
Investigating Automatic Code Generation for
Network Packet Parsing

Stephen McQuistin
University of Glasgow, UK

sm@smcquistin.uk

Vivian Band
University of Glasgow, UK
vivianband0@gmail.com

Dejice Jacob
University of Glasgow, UK
dejice.jacob@glasgow.ac.uk

Colin Perkins
University of Glasgow, UK

csp@csperkins.org

Abstract—Use of formal protocol description techniques and
code generation can reduce bugs in network packet parsing code.
However, such techniques are themselves complex, and don’t see
wide adoption in the protocol standards development community,
where the focus is on consensus building and human-readable
specifications. We explore the utility and effectiveness of new
techniques for describing protocol data, specifically designed to
integrate with the standards development process, and discuss
how they can be used to generate code that is safer and more
trustworthy, while maintaining correctness and performance.

I. Introduction

The code that parses incoming network packets is an import-
ant part of any protocol implementation, and problems with
this code are a frequent source of security vulnerabilities [1].
Unfortunately, as a result of ambiguous and inconsistent
protocol standards and specifications, typically written using
informal English prose, network packet parsing code often
contains logic errors and other bugs. In principle, standards
documents can be made more precise by using formal protocol
description techniques. This improved precision should make
it more likely that the specification is correctly interpreted and
implemented, and can also be used to enable automatic code
generation, further improving the quality of parsing code.

In practice, formal protocol description techniques have failed
to gain traction within the standards community. They often
require significant changes to the engineering process by which
standards are developed, and to the way specifications are
written. Such changes have proven too onerous for the standards
development community, and the vast majority of standards
published do not make use of formal techniques.

In previous work, we have proposed structured specification
techniques that do integrate with the standardisation process [2].
Such techniques include specification languages that are struc-
tured to be familiar to those developing protocol standards, and
tooling that can be used to generate parser code directly from
standards documents. In this paper, we explore the effectiveness
of these techniques for specifying real-world protocols within
the Internet Engineering Task Force (IETF), one of the key
standards development organisations for network protocols,
by showing how they can be incorporated into the standard
protocol specification for TCP [3].

Formal protocol description techniques and automated code
generation do not, irrespective of whether they are easy to

integrate with the standards development process, remove all
of the main classes of parser bugs [4]. Parsing code is made
insecure not just by ambiguous specifications, but also by the
design of the protocol itself, and by the architecture of the
code. Formal protocol description techniques can shape both
of these. The expressivity of the protocol data description
language determines the set of message formats that can be
described, while the code generator determines the architecture,
paradigm, and language of the parser code.
Accordingly, we consider the code generation functionality

of our Network Packet Representation [2], and highlight those
features of the representation that assist standards authors in
writing clear, unambiguous specifications that generate well-
formed code that is easy to reason about. We demonstrate the
specification of the TCP packet format, show how its Network
Packet Representation is derived and how code can then be
generated from this representation. We show how the generated
code can be integrated with an existing TCP implementation,
and demonstrate its correctness and performance.
An increasing number of ad-hoc, semi-structured, protocol

specification languages are seeing adoption within the standards
process [5], [6]. This shows willingness within the standards
community to experiment and improve their specifications.
However, while adoption of these languages will lead to
specifications that are more precisely written, precision on
its own is not sufficient [4]. Effective protocol description
languages must also limit expressiveness of the formats to
those that can be safely parsed. In this paper, we demonstrate
how the Network Packet Representation, in providing a common
representation framework, can influence protocol design, and
the architecture of generated implementations. Both of these
have significant implications for the safety and trustworthiness
of the documents and generated code.
We structure the remainder of this paper as follows. In

Section II, we further describe the role of formal protocol
description techniques and automatic code generators in
determining the overall safety and trustworthiness of packet
parsing code. Then, in Sections III, IV, and V, we step through
the specification, representation, and code generation steps,
respectively, for a description of TCP using the Network Packet
Representation. In Section VI, we evaluate the generated code
in terms of correctness and performance. Finally, Section VII
describes the related work, and Section VIII concludes.ISBN 978-3-903176-39-3 © 2021 IFIP

II. Motivation

The IETF standards development process has a goal of
reaching “rough consensus” on the protocol specifications that
it produces [7] [8]. This makes standardisation and protocol
design a political, human-driven process, where ideas are
exchanged and discussed, and draft documents are debated,
both verbally, and in text-based forums such as mailing lists,
GitHub issues, etc. As a result, documents are written primarily
in English prose. While this allows the documents to be used
in the consensus-building process, natural language can often
be ambiguous and unclear, and this can lead to inconsistent
and non-conforming implementations.

Given this problem, numerous formal description techniques
have been developed to more precisely describe protocol
behaviours and data formats. Systems such as TLA+ [9]
and Alloy [10] can be used to describe and model protocol
semantics, and have been used with some success in real-
world systems [11], and many domain-specific formal protocol
modelling languages also exist (e.g., [12], [13], [14]).
There is also a rich literature allowing for the format of

the data that is exchanged by protocols to be expressed using
formal, structured languages. Academic research in this space
has focussed on protocol type systems, modelling protocol
semantics in addition to data formats, in systems such as PADS
[15], DataScript [16], PacketTypes [17], and the Meta Packet
Language [18]. Specialised languages have also been developed,
including YANG [19], a data modelling language, eTPL [20],
an enhanced version of the TLS presentation language, and
NetPDL [21], an XML-based packet description language.
As discussed by Reid et al. [22], overcoming usability

concerns around formal methods is important for widespread
adoption. To address these, the standards setting community
has developed a number of domain-specific packet format
description languages such as ABNF [23], ASN.1 [24], the
TLS presentation language [5], the packet notation used in
recent QUIC documents [6], and our Augmented Packet Header
Diagrams [25]. These have generally been developed in an ad-
hoc fashion, by contributors to the IETF that require a particular
format to fit a specific use case. This means that, while they
are only used in a limited set of documents, they lack the
steep learning curve of the more formal protocol type systems.
Their ad-hoc nature allows them to be developed and defined
to meet the needs of different documents and groups. However,
in being developed outside the context of formal languages
and programming language design, these languages are often
not sufficiently well-specified for machine-readability, crucial
to enabling automatic code generation, and pay little attention
to the expressiveness and power of the generated parsers.
Unlocking the benefits of machine-readability and code

generation for these languages is best achieved by a common
framework that enables the ease-of-use that ad-hoc formats
bring, but that enforces the rigour that is required. In prior work,
we developed the Network Packet Representation [2], a type
system for protocol data, that aims to bridge the gap between the
requirements of the standards community, for flexible languages

Network Packet
RepresentationProtocol description Parser implementation

TLS presentation language

Packet
diagrams

QUIC packet format

.rs

.c

.cpp

Figure 1: The Network Packet Representation allows parsers
for protocol description languages to be decoupled from
implementation generators.

that don’t alter the process, with the benefits that come from
formal protocol descriptions. As shown in Figure 1, this has
been developed to support multiple input protocol description
languages, and to generate parser implementations in a range
of output programming languages, to give flexibility of input
syntax with a rigorous type system and code generation.
In the following, we will show how the Network Packet

Representation can be readily incorporated into the existing
standards development workflow, to help in the specification
of network protocols. We then consider how the representation
system determines the set of protocols that it can represent. The
complexity of the protocol’s syntax defines the inherent safety
of the parsers that can be generated for it [26], with, for example,
recursive definitions requiring parsers that are more powerful
and less safe. We investigate how the protocol representation
system can promote programming languages and paradigms
that improve the security and reliability of the parsers that are
generated. For example, the parser combinator paradigm [27]
makes use of small, easy-to-debug parser functions. This
paradigm, when combined with modern systems languages
like Rust, can produce trustworthy and secure parsers.
Finally, we must also ensure that these features do not

come at the expense of correctness or performance. We want
to demonstrate that the Network Packet Representation can
provide a significant shift in how protocols are developed and
standardised, enabling automatic code generation directly from
protocol standards documents, while producing code that is
correct and performant. We will illustrate this by example,
walking through the specification (§III), representation (§IV),
and code generation (§V) phases for a description of TCP. We
will then evaluate the generated parser in Section VI.

III. Specifying Protocol Data Formats
Automatically generating packet parser implementations from

standards documents requires a description of the protocol
syntax in a suitable protocol description language. As noted in
Section II, there are both technical and social requirements on
the design of such languages. Protocol description languages
must be sufficiently well defined so that the documents that
use them can be parsed, yet must be sufficiently flexible and
expressive. Further, they must be human readable, usable by
those with expertise in protocol design rather than formal
methods, and support the consensus-based, discussion heavy,
nature of the standardisation process [2]. The design and

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Source Port | Destination Port |
+−+
| Sequence Number |
+−+
| Acknowledgment Number |
+−+
Data		C	E	U	A	P	R	S	F	
Offset	Rsrvd	W	C	R	C	S	S	Y	I	Window
		R	E	G	K	H	T	N	N	
+−+										
Checksum	Urgent Pointer									
+−+										
Options	Padding									
+−+										
Data										
+−+

Note that one tick mark represents one bit position.

Figure 1: TCP Header Format

Each of the TCP header fields is described as follows:

Source Port: 16 bits

The source port number.

...

Data Offset: 4 bits

The number of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header (even one including options) is an
integral number of 32 bits long.

Rsrvd − Reserved: 4 bits

A set of control bits reserved for future use. Must be zero in
generated segments and must be ignored in received segments, if
corresponding future features are unimplemented by the sending or
receiving host.

The control bits are also know as "flags". Assignment is managed
by IANA from the "TCP Header Flags" registry [53].

Control Bits: 8 bits (from left to right) of currently assigned
control bits:

CWR: Congestion Window Reduced (see [8])
ECE: ECN−Echo (see [8])
URG: Urgent Pointer field significant
ACK: Acknowledgment field significant
PSH: Push Function (see the Send Call description in
Section 3.8.1)
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: No more data from sender

...

Options: variable

...

(a) draft-ietf-tcpm-rfc793bis-19 [3]

A TCP Segment is formatted as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Source Port | Destination Port |
+−+
| Sequence Number |
+−+
| Acknowledgment Number |
+−+
Data		C	E	U	A	P	R	S	F	
Offset	Rsrvd	W	C	R	C	S	S	Y	I	Window Size
		R	E	G	K	H	T	N	N	
+−+										
Checksum	Urgent Pointer									
+−+										
[Options]										
+−+										
:										
: Payload :
: |
+−+

where:

Source Port: 16 bits. The source port number.

...

Data Offset (DOffset): 4 bits; DOffset >= 5. The number of 32 bit
words in the TCP Header. This indicates where the data begins.
The TCP header (even one including options) is an integral
number of 32 bits long.

Reserved (Rsrvd): 4 bits; Rsrvd == 0. A set of control bits reserved
for future use. Must be zero in generated segments and must be
ignored in received segments, if corresponding future features are
unimplemented by the sending or receiving host.

CWR: 1 bit. Congestion Window Reduced

ECE: 1 bit. ECN−Echo

URG: 1 bit. Urgent Pointer field significant

ACK: 1 bit. Acknowledgment field significant

PSH: 1 bit. Push Function (see the Send Call description)

RST: 1 bit. Reset the connection

SYN: 1 bit. Synchronize sequence numbers

FIN: 1 bit; (FIN == 0) || (SYN == 0). No more data from sender.

...

Options: [TCP Option]; Options#Size == (DOffset-5)*32; present
only when DOffset > 5. Options may occupy space at the end of the

TCP header and are a multiple of 8 bits in length. All options
are included in the checksum.

...

(b) Augmented Packet Header Diagram format [28]

Figure 2: Specifying the syntax of TCP segments (“...” indicates elided text; emphasis added to highlight constraints).

usability of protocol description languages, and associated
tooling, is crucial to their adoption.

To illustrate this, we show how the TCP packet format can
be specified using our Augmented Packet Header Diagrams
protocol description language [25]. This is based on the
informal diagrams that are already widely used in IETF
documents, but updated with a limited set of changes to ensure
consistency and support the machine-readability needed for
automatic code generation. The familiarity of this description
language is intended to encourage adoption within the standards
development community.
We present an extract from the work-in-progress draft

updating the TCP protocol specification in the IETF, dated
27 October 2020 (draft-ietf-tcpm-rfc793bis-19) [3], in
Figure 2a. This is characteristic of many IETF standards,
describing the packet format informally using a diagram
of the packet headers followed by description of the fields
in English prose. Figure 2b shows the same extract, trans-

lated into our Augmented Packet Header Diagram format,
as has now been incorporated into the update to the TCP
protocol specification, starting with the draft dated 3 May
2021 (draft-ietf-tcpm-rfc793bis-21). It is instructive to
compare the two descriptions.
At a high-level, the version using the Augmented Packet

Header Diagram is clearly, and intentionally, extremely close
to that in the previous versions. The main elements remain the
same: an ASCII diagram showing the layout of the packet is
given, followed by a description list detailing each field. The
diagram is useful for maintaining human-readability, while the
description list allows the format to incorporate more machine-
readable elements.

The need for machine-readability, to support automatic code
generation and validation, requires that the Augmented Packet
Header Diagram version be more precise, though. In this
example, this is most apparent in the definition of the Options
field. In Figure 2a, this is merely listed as being of variable

length. This version of the specification does not explicitly state
the size of the field; it must be inferred from the definition of
the Data Offset field. The Augmented Packet Header Diagram
definition of the same field must be more explicit. As shown
in Figure 2b, the Options field has a length specified as
an expression (Options#Size == (DOffset-5)*32) and a
constraint that it is only present when DOffset > 5. The
Augmented Packet Header Diagram has a rich expression
grammar that is used to express constraints on the values and
lengths of fields; these are emphasised in bold in the extracts
shown in Figure 2b and Figure 3. While these constraints
are needed to form a precise definition of the types that are
described, they also greatly improve human readability.
More generally, the Augmented Packet Header Diagram

language sits on top of the type system of the Network Packet
Representation. As will be explored in more depth in Section IV,
field are strongly typed. For most of the fields in the example,
these are BitString types, defined in terms of their name
and width. However, the Options field is an Array type, as
indicated by the square brackets given in both the diagram
and description list, holding variants of an Enum to describe
the different options. The definition of this field in Figure 2b
indicates that the field is an array of TCP Option instances,
where the TCP Option type is described later in the document
using the form shown in Figure 3 to describe the variants.

Importantly, the Augmented Packet Header Diagram format
is not just a formalism of the existing ad-hoc syntax, but also
constrains the set of protocols that can be defined, affecting
the safety and decidability properties of the parsers that can be
generated. An important boundary in terms of decidability is
the inclusion of recursively-defined elements. These elements
lead to protocol syntax that is undecidable [26], and for which
safe parsers are difficult or impossible to write. The Network
Packet Representation cannot be used to express recursively-
defined types, and so all languages that are used to generate
it must similarly limit the protocols that can be expressed.
This demonstrates the power of having a common protocol
representation system: it influences the design and safety of
protocol description languages, and so of protocols themselves.

In summary, the Augmented Packet Header Diagram format
is intentionally close to the ad-hoc formats used in standards
documents today, while being more precise and machine-
readable. This familiarity eliminates the steep learning curves
associated with other description techniques, removing one
of the main barriers to adoption. The use of this format in
recent drafts of the TCP specification produced by the IETF [3]
validates our approach – and shows the usability of our design.
The format is similar enough to existing practice that it can be
understood and adopted by those developing protocol standards,
without the need for extensive training and education.

We have further written draft specifications for the format of
UDP datagrams (see [29]) and QUIC packets and frames (see
[30]) using Augmented Packet Header Diagrams. These are
omitted here due to space constraints, but show that the format
can be used to express the syntax of a wide range of protocols,
including both traditional and widely deployed protocols such

A TCP Option is one of: a EOL Option, a NOOP Option, a Maximum
Segment Size Option, a Window Scale Factor Option, a Timestamp
Option, a SACK Permitted Option, or a SACK Range Option.

An EOL Option is formatted as follows:

0
0 1 2 3 4 5 6 7

+−+−+−+−+−+−+−+−+
| 0 |
+−+−+−+−+−+−+−+−+

where:

Option Kind (Kind): 1 byte; Kind == 0. This option code indicates
the end of the option list.

...

A Maximum Segment Size Option is formatted as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| 2 | Length | Maximum Segment Size (MSS) |
+−+

where:

Option Kind (Kind): 1 byte; Kind == 2. If this option is present,
then it communicates the maximum receive segment size at the TCP
endpoint that sends this segment.

Option Length (Length): 1 byte; Length == 4. Option length.

Maximum Segment Size (MSS): 2 bytes. The maximum segment size
allowed.

...

Figure 3: Specifying TCP options using the Augmented
Packet Header Diagram format [28] (“...” indicates elided text;
emphasis added to highlight constraints).

as TCP and UDP, and also modern designs with integrated
security and more complex packet formats, such as QUIC.

IV. Typed Protocol Representation
The Network Packet Representation [2] is a type system and

common intermediate representation for describing network
protocol data. It provides a fixed set of internal types, along
with type constructors for various representable types used
in concrete protocols. The internal types comprise abstract
Boolean and Number types, functions, a type to represent a
Protocol, and a parsing Context. The representable types
comprise BitString types that represent single protocol fields
of a known size; Array types that represent sequences of such
fields; a parameterised Option<T> type that represents an
optional field of type T with an associated boolean expression
that indicates presence or absence of the field; product
types, Struct, that represent PDUs, or fragments of a PDU,
comprised of a combination of fields; and Enum types that
represent alternatives. Fields in Struct types are associated
with optional expressions that constrain their size or value
dependent on other fields. The type system is described in
more detail in [2]. The Network Packet Representation encodes
the protocol data units, and contextual information needed
to parse those PDUs, in a strongly typed hierarchical data
structure. This is organised in a top-down manner, starting
with the Protocol type, parameterised by the Context and
an Enum representing the possible PDUs, then defining the
Struct types that represent each PDU in turn.

Figure 4 shows the types constructed in the Network Packet
Representation of TCP, derived from parsing a specification
written using the Augmented Packet Header Diagram format

Struct: TCPSegment

Fields

Constraints

source_port : SourcePort
…
options : [TCPOption]
payload : Payload

options#size == (doffset-5)*32
…

PDUs

Protocol: TCP

tcp_segment : TCPSegment

Context = TCPContext

Context: TCPContext
Fields
data_size : Number

Struct: MSSOption
Fields

Constraints

option_kind : MSSOptionKind
length : MSSOptionLength
mss : MSSOptionMSS

option_kind == 2
length == 4

Enum: TCPOption
Variants
eol_option : EOLOption
mss_option : MSSOption
…

Array: Options
Length = Unspecified
Element Type = TCPOption

BitString: SourcePort

Length = 16 bits

BitString: Payload

Length = Unspecified

BitString: MSSOptionLength

Length = 8 bits

BitString: MSSOptionMSS

Length = 16 bits

PDUs

BitString: MSSOptionKind

Length = 8 bits

…

…

…

…

Figure 4: The Network Packet Representation for TCP, as
described in Figure 2b (“...” indicates components omitted for
brevity).

discussed in Section III. At the top-level, this comprises a TCP
type that is an instance of a Protocol, with type parameters
indicating that the Context is of type TCPContext and that
there is a single PDU type, TCPSegment.

The TCPContext is a product type that represents persistent
state that can be accessed throughout the parsing process. TCP
requires no special parsing context, so the only field on this
type is data_size, the size of the datagram being parsed. The
context will be discussed further in Section V.

The TCPSegment is a Struct type the represents the format
of a TCP segment, the sole PDU in the TCP protocol. A

TCP segment comprises a sequence of fields, starting with the
source and destination ports, sequence and acknowledgement
numbers, and so on. For each of these, a field is added to the
TCPSegment type, and a new type is generated to represent
that field. This begins with the Source Port field, for which
a new BitString type, SourcePort, is created with a length
of 16 bits. Then, a field source_port, with type matching the
newly created SourcePort type, is added to the TCPSegment
definition. This process is repeated for the remaining fields,
defining appropriate types to represent each.

Most fields in a TCP segment are straightforward, with fixed
size. However, as seen in Figure 2b, the Options field is an
Array containing elements of the type TCPOption. As shown
in Figure 3, a TCP option can take on one of multiple different
formats. As a result, TCPOption is constructed as an Enum
type with several different variants: EOLOption, MSSOption,
and so on. Each of the variants is a Struct type, itself holding
fields defined to be appropriate types, with constraints on field
values. For example, the MSSOption type is dependently typed
with constraints that its option_kind has value 2 and its length
is four bytes. Constraints are declarative and guide parsing, as
we discuss in Section V.

The TCPSegment itself also has constraints. For example,
the total size of the Options array is (doffset-5)*32 bytes,
as shown in Figure 2b and reflected in the type definition
in Figure 4. The Network Packet Representation has a rich
expression grammar that enables the value of fields to be used
in place of fixed values. The expression grammar allows for the
values of previously defined fields to be accessed, and combined
with internal types, like numbers, using typical arithmetic
operators. These expressions form part of the definition of a
type: binary data is only a TCPSegment if, when parsed, it
contains all of the fields of the type and if all of the constraints
are true.

The final field of the TCP segment is the Payload field. This
is a BitString type, but it does not have a fixed size, or a
known size that can be defined by an expression. As a result,
the Payload type is constructed with unspecified size, leaving
it to be inferred by the Network Packet Representation tooling.
The size inference process generates an expression for the

size of types with unspecified sizes. This expression is paramet-
erised by a value in the TCPContext, data_size, that is set to
the length of the segment being parsed by the generated parsing
code. In this example, data_size would be the entire length
of the TCP segment. The size inference process is recursive,
beginning with each type specified as a PDU in the Protocol
definition. The size inference algorithm apportions data_size to
types with unspecified lengths intuitively, recursively replacing
unspecified lengths with expressions as it traverses the set of
types that define a protocol. For example, the Payload type
would have a length that is specified as data_size, less the sum
of all of the other fields. An important constraint results from
this algorithm: Struct types can contain at most one field type
whose size is unspecified. If multiple fields had unspecified
sizes, then it would not be possible to determine the size of
each field.

This section has highlighted the importance of an ab-
stract protocol type system, like that of the Network Packet
Representation, in removing a number of the properties of
some protocol designs that are inherently unsafe. In addition
to preventing recursive definitions, as described in Section III,
the Network Packet Representation requires that types and
expressions only be parameterised in terms of previously
defined types, and ensures that all representable types have
known sizes. In Section V, we will show how these properties
of the Network Packet Representation influence the quality,
security, and trustworthiness of the parser implementations that
are generated from it.

V. Code Generation
The final component of the architecture of the Network

Packet Representation is code generation. It has been shown
that the programming language and paradigm used by parser
code has important consequences for security [31] [32]. The
structure of the Network Packet Representation, in determining
the design of code generators, can promote the adoption of safer
languages and paradigms, improving the security of generated
implementations. As illustrated in Figure 4, the Network Packet
Representation is constructed from a top-down traversal of a
protocol’s definition, with independent types being constructed
before the complex types that depend on them, resulting in
a tree structure. This structure mirrors the parser combinator
idiom [27], where small unit parsers are combined into parsers
for more complex types. Just as types in the Network Packet
Representation may only depend on previously defined types,
parser combinator functions may only make use of previously
specified functions. This means that a bottom-up mirror of the
traversal used to construct the Network Packet Representation
is needed to generate parser combinator code. This traverses
the type graph for the Protocol, traversing those types listed
as PDUs, and generates parser code for the leaf types first,
then code that parses the containing types, and so on until the
entire protocol can be parsed.

We have developed a prototype implementation that generates
protocol parsers, written in Rust, using the nom library [33],
from the Network Packet Representation, using Augmented
Packet Header Diagrams as an input format.1 In this section, we
will describe the output for our TCP example, and give snippets
of the generated code to illustrate the benefits of the parser
combinator approach, and the ways in which the architecture
of the generated code improves safety and reliability.
Our code generator creates a TCP parser implementation

that is comprised of around 1115 lines of Rust code. This
is generated from the Augmented Packet Header Diagram
description of TCP [28], as given in Figures 2b and 3, and has
support for several TCP options, including MSS, timestamp,
and SACK options. At the top-level, the generated code provides
a parse_pdu function that takes an array of bytes as input,
and, if successful, returns a TcpSegment.

1A snapshot of our parser generator, matching this paper, is available at
http://dx.doi.org/10.5525/gla.researchdata.1139 while the main repository is at
https://github.com/glasgow-ipl/ips-protodesc-code

#[derive(Debug, PartialEq, Eq)]
pub struct TcpSegmentSourcePort(pub u16);

#[inline]
pub fn parse_tcp_segment_source_port<'a>(input: (&'a [u8], usize),

context: &'a mut Context)
−> (IResult<(&'a [u8], usize), TcpSegmentSourcePort>, &'a mut Context) {

(take(16 as usize)(input).map(|(i, o)| (i, TcpSegmentSourcePort(o))), context)
}

Figure 5: Generated code for the TcpSegmentSourcePort type.

#[derive(Clone, Debug, PartialEq, Eq)]
pub struct TcpSegment {

pub source_port: TcpSegmentSourcePort,
pub destination_port: TcpSegmentDestinationPort,
pub sequence_number: TcpSegmentSequenceNumber,
pub acknowledgment_number: TcpSegmentAcknowledgmentNumber,
pub data_offset: TcpSegmentDataOffset,
pub reserved: TcpSegmentReserved,
pub cwr: TcpSegmentCwr,
pub ece: TcpSegmentEce,
pub urg: TcpSegmentUrg,
pub ack: TcpSegmentAck,
pub psh: TcpSegmentPsh,
pub rst: TcpSegmentRst,
pub syn: TcpSegmentSyn,
pub fin: TcpSegmentFin,
pub window_size: TcpSegmentWindowSize,
pub checksum: TcpSegmentChecksum,
pub urgent_pointer: TcpSegmentUrgentPointer,
pub options: Option<TcpSegmentOptions>,
pub payload: TcpSegmentPayload,

}

#[inline]
pub fn parse_tcp_segment<'a>(mut input: (&'a [u8], usize),

mut context: &'a mut Context)
−> (IResult<(&'a [u8], usize), TcpSegment>, &'a mut Context) {

let source_port = match parse_tcp_segment_source_port(input, context) {
(IResult::Ok((i, o)), c) => {

input = i;
context = c;
o

}
(IResult::Err(e), c) => return (IResult::Err(e), c),

};

...

let data_offset = match parse_tcp_segment_data_offset(input, context) {
(IResult::Ok((i, o)), c) => {

// check constraint: (data_offset >= 5)
if !((o.0 >= 5)) {

return (IResult::Err(Err::Error((input, ErrorKind::NonEmpty))), c);
};
input = i;
context = c;
o

},
(IResult::Err(e), c) => return (IResult::Err(e), c),

};

...

(IResult::Ok((input, TcpSegment { ... },)), context)
}

Figure 6: Generated code for the TcpSegment type (“...”
indicated elided text).

Below this top-level API, the generated code is structured
around small parser combinator functions. Figure 5 illustrates
this, showing the type and parser function that is generated for
the TcpSegmentSourcePort type. For brevity, a full discussion
of the details of the Rust syntax is omitted. However, the
generated parser combinator takes as input a tuple that has a
byte array and offset (i.e., how many bits of the array have
been consumed), and a context type. As noted in Section IV,
this context can be accessed throughout the parsing process.
The function returns a result type, containing a tuple with an
input stream and offset – possibly with bits consumed – and,
if successful, the constructed type. The context type is also
returned.
Similar parser combinator functions are generated for each

of the types given in the Network Packet Representation. An
important part of the parser combinator paradigm is that
simple parser functions are combined together into parsers

for more complex types. This means that most functions are
short, making them easier to understand and debug [32]. The
simplest function is the take function, as used in Figure 5.
This is a nom function that removes the specified number
of bits from the input stream, and returns the stream with
the bits consumed. To illustrate how the generated parser
functions are combined, Figure 6 shows the Rust type and
code generated for the TcpSegment type. In this example, the
previously generated types and functions are composed together.
This composition differs based on the type. For Struct types,
parsers are composed sequentially, based on the type of each
field; for Enum types, parsers are tried in turn until one is
successful; and for Array types, a parser is called repeatedly
as needed. In all cases, parsing may fail, and an error is
propagated upwards from the base parser.
An important part of this is the use of expressions and

constraints. In Figure 6, the constraint on the value of the parsed
data_offset field is checked. This constraint was given using the
Augmented Packet Header Diagram description in Figure 2b; it
was then used to define the Network Packet Representation for
TCP, shown in Figure 4; and finally, the constraint is expressed
in the code, where parsing will fail if the constraint is not met.
This example, while relatively straightforward, demonstrates
the power of the overall approach.

Momot et al. [4] describe a taxonomy of common parser bugs.
Two categories in this taxonomy – shotgun parsing (or ad-hoc
validation in the parsing process) and non-minimalist input-
handling code – are related to the tendency to produce parser
code that is overly complex, and that combines the simpler
task of parsing the protocol’s syntax with the more difficult
step of semantic validation. Separating these concerns allows
for code that is simpler and easier to debug. The generated
code described in this section is narrowly designed to provide a
complete parser for the specified protocol. The Network Packet
Representation does not capture complex semantic logic for
the protocol, and includes only the information needed to parse
and validate incoming TCP segments. This scope means that
the generated code is simple and easy to debug.
The Network Packet Representation can be used to model

the stateless semantics of a protocol. For example, as shown
in Figure 2b, constraints can be used to ensure that incoming
segments do not have both the SYN and FIN flags set. However,
the parser cannot check if an incoming segment’s flags are set
appropriately within a particular flow. For example, it is not
valid for a SYN packet to arrive after a RST packet. Checking
this would require the parser to maintain a state machine for
the protocol, which is not captured by the Network Packet
Representation. This means that our parser is not standalone:
it is designed for inclusion within a larger implementation that
includes validation of the protocol’s semantic logic. It is within
this context that we evaluate the correctness and performance
of our generated TCP parser code in Section VI.

VI. Evaluation
There are two broad requirements for the code generated

from the Network Packet Representation: it must be correct, in

so far as it matches the specification, and it must be sufficiently
performant, so as to enable interoperability testing and test-
driven development. While a level of usable performance is
required, the generated code is designed to act as a sample
implementation. Other non-functional properties of the code,
such as readability, take precedence.

In this paper, we have described how a specification of TCP
written in the Augmented Packet Header Diagram language [28]
(Figures 2b and 3) can be used to derive a Network Packet
Representation (Figure 4), and from this, a Rust parser
implementation (Figures 5 and 6). As the generated code
provides only a parser implementation, we must integrate it
with a larger TCP implementation to evaluate its correctness
and performance.
To do this, we have integrated the generated code with
smoltcp2, replacing its parser with our generated implement-
ation. smoltcp is a standalone TCP/IP stack written in Rust,
and is designed to be performant for embedded, real-time
systems. The implementation includes support for many of
TCP’s features, including checksum validation, window scaling,
and maximum segment size negotiation.
smoltcp’s extensive documentation and layered architecture

made it straightforward to integrate our generated parser with
the wider implementation. It is instructive to consider the
implementation that our generated code replaces. The existing
implementation makes use of bitmasks to parse the TCP header.
This is a common, but brittle and error-prone, approach.

Integrating with smoltcp provides us with a suite of example
applications, including a minimal clone of tcpdump and a
benchmarking script. We use these tools to evaluate the
correctness and performance of the generated code.

A. Correctness
To evaluate the correctness of the generated code, we

construct a set of TCP segments based upon the standards
document that defines the protocol. These segments have been
constructed using scapy and captured as pcap files. To ensure
that the test pcaps have been generated correctly, they have
been inspected using tcpdump. The correctness of the generated
code is evaluated by running smoltcp’s minimal tcpdump
clone over the test files, and comparing the output with that of
tcpdump itself.
Table 7 lists the test segments that were constructed. In

total, 25 tests were performed. These included setting each
field to a known value, and ensuring that this value was parsed
correctly. All of the supported TCP options, including the
Timestamp and SACK block options, were tested. Finally, the
set of test segments included five that were deliberately invalid,
to test both the syntactic checks of the generated parser, and
the semantic checks of smoltcp.

All of the test segments were handled by the implementation
as expected. The generated parser code extracted the values
of each field correctly, and the integration with smoltcp used
these values properly. This extended to the tests that contained

2https://m-labs.hk/software/smoltcp/

Fields set Parsed?
1 (>DA24%>AC = 8080 Y
2 �4BC8=0C8>=%>AC = 9999 Y
3 (4@#D< = 1200 Y
4 �2:#D< = 5000 Y
5 �,' = 1 Y
6 ��� = 1 Y
7 *'� = 1 Y
8 %(� = 1 Y
9 '() = 1 Y
10 (.# = 1 Y
11 ��# = 1 Y
12 ,8=3>F = 2000 Y
13 *A64=C%>8=C4A = 10 Y
14 $?B = [�$!$?] Y
15 $?B = [#>$?$?, �$!$?] Y
16 $?B = ["(($?(1200)] Y
17 $?B = [)($?(E0; = 20, 42A = 10)] Y
18 $?B = [(�2:$ $?] Y
19 $?B = [(�2: (; = 1000, A = 2000)] Y
20 %0H;>03 = ”�4;;>, F>A;3” Y
21 �ℎ42:BD< = 15 Y

smoltcp indicated
invalid checksum.

22 $?B = [$?C8>=(:8=3 = 34)] N
Invalid option kind.

23 �0C0$ 5 5 B4C = 1 N
�0C0$ 5 5 B4C < 5.

24 (.# = 1; ��# = 1 N
Invalid flags.

25 '4B4AE43 = 12 N
'4B4AE43 ≠ 0.

Figure 7: Correctness tests; fields set to known values as
indicated, with all other fields set to acceptable values. (.# = 1
in all tests, except where other flags set explicitly.

invalid values. In test #21, the checksum was set to a known
value. While this segment was parsed, it failed smoltcp’s
semantic validation checks. This demonstrates the separation
of parsing and validation that was described in Section V. In
test #22, an invalid option was added to the TCP segment.
This option was not included in the description of the protocol
(Figure 3), and so it could not be parsed. The remaining tests
(i.e., # 23 through 25) check that the other constraints given
in the protocol’s definition (Figure 2b) are enforced.

B. Performance

While the correctness of the generated parser code is
paramount, it is also the case that it must be sufficiently
performant. The performance of parser implementations is
often a trade-off with other attributes: tightly written code is
often less readable. The generated code must be readable to
act as a sample implementation. However, if the code is too
slow, then it is unlikely to be used, undermining its purpose.

To evaluate the performance of our generated implementation,
we compare it with the existing smoltcp parser that it replaces.
This means that all other factors remain the same. The
evaluations consisted of running smoltcp’s benchmarking

150 300 450 600 750 900 1050 1200 1350 1500
MTU size (bytes)

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (G

bp
s)

Existing parser
Generated parser

Figure 8: Throughput of smoltcp’s existing parser, compared
with the generated parser, for various MTU sizes.

script. The test was run on a machine with an Intel Xeon
E3 1240 CPU with 32GB of RAM. Both codebases were
compiled using rustc 1.43.0. Finally, as shown in Figure 6,
the generated code includes hints to the Rust compiler that it
should inline the parsing functions.
The benchmarking script used the loopback interface to

transmit 1000MB of data, and to parse the incoming data. The
script was run using different MTU values (from 150 bytes to
1500 bytes, in 150 byte increments). Each run was repeated
10 times for each implementation.

Figure 8 shows the results of the performance evaluation.
With an MTU of 1500 bytes, the average throughput of the
existing implementation was 2.52Gbps, compared to 2.43Gbps
for the generated implementation, a 3.77% reduction. When
the MTU was reduced to 150 bytes, average throughput of the
existing implementation dropped to 0.2Gbps, and to 0.17Gbps
for the generated parser. This demonstrates that, even when the
header comprises a larger portion of the packet, the generated
parser still performs relatively well.
These tests have shown that our generated TCP parser

implementation is correct and performant, capable of processing
incoming TCP segments in the order of gigabits per second as
typical MTU sizes. These are important results. They show that
the benefits of being able to derive an implementation directly
from standards documents can be unlocked while maintaining
the correctness and performance of the code.

VII. Related Work
The Network Packet Representation [2] builds upon more

recent representation systems that can capture the external
syntax of protocols, and a model of their internal representation,
essential for representing modern, complex protocols. These
include Nail [34], which builds upon Hammer [35], and
produces parser combinators for grammars specified in domain-
specific languages, using stream transformations and arenas to
support complex protocols. Narcissus [36] supports multi-stage
parsing with a framework for the Coq proof assistant.

The goals of adopting a representation system that integrates
with the standardisation process is rooted both within the
LangSec community, which calls for protocols to be treated
as formal input languages [37], and the need to adapt formal
methods to users [22]. Momot et al. [4] describe common parser
vulnerabilities, and suggest remedies for them. As we have
shown, the architecture of the Network Packet Representation
promotes and enforces a number of these remedies. The type
system ensures that protocol specifications are complete, that
the complexity of protocol syntax is minimised, and that the
generated code separates the functions of input parsing with
semantic validation.

VIII. Conclusions
We have demonstrated the benefits of the approach advocated

by the Network Packet Representation, shifting towards the
use of tooling that can automatically generate a sample
protocol parser implementation from a standards document
that specifies it, can be achieved while maintaining correctness
and performance. We have shown that a description of TCP, in
a format broadly similar to that in typical use, can be used to
generate a safe, correct parser implementation that is capable
of processing incoming data at a rate of gigabits per second.

We believe that this architecture provides a solid foundation
for future work. With a formal representation of the protocol’s
syntax, it should be possible to generate test cases for that
protocol. This would add to the tooling demonstrated in this
paper, and contribute to a step change in how protocols
are developed, helping to further improve the security and
trustworthiness of Internet protocol standards.

Acknowledgements
This work is funded by the UK Engineering and Physical

Sciences Research Council, under grant EP/R04144X/1.

References
[1] S. Bratus, M. L. Patterson, and A. Shubina, “The bugs we have to kill,”

;login:, vol. 40, no. 4, pp. 4–10, Aug. 2015.
[2] S. McQuistin, V. Band, D. Jacob, and C. Perkins, “Parsing protocol

standards to parse standard protocols,” in Proceedings of the Applied
Networking Research Workshop, 2020, pp. 25–31.

[3] W. Eddy, “Transmission Control Protocol (TCP) Specification,” Internet
Engineering Task Force, May 2021, Work in progress.

[4] F. D. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, “The seven
turrets of Babel: A taxonomy of LangSec errors and how to expunge
them,” in Cybersecurity Development (SecDev). Boston, MA, USA:
IEEE, Nov. 2016. DOI:10.1109/SecDev.2016.019

[5] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,”
Internet Engineering Task Force, Mar. 2018, RFC 8446.

[6] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” Internet Engineering Task Force, Jan. 2021, Work in
progress.

[7] D. D. Clark, “A cloudy crystal ball - visions of the future,”
in Proceedings of the Internet Engineering Task Force, vol. 24,
Cambridge, MA, USA, Jul. 1992, pp. 539–543. [Online]. Available:
http://www.ietf.org/proceedings/24.pdf

[8] P. Resnick, “On consensus and humming in the IETF,” Internet
Engineering Task Force, Jun. 2014, RFC 7282.

[9] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, Jul. 2002.

[10] D. Jackson, Software Abstractions: Logic, Language, and Analysis. MIT
Press, Nov. 2011.

[11] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How Amazon Web Services uses formal methods,”
Communications of the ACM, vol. 58, no. 4, pp. 66–73, Apr. 2014.

[12] T. G. Griffin and J. L. Sobrinho, “Metarouting,” in Proceedings of the
SIGCOMM Conference. Philadelphia, PA, USA: ACM, Aug. 2005.

[13] A. Wang, L. Jia, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu, “Formally
verifiable networking,” in Proceedings of the Workshop on Hot Topics
in Networks. New York, NY, USA: ACM, Oct. 2009.

[14] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang,
C. Caşcaval, N. McKeown, and N. Foster, “p4v: practical verification for
programmable data planes,” in Proceedings of the SIGCOMM Conference.
Budapest, Hungary: ACM, Aug. 2018, pp. 490–503.

[15] K. Fisher and R. Gruber, “PADS: a domain-specific language for
processing ad hoc data,” in Proc. PLDI. Chicago, USA: ACM, 2005.

[16] G. Back, “Datascript-a specification and scripting language for binary
data,” in International Conference on Generative Programming and
Component Engineering. Pittsburgh, PA, USA: Springer, 2002.

[17] P. J. McCann and S. Chandra, “Packet types: abstract specification of
network protocol messages,” ACM SIGCOMM Computer Communication
Review, vol. 30, no. 4, pp. 321–333, 2000.

[18] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan, “Melange:
Creating a “functional” internet,” in Proc. EuroSys. Lisbon, Portugal:
ACM, 2007, pp. 101–114.

[19] M. Bjorklund, “YANG – a data modeling language for the network
configuration protocol (NETCONF),” Internet Engineering Task Force,
Oct. 2010, RFC 6020.

[20] A. Walz and A. Sikora, “eTPL: An enhanced version of the TLS
presentation language suitable for automated parser generation,” in
International Conference on Intelligent Data Acquisition and Advanced
Computing Systems, vol. 2. IEEE, 2017, pp. 810–814.

[21] F. Risso and M. Baldi, “NetPDL: an extensible XML-based language
for packet header description,” Computer Networks, vol. 50, no. 5, pp.
688–706, 2006.

[22] A. Reid, L. Church, S. Flur, S. De Haas, M. Johnson, and B. Laurie,
“Towards making formal methods normal: meeting developers where they
are,” in Proceedings of the Workshop on Human Aspects of Types and
Reasoning Assistants, Online, Oct. 2020.

[23] D. Crocker, “Augmented BNF for syntax specifications: ABNF,” Internet
Engineering Task Force, Jan. 2008, RFC 5234.

[24] I. T. Union, “Abstract syntax notation one (ASN.1): Specification of
basic notation,” ITU-T Recommendation X.680, Aug. 2015.

[25] S. McQuistin, V. Band, D. Jacob, and C. S. Perkins, “Describing
Protocol Data Units with Augmented Packet Header Diagrams,” Internet
Engineering Task Force, May 2021, Work in progress.

[26] L. Sassaman, M. L. Patterson, S. Bratus, and A. Shubina, “The halting
problems of network stack insecurity,” USENIX; login, vol. 36, no. 6,
pp. 22–32, 2011.

[27] W. H. Burge, “Recursive programming techniques,” 1975.
[28] S. McQuistin, V. Band, D. Jacob, and C. S. Perkins, “Describing TCP

with Augmented Packet Header Diagrams,” Internet Engineering Task
Force, May 2021, Work in progress.

[29] ——, “Describing UDP with Augmented Packet Header Diagrams,”
Internet Engineering Task Force, May 2021, Work in progress.

[30] ——, “Describing QUIC’s Protocol Data Units with Augmented Packet
Header Diagrams,” Internet Engineering Task Force, May 2021, Work
in progress.

[31] E. Jaeger, O. Levillain, and P. Chifflier, “Mind your language (s),” in 1st
LangSec workshop of IEEE Security & Privacy, 2014.

[32] P. Chifflier and G. Couprie, “Writing parsers like it is 2017,” in 2017
IEEE Security and Privacy Workshops (SPW). IEEE, 2017, pp. 80–92.

[33] G. Couprie, “Nom, a byte oriented, streaming, zero copy, parser
combinators library in rust,” 05 2015, pp. 142–148.

[34] J. Bangert and N. Zeldovich, “Nail: A practical tool for parsing and
generating data formats,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’14), 2014, pp. 615–628.

[35] M. Patterson and D. Hirsch, “Hammer parser generator,” 2014. [Online].
Available: https://github.com/UpstandingHackers/hammer

[36] B. Delaware, S. Suriyakarn, C. Pit-Claudel, Q. Ye, and A. Chlipala,
“Narcissus: correct-by-construction derivation of decoders and encoders
from binary formats,” Proceedings of the ACM on Programming
Languages, vol. 3, no. ICFP, pp. 1–29, 2019.

[37] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto, “Security
applications of formal language theory,” IEEE Systems Journal, vol. 7,
no. 3, pp. 489–500, 2013.

