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Abstract—TCP is not necessarily suitable for all contexts. It is
well-known that, in some context, the “simple” fact of replacing
TCP with another Transport protocol clearly improves the
performance of the application, especially in terms of throughput.
However, TCP remains the most widely used Transport layer
(L4) protocol on the Internet: nearly 90% of applications are
based on it. Why? Our analysis is that the need to rewrite the
TCP application before using any new protocol “partly” explains
the low adoption of new protocols despite TCP’s performance
limits. Indeed, constant modification of the application is tedious
and, above all, a potential source of instability. This raises a
second major question: can we, transparently to the application,
replace at runtime TCP with another protocol X more suitable to the
application requirements and the actual network condition? In this
paper, we design and implement VTL to provide a concrete and
practical answer to this question, i.e., the TCP reconfiguration
at the runtime and the choice of the best alternative to it. Based
on a series of experimental scenarios, we show the correctness
of VTL and that it significantly improves TCP applications’
performances.

Index Terms—TCP/IP; eBPF/XDP; Runtime reconfiguration;
Protocol selection.

I. INTRODUCTION

The Internet communication model, known as the TCP/IP
architecture, is based on two fundamental protocol layers:
the Network layer implemented by the IP protocol and the
Transport layer (L4), which most popular protocol is TCP1.
Initially designed to meet the requirements of historical Inter-
net applications such as FTP or HTTP on wired networks, it
has since been shown that TCP is conceptually unsuitable for
taking into account new generation applications’ requirements
and many emerging networks’ properties [1].

In response to TCP limitations, several research efforts have
been carried out for several decades. They have led to a
plethora of protocol proposals (from the early IETF standards
such as DCCP [2], SCTP [3], etc. to more recent proposals like
DCTCP [4], QUIC [5], etc.). Applications can invoke each of
these protocols via dedicated APIs. The IETF working group
TAPS [6] has been promoting a service-oriented approach for
several years to decouple service invocation from protocol

1Throughout this paper, unless otherwise stated, we will use TCP to
designate TCP Cubic (the default version of TCP in Linux OS).

invocation. This approach, whose first implementation is the
NEAT framework [7], consists of replacing the dedicated APIs
with a generic Transport services interface (a.k.a. a service-
oriented API). However, till today, TCP remains the most
widely used protocol (almost 90% of Internet applications are
based on TCP [8]). All alternatives to TCP, including its own
extensions such as Hybla [9], have seen limited use. Why?

We argue that one2 of the main reasons is that replacing TCP
requires a modification of the application, especially its access
interface to the underlying Transport services. For instance,
TCP applications (dubbed as legacy applications) are based
on the socket API [10]. This API is designed so that the
application programmers are required to explicitly choose the
protocol at the application’s design-time (i.e., when the code
is written). Consequently, programmers must modify their
applications’ code to adopt any new protocol other than TCP.
This latter corollary might be a factor of increasing complexity
and a potential source of instability since it is necessary to
rewrite the application each time a new protocol solution is
released and best matches the application’s needs.

Based on these observations, the approach explored in this
paper consists to transparently intercept and redirect TCP con-
nections to another protocol X that best suits the application’s
requirements and the network state. The transparency property
refers to the fact that the application requires zero modifica-
tion. The realization of our approach requires addressing two
main questions: how to replace TCP transparently? and which
protocol is the best alternative to TCP? In addition to the
thorough evaluations carried out during our journey, answering
the latter questions is the core of this paper’s contributions
which are summarized as follows:

• We propose a technique allowing to replace at runtime TCP
by another protocol X. We realize it transparently, i.e., there
is no need to rewrite TCP-based applications.

• We propose a method that must ensure the selection of the
best alternative to replace TCP. This choice is driven by a

2Besides, there are often on the data path middleboxes that can drop packets
other than TCP or UDP. These concerns are out of the scope of this paper. For
now, we preconize systematic fallback to TCP in case of middlebox rejection.
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Fig. 1. The considered point-to-point topology for experiments. The link
between Client and Server emulates either a classical terrestrial Internet or a
satellite Internet link.

set of machine learning models, namely decision trees that
we trained to feed our decision algorithms. The attributes
of the decision trees are the applications requirements and
the network conditions. Therefore, prior to the selection
of the most appropriate L4 protocol, we introduce (1) a
profiling method that allows inferring the requirements of
the (legacy) application and (2) a parsimonious monitoring
that is useful to estimate the state of the network in terms
of RTT, loss rate and maximum available bandwidth.

We realize the above contributions within the VTL system that
we fully designed and implemented. After this introduction,
Section II presents a motivation example to the need to craftily
select the alternative protocol to TCP during data transfer. In
section III, we presented the design and implementation of the
proposed approach. In particular, in subsection 3.A, we detail
how we perform the ”transparent” replacement of TCP by
another L4 protocol. Then, in subsection 3.B, we describe the
application profiling method and the network state estimation
approach. In Section IV, we carry out thorough evaluations
of the proposed approach in order to assess its functional
properties and performances, namely the delay of the TCP
replacement and data redirection operations, the precisions and
recalls of the constructed models, and the estimation of the
gain on applications of the proposed solution. Finally, Section
V and Section VI conclude the paper with a discussion on the
related work and a summary of learned lessons.

II. MOTIVATION EXAMPLE

Let us consider the following preliminary experiments. Fig.
1 presents the point-to-point topology used for the experi-
ments. Here, the link between the two hosts emulates either
the classical terrestrial Internet or a satellite link. Section
IV describes in detail the network links configuration and
emulation tools as well as the values of the network parameters
(delay, bandwidth, and loss rate). The performance criterion
under observation is the throughput.

Let us first consider the satellite link. Without packet loss,
TCP has equivalent performance to QUIC and to Hybla that
is more adapted to satellite links [9]. However, once the link
starts by experiencing losses, we notice a significant TCP
throughput degradation. As it can be deduced from the results
reported in Fig. 2, an application using TCP could, on average,
get 3˜4x better throughput on a satellite link if it used Hybla
instead. Now, assume that in this context, instead of using
Hybla, we selected QUIC. The results (Fig. 2 (a)) show that
the performance is not only suboptimal compared to Hybla,
but also, and more importantly, that it is worse than the initial
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Fig. 2. L4 protocols’ performances under various network conditions. Boxes
span the 25th to 75th percentiles, with a notch at the median.

performance of the application under TCP. In simple terms,
QUIC might perform worse than TCP on the satellite link,
when data packet losses occur.

From these first results, we could speculate that it would
be enough to use Hybla continually as the alternative to
TCP. Nevertheless, let us resume the same experiments on
a terrestrial link. Here again, without data packet losses, TCP
remains near equivalent to the QUIC and Hybla protocols.
However, as soon as the network link suffers its first packet
losses, a TCP application that would switch to QUIC will
achieve about 1.5˜2x better performance. Further, the results
(Fig. 2 (b)) also demonstrated that contrary to the satellite link,
QUIC presents better performance than Hybla and seems the
best alternative to TCP in the terrestrial network context.

The more we continue the experiments by changing the
state of the network and the requirements of the application,
the more we observe that the best alternative to TCP changes
regularly. This preliminary assessment allows us to validate
TCP’s performance limitations in specific environments, and
demonstrates that replacing TCP may or may not be justified
depending on the context. Hence, the interest of having an ap-
proach allowing to choose the appropriate protocol X because,
as we have just seen in the above example, the protocol X
might not be the same in all network and application contexts
and could even perform worse than TCP.

III. PROPOSED APPROACH AND SYSTEM DESIGN

A. Transparent and dynamic replacement of TCP

1) Background
VTL relies on the eBPF [11], recently introduced in the Linux
OS. eBPF is an extended version of BPF [12] and it allows
injecting bytecode at runtime within the OS kernel. Its usage
scenarios cover filtering, networking, systems’ security, etc.
The infrastructure of eBPF is constructed around three major
elements: maps, tail calls, and helper functions.

Maps are data structures storing a set of {key, value} pairs
used to exchange data either between user-space programs and
in-kernel eBPF programs or between eBPF programs running
at different points of the kernel. Maps, often attached/pinned to
the root file system (i.e. /sys), are also useful to ensure data
persistence between successive invocations of eBPF programs.
In its early versions, eBPF limits each program to a maximum
size of 4096 BPF instructions. In order to overcome this



size limitation, eBPF integrates the concept of tail calls that
could be used to chain up to 32 different eBPF programs; tail
calls feature is an enabler of modularization’s implementation.
Nevertheless, it is worth noting that since Linux version 5.2.0,
released in 2020, an eBPF program can contain up to 1M
(one million) instructions. Basically, helper functions define a
list of functions that an eBPF program can call during its
execution. Thanks to helper functions (and eBPF verifier),
access to kernel by eBPF programs is strictly controlled to
prevent OS damage. In other words, helper functions allow
eBPF programs to interact directly with the kernel safely.

Each eBPF program that is deployed inside the OS kernel
has a specific type and must be attached to a hook point, also
known as a kernel event (incoming packet, system calls, socket
operations, etc.). Then, each time the event occurs, the eBPF
program attached to it is executed.

2) VTL Hooker component
Hooker goals and requirements. Hooker is the component
of VTL that achieves the dynamic and transparent replace-
ment of TCP by another protocol X. To achieve this objec-
tive, the Hooker component must interrupt TCP’s execution
path. At data sending, once the application calls into the
send()/sendmsg() function, Hooker must take control of
the packets before the kernel network stack. Therefore, it is
necessary to place a hook point on the tcp_sendmsg()
function so that each time this latter function is invoked, the
Hooker component executes a dedicated program before the
kernel. As for incoming packets, they should be intercepted
as soon as they arrive at the network interface card (NIC),
here also, to avoid their control by the kernel network stack.
The conceptual and technical choices we made to meet these
different specifications are described below.

Functional Architecture Overview. Resulting from the
above requirements, Fig. 3 depicts the internal structure of
Hooker and its interactions with the kernel network stack as
well as with the legacy applications. Conceptually, Hooker
is separated in three main subcomponents: hooker userspace,
hooker egress, and hooker ingress. As its name suggested,
hooker userspace is a normal program running in user-space
and that, among other tasks, is in charge of creating and config-
uring sockets, namely the redirection socket (redir_sock)
and the socket of the selected Transport protocol X. The
rest of Hooker’s subcomponents, i.e. hooker ingress and
hooker egress, are eBPF programs and as such, they are
executed in the kernel-space and deployed once Hooker is
activated. The eBPF program composing hooker ingress is an
XDP program that attaches to the NIC in order to process as
early as possible all incoming data packets.

Design choices discussion. In the architecture illustrated in
Fig. 3, the choice we made was to pass the hooker userspace
in the user-space. This choice, which initially meets a proof-
of-concept purpose, opens up in a more global perspective
the possibility of using protocols deployed both in kernel-
space and in user-space such as QUIC. At the price of higher
implementation complexity, it is quite conceivable to bring
the hooker userspace subcomponent back into kernel-space.
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Fig. 3. VTL Hooker Component Internal Structure.

Our current hypothesis is that this could improve performance
(which however, as we will see later, remains at an acceptable
level with the current implementation choice of leaving the
hooker userspace in user-space). Though, pushing back the
hooker userspace in kernel-space will deprive us of the use
of user-space protocols like QUIC for which, no kernel
implementation exists as of this paper writing.

Legacy Application Data Paths. The internal structure of
Hooker component also depicted the application data packets
paths from the send()/sendmsg() call to the transmission
over the NIC and vice versa. Once it is activated, Hooker
attaches three different types of eBPF programs at various
levels of the network stack: (1) a SOCK_OPS program attached
to the root cgroupv2 [13], (2) a SK_MSG attached to
a SOCKMAP at the socket layer, and (3) an XDP program
placed at the NIC to process incoming data packets. By
leveraging the hierarchical model of cgroups, Hooker is able
to process at the socket layer any ingress and egress data
packets of all TCP application processes running on the
end-system. Hooker maintains several maps, especially the
SOCKMAP that keys are used by the hooker egress programs
to identify the right socket towards which the packet data
must be forwarded to. Furthermore, the SOCKMAP is helpful
to keep a trace of applications whose packet data should be
intercepted and redirected by Hooker. Each time a connection
is established or closed by one process, the map is updated
by hooker egress thanks to the SOCKS_OPS bpf program
attached to cgroupv2. In addition to SOCKMAP updating
at the connection opening, the SOCK_OPS bpf program is
used to add to the SYN packet a VTL COMPLIANT option
that, as its name suggested, is useful to advertise to the
receiver that the sender is VTL compliant. Every time the
TCP application process sends data by the invocation of the
sendmsg() function upon the TCP socket, the SK_MSG
bpf program running by hooker egress intercepts the data
packet and rewrites it if necessary thanks to the helper func-
tion bpf_msg_push_data(). Then, to redirect the egress
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Fig. 4. Applications profiles based on ITU recommendations. The associated
requirements of each profile are also shown.

data packets to the redirection socket, hooker egress program
leverages the bpf_msg_redirect_map() helper. At the
incoming of data packets, hooker egress uses the same helper
to redirect the packets to the TCP socket. The redirection
socket is created and maintained by hooker userspace which
will use the recvmsg() operation to get the redirected data
packet and send it to the VTL datapath that should emulate
the selected Transport protocol functioning. At the receipt
of a data, as soon as the NIC receives the data packet,
the XDP bpf program running by hooker ingress intercepts
the data packet and processes it by issuing the right ver-
dict. The hooker ingress program can drop the packet data
(XDP_DROP), redirect it to the same network interface card
(XDP_TX), or, as currently done, pass the packet to the ingress
VTL datapath (XDP_VTL_ACK) for further processing.

B. Protocols selection

1) Receiver-driven application profiling
The purpose of profiling is to identify the nature of the TCP
application. It permits to infer the requirements of the applica-
tion. We have established the profiles on the basis of data from
the ITU recommendations [14]. To each profile, we associate
requirements expressed in terms of Transport services and QoS
parameters. The profiling, driven by the server (receiver of the
connection), is initiated as soon as the first TCP packet (SYN)
is received and continues over the following nine3 packets.
When profiling is successfully completed, the application is
classified into one of the following profiles (see Fig. 4).

Profile 1: time-sensitive applications; e.g., multimedia
streaming applications (YouTube, NetFlix, etc.) or videocon-
ferencing applications (skype, zoom, etc.). Transport service
requirements associated with this application profile are: par-
tial reliability, partial order, and flow control to contribute into
the jitter management. The multimedia streaming applications

3Profiling is attempted on the first ten packages. This number is arbitrary
but higher than the recommendations in [15].
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Fig. 5. Application profiling pipeline.

might tolerate a maximum delay of 10 seconds whereas the
delay allowed by videoconferencing applications fluctuates
between 10 milliseconds and several hundred milliseconds.
The time-sensitive applications could experience a loss rate
between 2 and 4%. However, it is worth noting that this profile
of applications rarely uses TCP.

Profile 2: time and loss-sensitive applications; e.g., inter-
active applications such as remote login based on Telnet or
SSH, web browsers (Chrome, Firefox, etc.), or online games
(Call of Duty, Fortnite, etc.). The Transport services required
by this application profile are: total reliability and partial
order. The associated QoS parameters in terms of delay are
a fraction of a second for remote login and online games
whereas web browsing could accept delaying up to 10 seconds.
The applications of this profile do not allow any loss of data.

Profile 3: loss-sensitive applications; e.g., (large) file trans-
fer applications based on FTP/HTTP or BitTorrent, and text
messaging (Facebook Messenger, WhatsApp, etc.). For these
applications, Transport services with total reliability and order
are required. They do not tolerate any loss of data. On the other
hand, these applications are less constraining with regard to
the delay, which can go beyond 60 seconds.

Profile 4: insensitive applications; e.g., Fax. These appli-
cations are the least constraining in terms of packet loss and
data transit delay.

The pipeline of application profiling by packet classification
is shown in Fig. 5. The identification of the TCP application
takes place in three main stages.

(1) Flow and IP packet extraction. In this work
context, a flow is basically defined by the tuple
{ipsrc, ipdst, portsrc, portdst}. The L4 protocol type information
is not ”necessary” because only TCP packets are processed,
so it is impossible to differentiate flows based on this
information. During this first step, matching between the
intercepted raw packet and the flow table enables the
extraction of the flow to which the packet belongs. If the
packet does not belong to any stream in the table, a new
stream is created. An IP packet is then extracted from the

TABLE I
NETWORK PROFILES BASED ON THE LINK QUALITY PARAMETERS.

RTT Bandwidth (B.W)

Long-delay Networks (LDN, e.g. Satellite) >= 500 ms 4 Mbps

Terrestrial Internet Links 50 ms to 500 ms 100 Mbps

LAN (e.g. Internal D.C, home network) <50 ms 100 Mbps to 100 Gbps
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raw packet by removing the L2 header of the packet. This
phase’s final result is a flow and an IP packet ready to be
used in the second phase.

(2) Flow pre-identification. The flows in the table might
be already classified or not. A flow is classified when the
application to which it belongs has already been detected.
Therefore, the purpose of this phase is to directly retrieve
this information from the table rather than systematically and
blindly launch the application detection loop.

(3) Application detection loop. If the flow is not yet
classified, either it is a new one or the flow’s first packets have
not been sufficient to identify it. The detection loop is based
on a hybrid approach to identify the application whose flow
it receives: it integrates the signature-oriented approach based
on protocol dissectors and the standard method based on port
number mapping. It first attempts to identify the application by
contrasting the flow to a set of predefined protocol dissectors.
Dissectors are snippets of code that identify a specific protocol
by reading/processing the entire IP packet (headers and pay-
load included). For instance, an HTTP protocol dissector might
fetch the ”GET” string in the IP packet to determine whether
the flow is an HTTP flow. Once a dissector correctly identifies
the flow, the loop stops. If the application is not identified, the
next packets of the stream (up to the 10th packet)4 are used to
attempt a new detection of the application and its classification
in one of the four profiles described above.

2) On-request network monitoring
In addition to the application’s requirements, the network
state is used to drive the selection of the best protocol X
to replace TCP. To do this, we associate to each network
link a state or profile characterized by three main parameters:
{[RTTmin, RTTmax], BWmax, lossmoy}. The RTTmin (resp.
RTTmax) denotes the minimum (resp. maximum) round-trip-
time experienced under the network. The lossmoy is the
average rate of packet loss, and BWmax is the maximum
bandwidth available within the network link. In Table I, we
can see that typical LDN networks such as satellite networks
have profile P1 = {[500ms,∞[,−, 1Mbps} [16]. Note that the
loss parameter is neither static nor closely bound to a specific
network profile but depends more on the network’s congestion
state. Therefore, it is possible (probably the fact) to experience

4See footnote 3
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more data packet losses under congested wired-LAN than non-
congested wireless-LAN.

Since the bandwidth (the incoming data rate, in fact) esti-
mation does not require any packet injection into the network,
the monitoring component continuously captures a copy of
the incoming packets to deduce the network link’s bandwidth.
However, we estimate the RTT and loss rate values by injecting
out-of-band, albeit lightweight, ICMP ECHO/REPLY packets
on the network. To minimize the impact of monitoring on the
network traffic load, monitoring these two parameters is only
triggered on demand through a set of functions exposed by the
internal API of the monitoring component. The caller of the
monitoring component has the possibility to specify the peri-
odicity of the monitoring and its duration. The period defines
the time interval between packets injection for calculation of
RTT and loss rate. The larger the interval, the less expensive
the monitoring is at the price of the estimation’s accuracy.

3) Construction of Decision Tree Models
Application profiling and network monitoring are prerequisites
to the selection of the most suitable alternative L4 protocol to
TCP. They provide two information: the application profile
(i.e., its requirements) and the network state. This information
is the attributes (i.e., the inputs) of decision tree models on
which are based the selection rules of the most appropriate
protocol to replace TCP. These decision trees feed and rep-
resent VTL’s knowledge base that dictates the selection rules
based on the above two information attributes.

Dataset. For the models’ training, we generated a labeled
dataset of more than a hundred cases. The labels or classes
are the L4 protocols and the attributes, as stated above,
are the application requirements and the network conditions.
Following the classical approach, we separated the dataset into
two main parts: the training dataset (' 66% of the initial
dataset) and the test dataset (' 33% of the initial dataset). As
its name suggests, the training dataset is the part of the dataset
used to train the models. Additionally, it allows evaluating
the trained model’s ability to classify correctly the already
seen cases. What about the unseen cases? The answer to
the latter concern is the task of the test dataset. It permits
us to evaluate the trained model’s prediction quality, i.e., the
precision at which the model can classify unseen cases. The
dataset is generated from extensive evaluations of several IETF



L4 protocols for diverse application requirements and network
conditions. We attribute the classes (protocols) to each based
on these experiments and the literature’s recommendations.
For instance, it is commonly accepted that UDP and UDP-
Lite are appropriate to loss-tolerant applications. Suppose two
or more protocols satisfy application requirements and feet
the network characteristics. In that situation, the performance
criterion used to assign a label to the case is the throughput
experienced during data transfer.

Fig. 6 and Fig. 7 illustrates examples of the outcomes of
the training stage. In the instance of Fig. 6, the application is
considered to be either loss-tolerant (profiles 1 and 4, Fig. 4) or
not (profiles 2 and 3, Fig. 4). This assumption leads to a more
simplified decision tree that, as we will see later, could provide
satisfactory classification and prediction quality compared to a
more extended decision tree. The complete evaluation of these
models’ quality and their use benefits are extensively evaluated
and presented in Section IV.

IV. EXPERIMENTS AND SYSTEM EVALUATIONS

The carried experiments’ goals were to (i) show VTL’s
ability to effectively replace TCP with another L4 protocol
during data transfer, (ii) measure the cost in terms of delay of
the data redirection operations, and the delay of the dynamic
deployment of the VTL’s programs, (iii) evaluate the VTL’s
benefits on TCP applications’ performance by using decision
tree models and (iv) assess the precisions and recalls of the
trained models used to drive the best L4 protocol selection.

A. Testbed setup and Methodology

The experiments have been performed under a testbed con-
stituted by two hosts linked by one router (Fig. 1). Each host
was equipped with Intel Core i7-7500U CPUs, 3.8GiB RAM,
and Qualcomm Atheros QCA6174 NIC driver. In addition
to TCP and its extension Hybla, we evaluated the following
IETF protocols: UDP, UDP-Lite, SCTP, DCCP2, DCCP3,
and the QUIC protocol. For each protocol, we implemented
a distributed application (one server and one client). The
server part can stream several kinds of files with different
sizes. The network link parameters are still emulated thanks
to netem tool [17]. The network parameters used during
experimentations are reported in Table I. For each emulated
link, the random loss rate is variable between 0 and 5%.

Satellite links emulation. Often used as backup Internet
links, satellite Internet is useful for critical missions such as
SAR (search and rescue) operations as well as to provide Inter-
net access in rural areas. The main characteristic of satellite

TABLE II
DATA REDIRECTION COST AND HookeR ACTIVATION DELAY.

Compilation Deployment Redirection ops
SK_MSG 0.06 s 0.062 s 11 µs
SOCK_OPS 0.09 s 0.064 s N.A

XDP 0.08 s 0.057 s N.A
Hooker User 0.456 s N.A 2019 µs

Total 0.686 s 0.183 s 2030 µs

TABLE III
CONFUSION MATRICES OF THE DECISION TREE model1.

(a) training dataset

Predicted
Hybla UDP UDPLite SCTP QUIC Precision Recall

Hybla 18 0 0 0 0 100% 100%
UDP 0 0 6 0 0 0%

UDPLite 0 0 42 0 0 78% 100%
SCTP 0 0 0 0 12 0%

Actual

QUIC 0 0 6 0 24 67% 80%
Weighted Average 78.7% 93.3%

(b) test dataset

Predicted
Hybla UDP UDPLite SCTP QUIC Precision Recall

Hybla 6 0 0 0 0 100% 100%
UDP 0 0 2 0 0 0%

UDPLite 0 0 15 0 0 79% 100%
SCTP 0 0 0 0 4 0%

Actual

QUIC 0 0 2 0 9 69% 82%
Weighted Average 79.5% 93.8%

links is their long delay that can cause severe performance
degradation. Based on [16], we used the following parameters
to emulate a satellite link between the client and the server
during experiments: RTT to 600 ms, and 4 Mbps of bandwidth.

Terrestrial Internet links emulation. To emulate a classical
Internet link between the server and the client, we set the
bandwidth to the arbitrary value of 100 Mbps and fix the RTT
to 100 ms. To estimate the average RTT value on the classical
Internet, we used the WonderNetwork [18] tool to find out
the mean RTT between different locations all over the world
within the Internet.

Local Network links emulation. The third emulated net-
work profile is a local network (LAN), such as a home
network. The RTT is set up to the highest value 50 ms whereas
the available bandwidth is 850 Mbps.

Evaluation scenarios and validation approach The exper-
iments were carried out in 2 stages: (1) First, we compared
performances of the application data transfer under each proto-
col, i.e., TCP and all other protocols (UDP, UDP-Lite, SCTP,
DCCP2, DCCP3, QUIC). In this first step, the application had
an API allowing it to directly access each of the protocols
evaluated (SCTP API, DCCP API, etc.). This stage allowed
us to assess the maximum benefits achievable by using the
protocol selected as the most suitable alternative to TCP
according to the target application and network contexts and to
generate the dataset we used to train the decision tree models.
(2) Secondly, we repeated the same experiments by comparing
TCP with each of the protocols identified by the trained models
as the best alternatives to TCP. But this time, the application
accesses the service of the selected protocol indirectly thanks
to VTL. The application invokes the socket API of TCP,
but, thanks to the redirection mechanisms (implemented by
the Hooker component of VTL), it will transparently use the
services of the selected protocol as an alternative to TCP. With
the Wireshark analyzer [19], we validate the correctness of the
data redirection by checking the Transport protocol used on
the wire during data transfer.



TABLE IV
CONFUSION MATRICES OF THE DECISION TREE model2.

(a) training dataset

Predicted
Hybla UDP UDPLite SCTP DCCP QUIC Precision Recall

Hybla 20 0 0 0 0 0 100% 100%
UDP 0 12 3 0 0 0 67% 80%

UDPLite 0 3 15 0 3 0 83% 71%
SCTP 0 0 0 12 0 0 100% 100%
DCCP 0 0 0 0 15 0 83% 100%

Actual

QUIC 0 3 0 0 0 24 100% 89%
Weighted Average 90% 89%

(b) test dataset

Predicted
Hybla UDP UDPLite SCTP DCCP QUIC Precision Recall

Hybla 6 0 0 0 0 0 100% 100%
UDP 0 4 1 0 0 0 67% 80%

UDPLite 0 1 5 0 1 0 83% 71%
SCTP 0 0 0 4 0 0 67% 100%
DCCP 0 0 0 0 5 0 83% 100%

Actual

QUIC 0 1 0 2 0 6 100% 67%
Weighted Average 86% 83%

B. Microbenchmarks

1) Data redirection operations’ cost
As reported in Table II, it takes less than one second to
activate the Hooker component. Further, we could also note
that when the Hooker is precompiled, its activation delay is
reduced to less than 200 ms. Besides the activation delay,
once the Hooker is activated, its operations namely data
redirection introduce additional overheads. We computed these
overheads in terms of the average delay required for data
redirection operations that are achieved in hooker egress (i.e.
SK_MSG) and hooker userspace subcomponents. The results
are reported in Table II and showed that it takes approximately
2 ms to redirect packets during data transfer.

2) Decision tree models benchmarking
Second, we evaluated the precision and the recall of the
trained decision tree models provided in Fig. 6 and Fig. 7. We
constructed the models from exactly 146 instances/cases by
using an open-source C implementation [20] of the supervised
machine learning algorithm C5.0 (described previously in
Section 5.2). For the rest of this section, we will call the
simplified decision tree illustrated in Fig. 6 model1 and the
extended one shown in Fig. 7 model2.

The confusion matrices of model1 and model2 are shown
in Table III and Table IV, respectively. The reported results
show that model2 achieves more precision (around 10%) than
model1 when it comes to select the appropriate protocol
if the pair {application requirements / network context} is
already encountered. The trend is reversed for the recall’s
values where on weight-average, model1 presents 93% recall,
whereas model2 achieves 89% recall. As stated previously, the
ability to classify correctly already seen cases is not sufficient
to assess a model’s quality. Its prediction quality, i.e., its ability
to classify accurately new and never seen instances, gives more
insights. Therefore, we apply the trained models model1 and
model2 on a test dataset containing around forty cases. We
observed that model1 classify almost with the same precision
(79.5%) seen as well as unseen cases. The trend is slightly
different for model2, where the achieved precision (86%) on
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Fig. 8. Application’s absolute performance (in terms of throughput) on top
of various Transport protocols.

the unseen instances is not so better as the precision of the
classification of seen cases.

All in all, we note that the simplicity of a model is not
necessarily a restriction to its usage. The quality achieved by
a simplified model (for instance, model1 in our work) could be
good enough for its use. A model could classify correctly all
seen cases but perform worst on new and unseen instances.
The trained models model1 and model2 are able to make
accurate selection of the appropriate protocol 8 times out of
10.

3) Application performances Absolute throughput evalu-
ations. In a first step, we assessed all protocols’ absolute
performance, i.e., without VTL operations and use of trained
models. The results reported in Fig. 8 show the throughput
of the evaluated protocols. These results are those used to
generate and construct the dataset used to train the decision
tree models. Furthermore, they provide us insights into what
significant benefits might be achieved by using on the wire
another protocol instead of TCP.

TCP applications performance improvement. Then, we
evaluated VTL impacts on the performance enhancement of
TCP applications. For each considered scenario, we show
only the protocols that the decision tree model selects for the
considered context. For instance, when the application is loss-
tolerant and the network state is {600 ms, 4 Mbps, 0%}, the
selected protocol by model1 to replace TCP is UDP-Lite. In
the same network context, when the application is sensitive
to data packet losses, the protocol selected by the decision
tree model1 and model2 is Hybla. Then, Fig. 9 (a) compares
the TCP application’s performance without redirection and its
performance when it is redirected to UDP-Lite or Hybla. The
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Fig. 9. Hooked TCP Application’s performance (in terms of throughput) under VTL.

evaluations reported from Fig. 9 (b) to Fig. 9 (i) follow the
same logic in order to alleviate the figures. The results show
that VTL allows TCP applications to achieve at average ˜5x
better performances in most scenarios.

V. RELATED WORK AND DISCUSSION

A. Related work

Several works have aimed to stimulate the use of Transport
protocols other than TCP. In order to gradually enable the
deployment and the use of SCTP on the Internet, the authors
of [21] and [22] propose TCP-SCTP mapping system for
transparent redirection of TCP connections to SCTP. In [21],
the mapping tool acts like a transparent proxy called CMG
(Connection Manager Gateway) that merges multiple TCP
connections into a single SCTP association whereas in [22]
the mapping tool is a shim layer designed to be directly
integrated into the end-system OS. Similar to CMG and Shim
Layer, MiMBox [23] is a protocol converter that ensures
the translation between the regular TCP and its multipath
extension i.e. MPTCP.

However, the above-mentioned solutions present two main
drawbacks. First, they address only the adoption issues of only
one Transport protocol: for instance, SCTP in the case of CMG

and Shim Layer mapping tools, and MPTCP in the case of
MiMBox protocol converter. They are what we could call a
one-to-one protocol translator and therefore do not provide a
comprehensive way for mapping TCP to multiple protocols.
Second, even if there is no need to alter the application itself,
most of those solutions require the change of the socket API
thanks either to kernel patches such as done by Shim Layer,
or to the preloading technique like in CMG. Further, MiMBox
is developed as a Linux kernel module and as such, it inherits
the drawbacks associated with kernel modules namely the lack
of security and safety of the end-system.

The approach we explored in this contribution allows the
invocation, during the execution of the legacy application,
of the alternative protocol X, without any modification of
the application’s code. This approach, which we introduced
and implemented, leads at the level of the host machines
to intercept the system calls related to the socket API (i.e.,
connect(), sendmsg(), etc.) to ultimately invoke the
protocol X. Therefore, the Hooker component does not act as
a simple proxy insofar as (i) TCP is not activated but rather
replaced by the protocol X and (ii) there is no one-to-one static
and permanent mapping of TCP to a single Transport protocol.

As introduced in section I, more recent works [6], [7], [24]



propose to rethink the entire Transport layer architecture in
order to delegate to the Transport layer the choice of the
protocol to be used; let us recall that this choice is currently
let to the application developer. In [24], the authors assert
that the main cause explaining the lack of new Transport
protocols deployment and adoption comes from architectural
limitations of the Transport layer, hence their proposal for
a new architecture. Although this approach is promising, it
requires rewriting existing applications and as we previously
mentioned, this can slow down its adoption.

B. Perspectives

Although conceptually robust, eBPF technology presents
some limitations related to the current implementation choices
of some of its components, notably SOCKMAP. In the imple-
mentation of the Hooker component of VTL, these limitations
have led us to not being able to bypass TCP socket calls
without “going back” from the kernel to the user-space. At
the cost of an implementation effort (and potentially higher
complexity), we could initially consider replacing SOCKMAP
with a DATAMAP which would allow Hooker to share data with
application directly in the kernel without the need to open and
manage additional sockets from the user-space. A contribution
to the eBPF community (more broadly to Linux) to address
this limitation is a possible technical area of future work.

During our work, the machine learning models used to
select the most appropriate Transport protocol have been
trained offline beforehand of the deployment of the VTL
system. A future direction could be to enhance this approach
with online learning. That is to say, VTL should be able
to learn and update alone the initially trained models. This
will permit to limit the risk of inaccurate models when the
network environments radically changed or integrated new
characteristics not considered in the initial training.

VI. CONCLUSION

In this paper, we presented and discussed two main contri-
butions. First, we design and implemented a technique that
enables the replacement of TCP with another L4 protocol
during data transfer. We performed TCP’s replacement trans-
parently for legacy applications, i.e., there is no need to modify
these applications. We believe that fulfilling this requirement
is a key factor in promoting the use of Transport protocols
other than TCP. We performed extensive evaluations to show
the effectiveness of the proposed solution, i.e., its ability to
replace at runtime TCP by an alternative L4 protocol without
any modification of the legacy application. We also assessed
the proposed solution impact on TCP application’s perfor-
mance. Further, the results showed that the most appropriate
alternative protocol to TCP varies depending on the network
conditions and the legacy application’s requirements. Even
worse, the selected alternative protocol’s performance could
be worse than TCP’s one if the alternative is chosen blindly.

Therefore, we described our second contribution that ad-
dresses the problem of the selection of the “best” Trans-
port protocol to use in replacement to TCP based on the

application’s requirements and the network conditions. To
perceive this latter information, we proposed and implemented
dynamic identification algorithms of the TCP applications’
needs and the underlying network characteristics. We used a
set of machine learning models, namely decision trees, that
we trained to guide the best protocol selection. Finally, we
carried out thorough assessments of our proposed algorithms
and models. The evaluations showed that leveraging the trained
models feeding its knowledge base, we accurately select the
most appropriate Transport protocol for diverse application
profiles on different network conditions. The outcome is the
improvement of the hooked TCP applications’ performance.
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