR EACH D
THERE ARE 4 SOURCE DOMAINS Dg;, WHERE T's # Tr.

Scenario | Target domain ‘ Source domains ‘

1 D11 Dg,i€[l,..,4]
2 Dra Dg,i€[1,...,4]
3 Drs Ds,i€[l,...,4]
4 Doy Dg,i€[1,...,4]
5 Drs Dg,i € [5,..., 8]
6 Drg Dg,i€5,...,8]
7 Drr Ds,i € [5,...,8]
8 Drs Dg,i € [5,..., 8]
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Fig. 4. Transfer gain G given source domains versus sample size in Dy for
domains, and Table IV for transfer scenarios. The legend in Scenario 1 applies

transfer gain is reduced when the number of target-domain
samples increases, which corroborates the observations made
in [3]. It is also clear that the choice of source domain is
important, especially when few samples are available in the
target domain. Selecting a source domain with co-located
services, that is Dg3 and Dgy, gives a higher transfer gain
G compared to selecting a source domain that only had
one service executing. The difference in transfer gain in the
worst case corresponds to an NMAE of approximately 0.1 as
observed in scenario 1. In scenario 3 the separation of the
results for the source domains is not as prominent, especially
for the case of only 10 samples in the target domain, as in
scenarios 1, 2 and 4. We believe this is due to random effects
when selecting samples from the target domain.

The evaluation results for transfer scenarios 5 - 8, corre-
sponding to the task of predicting Audio Buffer Rate (ABR),
for VoD, are shown in the graphs of the lower row in
Figure 4. In scenario 5 and 6, corresponding to single-service
target domains, transfer learning always gives a transfer gain
G > 0 regardless of the source domain, similarly to the
KVS scenarios. Again, the source domains with co-located
services (i.e. Dg7,Dgg) provide a higher transfer gain. In
scenarios 7 and 8, where the target domain corresponds to a
co-located service execution environment, the choice of source
domain becomes more important. The penalty of selecting the
wrong source for the target domain with co-located services is
striking. Selecting a source domain with co-located services,
that is Dg7 or Dgg, gives G > 0, whereas a negative transfer
gain is observed for the other two sources. The difference in
transfer gain in the worst case corresponds to an NMAE of
approximately 1.8 in scenario 8. For source domains yielding
G < 0, we note that an increase in target-domain samples
reduces the negative transfer gain but it does not reach G > 0.

In summary, the benefit of choosing a good source is
notable especially when few samples are available in the target
domain. Further, the results show that the risk of obtaining
a significant penalty in performance also decreases with a

the 8 different target domains. See Table II and III for details regarding the
for scenarios 1-4, whereas the legend in Scenario 5 applies for scenarios 5-8.

growing number of target-domain samples. We believe that
the insights of source-domain impact can be generalized to
performance modeling of other network and cloud services,
and points towards the importance of source selection in order
to balance the performance gains and the risk of penalty.

B. Evaluation of source selection approaches

In order to evaluate the two heuristic source-selection meth-
ods proposed in Section III, we consider the loss in transfer
gain. If we correctly identify the best source, the loss would
be zero and if we incorrectly identify the source, the loss
would be a value greater than zero. The loss in transfer gain
is computed as:

lg = Giw — Y., (5)

where i, is the index of the source selected by the source
selection method, and

iret = maxG;, G;=er—eg,r, Vi
1

In the following, we evaluate the loss in transfer gain for two
methods of source selection based on: (1) similarity between
the domains measured in terms of symmetrized KL divergence
Dgym(Xg, Xr) as defined in Eq. 3; (2) and based on diversity
of the source domains measured in terms of the differential
entropy h(Xs) as defined in Eq. 2.

For the computation of Dy, (Xg, X7) and h(Xg), we
need to estimate the underlying sample distributions of the
source and target domains. This was done by first fitting a
Gaussian mixture model, implemented in Scikit-Learn [17],
to the data using variational Bayes inference [18, Chapter 10].
Prior to the modelling, data was standardized by removing
the mean and scaling to the unit variance. For each transfer
learning experiment, the source and the target data were
standardized by the transformer fitted to the source data.

Gaussian mixture models were initialized with 15 com-
ponents and fitted to the source datasets using variational
inference [18, Chapter 10]. For the target data, the initial
number of Gaussian components was 5 for the case where the
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Fig. 5. Loss of transfer gain £ for source-selection strategies based on symmetrized KL divergence and differential entropy, respectively, for KVS and VoD.
If a source is correctly identified by the source-selection method ¢g = 0. Otherwise £g > 0 and is dependent on the selected source.

target domain consisted of 10 samples, otherwise there was
15 components. This was done to reduce possible overfitting
where there are limited number of samples in the target
data. Given the estimated probability density functions by the
Gaussian mixture models, Dy (Xs, X7) and h(Xg) were
approximated using 10° Monte Carlo samples.

Figure 5 summarizes the source selection results in terms
of loss in transfer gain /g for each transfer scenario in
Table IV. Graphs (a) and (b) report on {g using symmetrized
KL divergence and Entropy-based source selection for transfer
scenarios 1 - 4 (KVS), whereas (c) and (d) report correspond-
ing results for scenarios 5 - 8 (VoD).

It is notable that the entropy measure in majority of cases
correctly identified the best source, that is g ~ 0, especially
for scenarios 1, 2, 5 and 6 where the target domain is of low
complexity corresponding to single-service traces (K1P, K1F,
VIP, V1F). When the target domain is of high complexity, in
the other scenarios, the most similar source is also a complex
source, reducing the difference between the two approaches.
Typically the loss is larger for a low number of samples and
is reduced with additional samples. This can be explained by
the fact that the lower number of samples we have in the
target, the more the choice of a source impacts the final model,
hence a non-optimal choice of source model will cause a larger
performance penalty.

The performance of source selection using symmetrized
KL divergence is more complex. In scenarios 1, 2, 5, and 6
corresponding to target domains defined using single service
traces, the symmetrized KL divergence performed poorly in
comparison to the entropy measure - the approach failed to
correctly identify the best source in all cases, see Figure 5 (a)
and (c). One explanation is that the single-service traces have
a low complexity. This can be seen from Table V which shows
the complexity of each source in terms of the differential
entropy. A source selection based on the symmetrized KL
divergence selects the source whose underlying distribution
is most similar to its own. If the target inherently has a low
complexity, transfering knowledge from a similar source can
only marginally help as there is little added new knowledge.
This becomes even more problematic when there only is a
low number of samples in the target domain. In such cases,
it becomes challenging to robustly estimate the symmetrized

TABLE V
DIFFERENTIAL ENTROPY h(Xg) FOR ALL SOURCE DOMAINS.

Trace ID ‘ h(Xs) H Trace ID ‘ h(Xs) ‘

K1P -38 V1P -38
KI1F -44 VIF -36
K2P -8.7 V2P 9.1
K2F -6.6 V2F -1.5

KL divergence between the domains.

All together, our results point at the effectiveness of source
selection based on entropy which in turn suggest the impor-
tance of encouraging diversity in transfer learning. We believe
this is one of the key contributions of this work. Indeed entropy
is one information theoretic approach towards measuring the
diversity. A future study is needed for investigation of various
diversity measures and their usefulness in transfer learning.

C. Discussion

The general understanding is that transfer learning is most
effective when there are limited samples in the target domain.
The result of our experiments agree with this understanding.
We argued that similarity-based techniques for source selec-
tion, which seek for the source domain that is most similar to
the target domain, have inherent limitations in particular when
there are limited samples in the target domain. This is due to
the difficulties in robustly computing the similarity measures
from a limited pool of data samples and, perhaps most
importantly, the fact that such techniques do not explicitly
encourage the diversity aspect. We then argued in favor of
constructing source selection methods based on the diversity
measure. A diversity-based source selection technique seeks
for the most diverse source (the most complex source e.g. in
terms of entropy). An advantage of the approach is that it does
not depend on the availability of samples in the target domain.
Under the assumption that there are sufficient number of
samples in source domains, one can robustly measure diversity
of the source domains. In this work, we used the Shannon
differential entropy as the measure of diversity, which is
one approach amongst other approaches. The source selection
method based on this measure of diversity showed encouraging
results in our experimental evaluations. Our results suggest



the importance of diversity in the design of source selection
techniques for transfer learning. A direction for future work
is to examine other information theoretic metrics as diversity
measures and their effectiveness in transfer learning.

Based on the results and the discussion above it is evident
that intelligent source selection in transfer learning is essential
for performance modeling of services executing in a dynamic
environment, as the approach not only improves model per-
formance when few samples are available but also avoids
negative transfer stemming from irrelevant knowledge. From
a management perspective, source selection enables faster and
more robust deployment of performance models, also when the
environment upon which the service executes change due to re-
orchestration or scaling of resources. Although it is not within
the scope of this paper to define a management architecture for
data-driven functions for network and service management, we
argue based on the results that a model store containing source-
domain representations and a diversity-based source-selection
function, as outlined in Figure 2, are essential components.
Each time a new model with high performance is learned it
should be added to the model store, that is, it is populated by
the network or service operator over time. It remains however
additional work to further define the components and their
interaction, as well as evaluating the performance of such
model store.

Regarding computational complexity, the proposed
diversity-based source selection technique (entropy of source
domains) may be preferred to the similarity-based technique
(based on measuring KLD divergence between the source
and target domains) in dynamic network environments.
The tasks, or the environment settings, undergo changes
during their lifetime which is translated into the changes
in the representative samples of the target domain. In such
environments, when using a similarity-based technique, there
would be a need for continuously re-selecting the sources that
benefit the target domain. On the contrary, the diversity-based
technique operates independent from the target domain.

VI. RELATED WORK

Transfer learning has received considerable attention in ar-
eas such as image processing and natural language processing
(NLP), and also computer systems and networks. This section
provides a review of relevant literature.

One of the main challenges in transfer learning is auto-
mated selection of a good source domain for a given target
domain, and several works rely on statistical similarity (or
distance) between domains. The authors of [6] proposed a
source-selection strategy based upon distance (2-divergence,
Maximum Mean Discrepancy, Wassertein distance and KL
divergence) between source and target domains. Further, in
[19] the authors presented a novel distance metric between
domain tasks, the H-score, for determining the performance
of transferred representations. In [20] a method for guided
sampling is proposed which exploits knowledge from source
domains that are determined similar to the target domain.

In [21] an information theoretic framework is presented
that is used to understand the source Convolutional Neu-
ral Networks (CNNs) prior using them in a target domain.
More specifically, the framework enables automatic ranking of
source CNNs for a given target. In [4], the authors investigated
the transferability of features in a neural network for image
processing and show that the transferability decreases when the
distance between source and target tasks increases. Further, in
[22], the authors investigate how transferable the layers of a
neural-network model in the field of NLP are and show that
the semantic similarity of the source and target tasks impacts
the transferability of the neural-network models.

This paper addresses the limitation of domain similarity
approaches, that has its roots in limited knowledge and short
lifetime of the execution environment that constitutes the target
domain in dynamic clouds, by introducing a source-domain
diversity metric.

Recently, transfer learning has also been used in other
areas including performance predictions in the network and
data center domains. A number of studies have looked into
using transfer learning for identifying the best application
configurations. For example, in [23], the authors present
a transfer learning approach for performance prediction of
configurable software across different hardware platforms. The
source model is built using a regression tree from a random
sample of configurations on the source hardware, then a linear
regression model transfers the results into the target domain.
Further, in [24], an empirical study was performed on four
software systems, with varying software configurations and
environmental conditions, to identify the key knowledge pieces
that can be exploited for transfer learning. Insights from the
paper include that for non-severe hardware changes, a linear
transfer model can be deployed across environments. However,
virtualization may hinder transfer learning. Further, even for
some severe environmental changes when the performance
distributions are similar there is a potential for learning a
non-linear transfer function. In comparison, this paper adopts
a more advanced transfer-learning approach, and a source-
selection heuristic based on diversity, and also studies the
challenges of transfer learning in a different use case. Fur-
ther, in [25] the authors propose and evaluate a transfer-
learning framework, BEETLE, for identifying and learning
from the most relevant sources for performance optimization
and configuration of software systems. However, the paper
does not discuss the challenges related to limited target-
domain knowledge as addressed in this paper.

In [26] the authors propose a deep-learning based approach
for identifying software configurations for a high-performing
application, when limited resources are available for data
collection in the target domain by combining information
from exhaustive observations collected at a smaller scale with
limited observations collected at a larger target scale. The work
has similarities with this paper, but the neural networks are
trained given feature sets, outputs, and assumptions that do
not generalize to the domain of this paper, nor do the authors
study diversity heuristics for source selection.



In [27] the authors study the challenge of predicting server
behavior and proposed a random-forest-based transfer learning
approach. The challenge is that small data centers exhibit too
few labeled training examples to build a proper model, since
the distribution of problematic and normal server behavior is
highly skewed. The approach is to combine training examples
from several small data centers into one pool of training
samples. A model for the target domain is then built based on
samples from all small data centers that resembles the target
domain good enough.

Finally, the authors of [28] explore an ML method for fault
localization using IT infrastructure event data. Transfer learn-
ing is used for incrementally enriching the models, and hence
provides a method for online fault localization. However, the
results and insights cannot be generalized to the challenges
targeted by this paper.

VII. CONCLUSIONS

In this paper, we proposed and evaluated two heuristic
methods for automated source selection in transfer learning
for improved performance modeling of network services.
The source-selection methods are based on domain similar-
ity (symmetrized Kullback-Leibler Divergence) and source-
domain diversity (differential entropy).

We evaluated the impact of source selection in multiple
scenarios with realistic data sets obtained from a testbed for
two different network services under varying load, namely a
Video-on-Demand and a Key-Value Store service. We provide
empirical evidence showing that the transfer gain is highly
dependent on the source domain. In scenarios where the target
domain constitutes a complex shared service environment we
observe a significant penalty from selecting the wrong source.
The positive impact of transfer learning, and also the penalty,
is reduced with an increased number of target-domain samples.

Moreover, as the key contribution of this paper, our empiri-
cal results suggest that a source-selection strategy, in environ-
ments with inherent limitations in data availability stemming
from the network and cloud dynamics, should encourage
source-domain diversity (entropy) rather than domain simi-
larity (KL divergence). Additional work is however needed
to provide general guidelines for source-domain selection for
data-driven modeling supporting management and automation
of networked services.
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