
Distributed Sketching with Traffic-Aware
Summaries

Dor Harris§

Technion
Haifa, Israel

dorharris@cs.technion.ac.il

Arik Rinberg§

Technion
Haifa, Israel

arikrinberg@campus.technion.ac.il

Ori Rottenstreich
Technion

Haifa, Israel
or@technion.ac.il

Abstract—Network measurements are important for identi-
fying congestion, DDoS attacks, and more. To support real-
time analytics, stream ingestion is performed jointly by multiple
nodes, each observing part of the traffic, periodically reporting
its measurements to a single centralized server that aggregates
them. To avoid communication congestion, each node reports a
compressed version of its collected measurements. Traditionally,
nodes symmetrically report summaries of the same size computed
on their data. We explain that to maximize the accuracy of
the joint measurement, nodes should imply various compression
ratios on their measurements based on the amount of traffic
observed by each node. We illustrate the approach for two
common sketches: The Count-Min sketch (CM), which estimates
flow frequencies, and the K-minimum-values (KMV) sketch,
which estimates the number of distinct flows. For each sketch,
we compute node compression ratios based on the traffic distri-
bution. We perform extensive simulations for the sketches and
analytically show that, under real-world scenarios, our sketches
send smaller summaries than traditional ones while retaining
similar error bounds.

Index Terms—Distributed Sketching, Measurement, Stream-
Aware, Network Algorithms

I. INTRODUCTION

Network designers need to gather analytics about the per-
formance of the network to better understand what is happen-
ing behind the curtain. They rely on them to design traffic
engineering, reach a higher utilization of the infrastructure,
lower link congestion, and find anomalies when happen.
Switches generally do not have sufficient memory to hold
entire measurement models for large data streams, therefore
the network designer generally sacrifices accuracy for a lower
memory footprint. Data sketching algorithms, or sketches for
short [8], are an indispensable tool for such high-speed low-
memory-footprint computations. Sketches estimate some func-
tion of a large stream, for example, the frequency of certain
items [9], number of observed unique items [10], [15], the top-
k most common items [28] or detect frequency changes [24].
They are supported by many data analytics platforms such as
PowerDrill [19], Druid [12], Hillview [20], and Presto [29] as
well as standalone toolkits [30].

Measurements are conducted in switches and routers all over
the network; however, to successfully analyze network behav-
ior, measurement data needs to be gathered in a centralized

§The first two authors contributed equally.

Stream

Ingestion
Node 1

S1

Ingestion
Node 2

S2

Ingestion
Node n

Sn

Centralized
Server

Sc1

Sc2

Scn
. . .

Queries

Figure 1. Network-wide measurement over n ingestion nodes: Queries are
answered by a centralized server collecting summaries Sc

1, . . . , S
c
n of the local

sketches S1, . . . , Sn (e.g., the Count-Min sketch (CM) or the K-minimum-
values (KMV) sketch) in the ingestion nodes.

server that can see the full picture. This is modeled by treating
the measured network traffic as a single stream, which is split
and ingested by multiple ingestion nodes. Once the nodes have
a sketch ready to be sent (e.g., they periodically receive a
packet signaling the end of their current stream and start a new
one) they propagate their local sketch to a central node [21],
[25], [27]. This is illustrated in Figure 1. The network has to
handle the trade-off of sending data packets vs. sending crucial
control packets [5], [37]. A way to reduce these control packets
is by compressing the sketches before transferring them to a
central analytics node.

A framework for sketch compression was suggested by
Yang et al. [35]. A major component of this framework, named
Maximum Merging Algorithm (MM), compresses a Count-
Min sketch (CM) by utilizing a MAX function and merging
multiple cells in one CM to generate a new, smaller sketch.
The first limitation of that approach is that it compresses a
sketch only into smaller sketches of particular sizes, those
that have a common divisor with the size of the original
sketch. Moreover, the approach does not provide insights for
the selection of the various compression ratios that should be
implied for a distributed measurement in multiple nodes. In
particular, how the traffic distribution among the nodes should
be considered.

A clear drawback of compression methods is the accuracy

ISBN 978-3-903176-39-3© 2021 IFIP

reduction they might imply. It is often critical for network
managers to have access to measurements with guarantees
of their accuracy. In the common case that the network has
multiple ingestion nodes that generate the measurements and
send the data to a centralized server, it is intuitive to allow
each node to report them through an amount of data that is
correlative to the amount of traffic it observes. In this paper, we
successfully formulate such compression ratios for a network
with any given number of ingestion nodes and any distribution
of the traffic through these nodes. Moreover, the resize factors
also guarantee that the amount of data that is sent over the
network is less than compressing all the data from all the
nodes to the same size with previously presented methods.

In this paper, we present the following major contributions.
(i) We motivate a compression method for distributed mea-

surement which is traffic aware. We focus on the CM and
describe the traffic-aware Count-Min sketch, denoted TA-CM,
that computes the ideal compression ratios for the various
nodes for reducing the total amount of reported data. We
provide guarantees on the error bounds of the approach.

(ii) As a building block, we develop a compression method
named CM-SKTC for a single CM that allows general com-
pression ratios.

(iii) We also present Traffic-Aware K-minimum -values
(KMV), denoted TA-KMV – a traffic-aware compression ratio
for nodes implementing distributed distinct flow count with the
KMV sketch.

(iv) We conduct an experimental study based on real-traffic
traces for showing the compression methods perform well
under realistic scenarios.

The rest of the paper is organized as follows. Section II
discusses the background and related work. In Section III we
present the CM-SKTC compression method for a single CM,
bound its error, and describe how to decrease the data sent
from ingestion nodes to the centralized server. The TA-CM for
traffic-aware CM compression for multiple nodes is described
in Section IV. Section V presents the TA-KMV for cardinality
estimation. Experimental evaluation of the methods is provided
in Section VI. Finally, in Section VII we conclude and suggest
directions for future work.

II. BACKGROUND

In this section, we present the Count-Min sketch and the
KMV sketch. CM-SKTC and TA-KMV are methods to com-
press these two sketches. Likewise, we detail related work.

A. The Count-Min Sketch (CM)

Estimating flow size is a required capability in many
networking applications, in fields as diverse as accounting,
monitoring, load balancing, and filtering, and even beyond
networking. Counting the exact size for every flow is often
challenging due to a typically large number of active flows at a
specific time, making it difficult to maintain a counter-per-flow
within a memory accessible at the line rate. There can be two
types of errors in the estimation of a flow size: Overestimations
and underestimations. The state-of-the-art data structure for

Flow I - size 4

+4

+4

+4+5

+5

+5

1 w
1

d

Flow II - size 5

size of Flow III?

Insertion
Query

Figure 2. The Count-Min sketch (CM) [9], allowing flow size estimation. A
flow size is estimated as the minimum among the counters it is mapped to
by a set of hash functions.

flow size estimation is the Count-Min sketch (CM) suggested
by Cormode and Muthukrishnan in 2005 [9].

The CM relies on a two-dimensional array with w columns
and d rows of counters initialized to values of 0s. A set of d
hash functions are used to map a flow to d counters, one in
each of its rows. Upon a flow arrival, each of these counters is
incremented by the length of the flow sequence. To estimate
the size of a flow, its d selected counters are considered and
the size is estimated as the minimum among these counters.
Since multiple flows can contribute to the same counter, the
computed value is larger than the exact one in case other flows
contributed to all d counters, thus implying an overestimation.
CM completely avoids underestimations. A tradeoff exists
between the level of accuracy and the allocated memory such
that more memory reduces collisions among flows. Similarly,
reducing the number of flows improves accuracy.

The CM is illustrated in Figure 2. Flows I, II of size 4, and
5, respectively, are recorded in the sketch (shown on the left
side). Each flow increases the value of d = 3 counters by its
size. The size of Flow III (right side) is estimated by querying
the CM as the minimal among the d counters it is mapped to.

While as mentioned the CM can observe overestimations,
the guarantee on its accuracy can be described as follows.
When using CM with width w and depth d the estimation f̂
of flow f satisfies with probability 1− δ

f̂ ≤ f + εN.

Here, N is the number of packets in the measured stream, ε
holds w =

⌈
e
ε

⌉
(for Euler’s number e) and δ holds d =

⌈
ln 1

δ

⌉
.

B. KMV (K-minimum-values) Sketch

Another essential capability in network monitoring is the
ability to estimate the number of distinct flows, usually called
flows’ cardinality. Counting the exact number of distinct flows
is generally challenging in high traffic rate, making it hard
to save some unique data for each flow and quickly identify
whether a flow has appeared or not.

The K-minimum-values sketch (KMV) [4], [16] uses a hash
function h that maps every flow uniformly to [0, 1]. For a
parameter k the sketch maintains the minimal k observed
values for flows so far. Let h1, ..., hk be those k minimal
calculated values such that h1 < h2 < ... < hk. The
KMV sketch provides its cardinality estimation as k

hk
. This

0 1

f1 f2 f3 f4 f5

Insertion

0.90.730.570.15 0.45

h(fi)

Query 3
0.57 ≈ 5.26

Figure 3. The K-minimum-values sketch (KMV) [4], [16], allowing cardi-
nality estimation. The cardinality is estimated by dividing k with the k’th
minimal hashed value, (here k = 3 with recorded values shown in red).

estimation is based on the fact that the k order statistics of
group uniformly randomized in the range [0, 1] is equal to
k

n+1 . The error of the algorithm is 1√
k

, i.e. for m flows, the

KMV sketch estimation m′ satisfies
∣∣∣m−m′

m

∣∣∣ = O(1√
k
).

The KMV is illustrated in Figure 3. There are five flows
recorded in the sketch, each maps to a different value in the
range of [0, 1]. Here k = 3 so that only the three minimal
values are stored. When flows’ cardinality is queried, the
sketch finds the largest value that is currently stored, which is
0.57 and returns k

0.57 = 3
0.57 ≈ 5.26 distinct flows.

C. Related Work

Common sketch solutions focus on the trade-off of speed,
accuracy, and memory (e.g., [7], [9], [13], [28], [34] and
more). However, they generally consider only a single node in-
gesting the entire stream. The introduction of software-defined
networks (SDN) allows for deploying centralized algorithms
for maintaining and collecting information about network
operations [36]. These solutions typically have centralized
controlled merging of incoming data from ingestion nodes.
Network-wide measurements have been widely studied [1],
[3], [18], [25]. These solutions, however, do not consider the
size of control packets sent to the controller – they do not take
into account that these control packets may worsen existing
congestion [5], [37].

Recently, [31] suggested methods for accurate flow size
estimation in the Count-Min sketch (CM) without overesti-
mation, that apply when the number of flows of non-zero
size is bounded. Yang et al. presented the Maximum Merging
(MM) [35], a method for compressing CM before transmission
over the network. The main limitation of this method is
that it can only compress the CM to a constant w′ which
divides the width w. Shrivastava et al. [33] presented time
adaptive sketches, and discussed the need for having recent
data more accessible. By using the methods shown in this
paper, network operators can create larger sketches and thus
excess the need in time-reliant sketches. In [17], Harrison
et al. presented a network-wide scheme of detecting heavy-
hitters, thus while considering the reporting communication
overhead. [18] presented a method of heavy-hitters detection
that used probabilistic summary reporting to decrease control
packets during DDoS attacks. These two works emphasize that
minimizing summaries size is critical and can have a major
influence on network performance.

Input: A CM S (size d× w), new width w′

Output: Compressed CM-SKTC S c with size d× w′
1: Sc ← array of 0’s of size d× w′
2: for j = 1; j ≤ d; j ++ do
3: for i = 1; i ≤ w; i++ do
4: l = gj(i)
5: Sc[j][l] = max(Sc[j][l], S[j][i])
6: end for
7: end for
8: return Sc
Algorithm 1: CM-SKTC compression algorithm

Input: A compressed CM-SKTC Sc (size d× w′), a flow f
Output: An estimation of f

1: return min
j∈[1...d]

{Sc[j][gj (hj(f))]}

Algorithm 2: CM-SKTC estimation query

UnivMon [27] and NitroSketch [26] summarize streams in
a sketch that can later answer multiple measurement tasks.
The SKTC compression approach can be generalized to such
sketches, while the analysis of the ideal resize factors can be
generalized to refer jointly to the accuracy of multiple tasks.

III. THE CM-SKTC COMPRESSION METHOD

We present a method that allows compressing any sized
CM (d,w) to any new size possible (d,w′) for w′ ∈ [1, w].
Let h1, . . . , hd be the hash functions used in original CM,
such that every function holds hi : {f1, f2, . . . , fm} 7→
{1, 2, . . . , w}, and let g1, ..., gd be hash functions such that
gi : {1, 2, . . . , w} 7→ {1, 2, . . . , w′} for every i. Algorithm 1
presents the CM-SKTC compression method.

The CM-SKTC compression method works as follows. For
each array Sc[j] in the sketch, the value of the l’s cell Sc[j][l] is
the maximum value over all cells in the corresponding array
of the original sketch S[j] that by the hash function gj are
hashed to the l’th cell (i.e. Sc[j][l]← max

i:gj(i)=l
{S[j][i]}).

An example for the compression process of CM-SKTC is
illustrated in Figure 4 where a CM-SKTC of size d = 2, w′ =
4 is computed for a CM of size d = 2, w = 6. Notice that the
method reduces the number of columns (rather than that of the
rows) since typically the number of rows is low beforehand,
as there is a need for a distinct hash function per row.

The query method (Algorithm 2) from CM-SKTC is similar
to the original CM query. When flow f estimation value
is required, for each array Sc[j] (where j ∈ [1, d]) find
the appropriate cell Sc[j][gj (hj(f))] (one in each array) and
return their respective minimal value.

Similar to the original CM and the MM [35], the CM-SKTC
method also generates only overestimation values.

Yang et al. [35] present error bounds for compressing the
CM when reducing w to some divider w′ (i.e., w = z · w′
for an integer z). The number of counters compressed to the
same counter is fixed as w/w′. Our CM-SKTC, however, maps
a variable number of counters to each counter using hashing.
This number can vary among the counters in an array or among

1 5 4 12 8 4 4 12 8 5

7 72 11 34 24 117

CM CM-SKTC

1 w = 6 1 w′ = 4

Figure 4. An example for Count-Min sketch (CM) (left side) compression
with CM-SKTC (right side). In this example, a CM of size d = 2, w = 6
is compressed into a CM-SKTC of size d = 2, w′ = 4. Values of the hash
functions g1, g2 are represented by various colors. In row i, multiple counters
with the same hash value of gi are represented by their maximum.

the arrays, thereby adding a taste of randomness. We now
analyze the error using this compression method.

Lemma 1 (Single Array compression error). Given a CM S
with d arrays, w counters per array, CM parameters (ε, δ),
and a CM-SKTC compression ratio w′

w < 1. Let N be the size
of the stream and denote by f̂i the estimation of flow with size
fi. Denote by β the term(
1−

(
1− 1

εw

)(
1− N

w(fi + εN)

) w
w′−1+

√
−2 ln(1−δ) w

w′
)d

.

The estimation f̂ of flow f satisfies

f̂ ≤ f + εN,

with probability 1− β − δ(1− β).

IV. THE TRAFFIC-AWARE CM IN MULTIPLE NODES

The system has to measure a stream of data that is split
in a distributed fashion across several ingestion nodes. Upon
stream ingestion completion, the nodes communicate with a
centralized server which can then answer queries. This is
depicted in Figure 1. Queries are agnostic to the specific
architecture, namely, they only refer to the complete stream
as a whole and do not refer to its parts observed by each
of the nodes. Assume that the channel between the nodes to
the centralized server has limited bandwidth. There is a clear
tradeoff between the summaries size sent to the server and its
ability to answer queries accurately. Accordingly, we would
like to optimally use compression to allow high accuracy.
MM [35] was suggested to reduce summary size through
compression of CMs maintained by the nodes but the fact
it can be compressed in only particular ratios restricts it from
taking advantage of all bandwidth to the server.

In real network traffic, flow size distribution among switches
can be imbalanced [23], [32]. For instance, the location
of nodes along paths of various lengths or employment of
particular network functions in the nodes can result in nodes
receiving a small portion of the network stream while others
more traffic. We leverage this skew to reduce the summaries
size sent to the server. Specifically, we aim to compress the
sketches sent by ingestion nodes that received a small portion
of the overall stream more than those sketches of nodes with
higher portions of traffic. We say that a sketch compression

from w columns to w′ columns has a compression ratio of
w′/w. As mentioned, the number of rows is not reduced.

The design of Traffic-Aware Count-Min Sketch (TA-CM)
is as follows: Given parameters (ε, δ), where ε is the desired
error, δ is the maximum error probability, we instantiate a
CM on every ingestion node with parameters (σ · ε, δ) for
some 0 < σ ≤ 1. 1

σ is an enlargement factor and is known in
advance to the ingestion nodes and the centralized server. We
increase the size of the sketch at the ingestion nodes by 1

σ and
as such decrease their respective error (as the error is tied to the
number of columns). By enlarging the sketches at the ingestion
nodes, we are able to compress them while maintaining an
error within the desired bounds. When the ingestion period
ends, the following protocol takes place:

(i) Each ingestion node reports to the central node its local
stream size.

(ii) The centralized server computes each ingestion node’s
compression ratio.

(iii) Every ingestion node compresses its CM with the CM-
SKTC method, then sends its summary to the centralized
server.

To achieve an overall maximum error of ε for an arbitrary
flow size estimation, the centralized server can (naively)
request a compression ratio of 1/σ. Theorem 1 shows that
when there are two ingestion nodes, there are optimal com-
pression ratios that minimize the total summaries size while
maintaining the error bounds of the flow size estimation in the
centralized server to be at most ε.

Theorem 1. For a given Count-Min sketch parameters ε, δ,
initial resize factor σ, and two CMs S1, S2, with stream
sizes of N1, N2 respectively, such that w.l.o.g N1 ≥ N2.
The TA-CM resize factors r1 = k+1

σ(k+
√
k)

and r2 = k+1
σ(
√
k+1)

for k = N1/N2 generate the minimal amount of network
communication such that the error is bounded by ε.

Intuitively, the proof is based on constraints that: (i) the
overall error be within the desired bounds, and (ii) the size of
sent traffic be smaller than the naive solution (i.e., less than
2 ·w ·d where w ·d is the size of a CM with parameters (ε, δ)).

As k increases the resize factor of S2 increases. This is
expected, as it has less of an impact on the answer to the
query. Note that the summaries size with the optimal resize
factors tends to half that of the summaries size sent in the
trivial case, therefore utilizing optimal resizing upon uneven
stream distribution leads to better usage of network bandwidth.

We now generalize the above result of Theorem 1 for two
nodes to the practical case of an arbitrary number of n nodes.
We again maintain error bounds within certain limits. The
proof is omitted for space constraints.

Theorem 2. Given are CMs Si, with stream sizes N1 ≥
N2 . . . ≥ Nn. Denote ki = Ni/Ni+1 for i ∈ [1, n − 1] and

kn = 1. The optimal TA-CM resize factors are

∀i ∈ [1, n− 1] : ri =
ci+1√
ki

and rn =

n∑
i=1

n∏
j=i

kj

σ(
n∑
i=1

n∏
j=i

√
kj)

.

V. THE TRAFFIC-AWARE KMV FOR CARDINALITY
ESTIMATION

We generalize the framework of minimizing sketch sum-
maries, and now present Traffic-Aware KMV (TA-KMV), a
method to compress the KMV sketch [4], [16]. As discussed,
the K-minimum-values sketch is a cardinality estimation
sketch. For the case of a single node KMV works as follows:
For every flow f1, ..., fm it generates hash value h1, ..., hm and
it saves the k smallest values - {h′1, h′2, ..., h′k}. The cardinality
estimation KMV generates is k

max
i∈[1,k]

{h′
i}

. Errors can include

over or underestimations of the cardinality and the average
error is 1√

k
. We again refer to the scenario from Figure 1

with nodes sending summaries to a centralized server through
a channel with bounded bandwidth.

A trivial solution has every node send its k minimal values,
resulting in a total number of n · k floating points numbers
sent over the network. We aim to better utilize the available
bandwidth in this case as well.

Our architecture for this distributed sketch is as follows:
Given parameter k, we instantiate KMV sketch on the ingestion
nodes with parameter k ln k, when the ingestion ends, the
following communication takes place:

(i) Ingestion nodes report their cardinality estimation size
to the centralized server.

(ii) The central server computes for each ingestion node i
its compression ratio ni.

(iii) Each ingestion nodes sends its ni minimal values to
the centralized server.

We suggest a heuristic of calculating compression ratios ni.
We are unable to provide closed form error bounds for this
heuristic. Instead, in Section VI, we show that this method
performs well in realistic scenarios.

The goal is for the centralized server to receive some group
of k flow hashes such that the group has as large overlap as
possible with the group of global k minimal flow hashes. The
method works as follows: let ei be the cardinality estimation
of server i, and let ri = ei

n∑
j=1

ej

be the server estimation ratio.

The compression ratios are ni = ri · k ln k. In this case the
total summaries size is:

n∑
i=1

ni =

n∑
i=1

k · ri · ln k = k ln k

n∑
i=1

ei
n∑
j=1

ej

= k ln k

The ln k factor is needed due to collisions – two nodes
i, j may receive the same flow with some small hash and
both send it. As the hash is only saved once, the centralized
node ends with less than k hashes. We consider the coupon

collector problem [6], [14] and its solutions, such that the
coupons are the k smallest hashes. For the centralized server to
have these smallest hashes (with high probability) all ingestion
nodes must send a total of at least k ln k values. The evaluation
shows that this method performs well in practical scenarios,
and also shows that one can change this ratio in order to
achieve a trade-off between precision and bandwidth usage.
Note that the coupon collector assumes each coupon is drawn
independently from a uniform distribution which is not the
case in our scenario. In the analyzed scenarios, the centralized
server generally ended with more than the k smallest hashes.

VI. EVALUATION

In this section, we evaluate the error bounds of both the
CM-SKTC, TA-CM, and the TA-KMV compression methods

A. Comparison of the CM-SKTC vs Maximum Merging Algo-
rithm

First, we compare the CM-SKTC to two different sketches.
(1) regular CM with d = 4 and varying total memory usage,
where each cell is 4 bytes. (2) Maximum Merging (MM)
of [35] with an initial 2 MB CM. The evaluation metric we
used is Average Relative Error (ARE), defined for a set of

flows {f1, ..., fn} as 1
n

n∑
i=1

|f̂i−fi|
fi

= 1
n

n∑
i=1

f̂i−fi
fi

where f̂i is

the estimated value of flow fi. Recall that only overestimations
can occur.

32641282565121,0242,048

0.01

1

100

Sketch Size (KB)

A
ve

ra
ge

R
el

at
iv

e
E

rr
or CM, variable size (no compression)

2MB CM (no compression)
CM-SKTC
MM [35]

1 1/2 1/4 1/8 1/16 1/32 1/64
Compression Ratio

Figure 5. Single node: Compression methods comparison

Figure 5 compares the different compression methods for
different sketch sizes. Traces evaluated in this figure have
∼35000 flows, and the blue-dashed baseline represents the
ARE of the 2 MB CM sketch that both compression methods
initiate from. One can observe that CM-SKTC outperforms
the two other methods consistently. Furthermore, as the com-
pression ratio decreases and the summary size increases, the
ARE improves, as expected.

In Figure 6 we depict the same comparison as Figure 5;
however the number of flows is ∼90000, and only to the 50
largest flows ARE in each trace are considered. In this graph,
one can observe that the top flows ARE is extremely low for
all methods. Moreover, the MM and CM-SKTC curves are
similar, and both have the same error as the 2MB sketch.

32641282565121,0242,048

Sketch Size (KB)

CM, variable size (no compression)
2MB CM (no compression)
CM-SKTC
MM

1 1/2 1/4 1/8 1/16 1/32
10−4

10−5

10−6

10−7

10−8

Compression Ratio
A

ve
ra

ge
R

el
at

iv
e

E
rr

or

Figure 6. Single node: Compression methods comparison - top 50 flows

In Table I we compare the time of both the compression
process and the query of the MM and CM-SKTC compression.
The MM is more time-efficient than the CM-SKTC compres-
sion. This is due to each hash being calculated twice (for the
insertion and for the compression), and therefore we expect
the CM-SKTC to be roughly twice as slow as the MM.

Measurement \ Method Maximum Merging CM-SKTC
Average query time 4.75 µs 10.2 µs
Compression time 0.119 s 0.561 s

Table I
TIMING COMPRESSION

From Figures 5 and 6, we deduce that the CM-SKTC
has two important traits: (1) CM-SKTC achieves estimations
within the required error parameters using smaller summaries,
and (2) For large (elephant) flows this error is negligible.

B. The TA-CM with two ingestion nodes (n = 2)

We now simulate two local nodes receiving a data stream of
size N , where the relation between the size of the data stream
N1 processed at the first node, and the size of the data stream
N2 at the second node is k = N1

N2
. We evaluate the effect of

k on the ARE.
Figure 7 depicts the ARE of merging two sketches when

sending different sizes over the network. We compare locally
building two sketches with error ε, such that they each have
size 1MB (meaning 2MB of data is sent over the network), and
building larger local sketches with error σε and compressing
them. We compare the trivial compression by factor 1/σ com-
pared to using our optimal resize factors, for

√
k = 3, 7, 10.

Note that our comparison shows that the error of resizing
using optimal factors falls in between the error of starting
with error ε and trivially compressing with error σε. Of great
importance is that even in the worst case the error is less than
ε. Table II compares the summaries size across the network. It
follows that there is a trade-off between the accuracy and the
summaries size. Figure 8 shows the ratio between summaries
size as a function of k, in relation to trivial compression.

In Figure 9 we show the results of compressing the same
base CM sketch as in Figure 7. However, in this simulation,
we compare the results when the total summaries size is 2MB,
i.e., the summaries account for 2MB of network traffic. In

2 4 8 16 32

0.125

0.25

0.5

CM Size (MB) in Each Ingestion Node

A
ve

ra
ge

R
el

at
iv

e
E

rr
or

Two 1MB CM MM
TA-CM k = 9 TA-CM k = 49

TA-CM k = 100

Figure 7. Two nodes: Compression methods comparison

20 40 60 80 100

0.6

0.8

1

1
0.5

Traffic Ratio between Ingestion Nodes
Su

m
m

ar
ie

s
Si

ze
s

R
at

io

Figure 8. Ratio between summaries size in multiple compression methods

Compression
Method

Summaries Size Sent
(% from max)

Maximum Merging 2 MB (100%)
TA-CM, k = 1 2 MB (100%)
TA-CM, k = 9 1.6 MB (80%)

TA-CM, k = 49 1.28 MB (64.3%)
TA-CM, k = 100 1.18 MB (59%)

Table II
COMPRESSION RATIO BY k

2 4 8 16 32

0.0313

0.0625

0.125

0.25

CM size (MB) in each ingestion node

A
ve

ra
ge

R
el

at
iv

e
E

rr
or

MM TA-CM k = 9

TA-CM k = 49 TA-CM k = 100

Figure 9. Two nodes: Compression methods comparison. Allowance of 2MB
sent from ingestion nodes to centralized server.

this case, we observe that the TA-CM ARE is better than the
MM ARE. TA-CM outperforms MM as it is traffic-aware and
considers the distribution across the nodes and calculates the
ratios accordingly; it helps to send the larger part of the data
from the node that handled the larger chunk of the stream.

C. The TA-CM with n ingestion nodes

2 4 6 8 10

0.05

0.10

0.15

0.20

Node Index

St
re

am
Si

ze
R

at
io

Linear
Exponential
Arctan
Const

Figure 10. n = 10 nodes: Stream size distribution over the nodes

To evaluate TA-CM in multiple-ingestion nodes scenarios,
we formulate four different types of distributions for 10 servers
(see Figure 10) and compare the TA-CM to MM and the non-
compressed CM sketch. The distributions were chosen such
that the ratio between the largest server ratio to the smallest
server ratio is 5 (i.e., N1/N10 = 5).

The CM sketch base size for each of the 10 servers is
32KB. We compare the ARE with multiple values of σ (i.e.,
the ratio by which the ingestion node CM sizes is increased)
and compressing with two methods: (1) TA-CM with ratios
computed in Section IV (2) MM compression with all ratios
are 1/σ. As depicted in Figure 11, TA-CM achieves similar
results in terms of ARE to the Maximum Merging compression
and improves the results of the basic non-compressed CM.
However, it does so while decreasing the total summaries size.
Table III indicates that the TA-CM saves between 7% to 9% of
the total summaries size for chosen distributions. This saving
ratio can be increased by choosing other, wider distributions
of the stream (for example if the stream distributes across the
ingestion nodes by Pareto distribution then TA-CM potentially
saves an even higher percentage).

Distribution
Summaries Size
(% from max)

Maximum Merging 320KB (100%)
Constant Dist. 320KB (100%)

Exponential Dist. ∼ 292KB (91.3%)
Linear Dist. ∼ 298KB (93.3%)
Arctan Dist. ∼ 293KB (91.6%)

Table III
COMPRESSION RATIO OF VARIOUS DISTRIBUTIONS

D. The TA-KMV for Cardinality Estimation

In this section, we evaluate TA-KMV. We use the same
method as in the previous section to generate the input stream.
However, for this section, we used only the linear distribution.
We compare our TA-KMV with multiple compression ratios.
The compression ratio is measured by Total Hash-values Sent
(THS). To the best of our knowledge, no compression scheme
is available for this sketch, and therefore we compare our
method only to the baseline, i.e., each ingestion node sends k
hash values to the centralized server. Our measurement unit is

64 128 256 512 1,024
2−12

2−11

2−10

CM size (KB) in each ingestion node

A
ve

ra
ge

R
el

at
iv

e
E

rr
or

10 CM (32KB) MM

Linear Dist. TA-CM Exponential Dist. TA-CM

Arctan Dist. TA-CM Arctan Dist. TA-CM

1/2 1/4 1/8 1/16 1/32
Compression Ratio

Figure 11. n = 10 nodes: Compression method comparison - various
distributions

the estimation precision rate to true cardinality. In this case, the
number of hash values that are sent to the centralized server
is n · k, where n is the number of ingestion nodes.

10 20 50 100 200
0.80

0.85

0.90

0.95

1.00

Nodes (n)

A
cc

ur
ac

y
R

at
e

TA-KMV, THS=k ln k
TA-KMV, THS=2k ln k
KMV - No Compression

Figure 12. TA-KMV vs baseline - ∼15000 flows, k = 1024

Plot
THS sent for 200 ingestion nodes

(% from max)
KMV - No Compression 204800 (100%)

TA-KMV, THS=k ln k 7098 (∼ 3%)
TA-KMV, THS=2k ln k 14196 (∼ 6%)

Table IV
RECORDS SENT FOR VARIOUS COMPRESSION METHODS

Figure 12 depicts the impact of the number of ingestion
nodes on the accuracy rate of TA-KMV. We define the
accuracy rate as Estimation

Flows . The streams measured in this figure
contain ∼15,000 flows. This figure indicates that when the
number of ingestion nodes across the network is relatively
small, the performance of TA-KMV is similar to that of the
baseline, but when the number of ingestion node increases
the accuracy rate decreases, as expected. This is due to the
increasing difference in total summaries sizes (O(nk) in the
no-compression case vs O(k ln k) in TA-KMV). This creates
a clear trade-off between the accuracy rate and the total
summaries size. In Table IV we show that although TA-KMV
accuracy slightly decreased, it saves more than 90% of the
total hash values sent over the network. It allows network
operators to decide whether they prefer to lose some accuracy
and increase the possible bandwidth over the network, or
increase the accuracy and pay more in management packets.

VII. CONCLUSION

In this paper, we presented the problem of merging data
from multiple measurement points to one centralized server,
described a distributed traffic-aware sketching scheme, and
applied it to two unique sketches. We presented the CM-
SKTC sketch as a simple, yet efficient method for compressing
the CM sketch to any desired size, then used this method to
generate TA-CM, a new scheme for flow-size measurements
that provides high accuracy and decreases the total summaries
size sent to the centralized server by considering the traffic
of each node. Finally, we analyzed these sketches under
multiple network settings and examined the trade-off between
the accuracy and the size of summaries.

Several directions can be the focus in future work. A
straightforward extension is developing compression algo-
rithms for additional kinds of sketches allowing different
measurement tasks (e.g., Quantiles for rank estimation [2]).
Likewise, we wish to design further compression of sketches
by leveraging existing generic compression techniques such as
Huffman codes, LZ77 or gzip [11], [22], [38].

VIII. ACKNOWLEDGMENT

This work was partially supported by the Technion Hiroshi
Fujiwara Cyber Security Research Center and the Israel Na-
tional Cyber Directorate, by the Alon fellowship, by German-
Israeli Science Foundation (GIF) Young Scientists Program,
by the Taub Family Foundation as well as and by the Polak
Fund for Applied Research, at the Technion.

REFERENCES

[1] Yehuda Afek, Anat Bremler-Barr, Shir Landau Feibish, and Liron Schiff.
Detecting heavy flows in the SDN match and action model. Computer
Networks, 136:1–12, 2018.

[2] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips,
Zhewei Wei, and Ke Yi. Mergeable summaries. ACM Transactions on
Database Systems (TODS), 38(4):1–28, 2013.

[3] Daniel Anderson, Pryce Bevan, Kevin Lang, Edo Liberty, Lee Rhodes,
and Justin Thaler. A high-performance algorithm for identifying frequent
items in data streams. In ACM Internet Measurement Conference, 2017.

[4] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca
Trevisan. Counting distinct elements in a data stream. In Interna-
tional Workshop on Randomization and Approximation Techniques in
Computer Science, 2002.

[5] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
Understanding data center traffic characteristics. ACM SIGCOMM
Computer Communication Review, 40(1):92–99, 2010.

[6] Arnon Boneh and Micha Hofri. The coupon-collector problem revis-
ited—a survey of engineering problems and computational methods.
Stochastic Models, 13(1):39–66, 1997.

[7] Graham Cormode. Sketch techniques for approximate query processing.
Foundations and Trends in Databases. NOW publishers, 2011.

[8] Graham Cormode, Minos Garofalakis, Peter J Haas, and Chris Jermaine.
Synopses for massive data: Samples, histograms, wavelets, sketches.
Foundations and Trends in Databases, 4(1–3):1–294, 2012.

[9] Graham Cormode and S. Muthukrishnan. An improved data stream
summary: The Count-Min sketch and its applications. J. Algorithms,
55(1):58–75, 2005.

[10] Mayur Datar and Piotr Indyk. Comparing data streams using hamming
norms. In International Conference on Very Large Databases (VLDB),
2002.

[11] Peter Deutsch et al. Gzip file format specification version 4.3. Technical
report, RFC 1952, May, 1996.

[12] Druid. Druid. https://druid.apache.org/blog/2014/02/18/hyperloglog-
optimizations-for-real-world-systems.html.

[13] Cristian Estan and George Varghese. New directions in traffic mea-
surement and accounting: Focusing on the elephants, ignoring the mice.
ACM Transactions on Computer Systems (TOCS), 21(3):270–313, 2003.

[14] William Feller. An introduction to probability theory and its applications.
1957.

[15] Philippe Flajolet and G Nigel Martin. Probabilistic counting. In IEEE
Annual Symposium on Foundations of Computer Science (SFCS), 1983.

[16] Frédéric Giroire. Order statistics and estimating cardinalities of massive
data sets. Discrete Applied Mathematics, 157(2):406–427, 2009.

[17] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. Network-
wide heavy hitter detection with commodity switches. In ACM Sympo-
sium on SDN Research (SOSR), 2018.

[18] Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross Teixeira,
S Muthukrishnan, and Jennifer Rexford. Carpe elephants: Seize the
global heavy hitters. In ACM Workshop on Secure Programmable
Network Infrastructure, 2020.

[19] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in
practice: Algorithmic engineering of a state of the art cardinality esti-
mation algorithm. In International Conference on Extending Database
Technology, 2013.

[20] Hillview. Hillview: A Big Data Spreadsheet.
https://research.vmware.com/projects/hillview.

[21] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao
Chen, and Gong Zhang. SketchVisor: Robust network measurement for
software packet processing. In ACM SIGCOMM, 2017.

[22] David A Huffman. A method for the construction of minimum-
redundancy codes. IEEE Proc. of the IRE, 40(9):1098–1101, 1952.

[23] Nanxi Kang, Monia Ghobadi, John Reumann, Alexander Shraer, and
Jennifer Rexford. Efficient traffic splitting on commodity switches. In
ACM CoNEXT, 2015.

[24] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen.
Sketch-based change detection: Methods, evaluation, and applications.
In ACM Internet Measurement Conference, 2003.

[25] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. FlowRadar: A
better NetFlow for data centers. In USENIX NSDI, 2016.

[26] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir
Braverman, Roy Friedman, and Vyas Sekar. NitroSketch: Robust
and general sketch-based monitoring in software switches. In ACM
SIGCOMM, 2019.

[27] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. One sketch to rule them all: Rethinking network
flow monitoring with UnivMon. In ACM SIGCOMM, 2016.

[28] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient
computation of frequent and top-k elements in data streams. In
International Conference on Database Theory, 2005.

[29] Presto. HyperLogLog in Presto: A significantly faster way
to handle cardinality estimation. https://engineering.fb.com/data-
infrastructure/hyperloglog/.

[30] Yahoo! Research. Apache DataSketches (Incubating).
https://incubator.apache.org/clutch/datasketches.html.

[31] Ori Rottenstreich, Pedro Reviriego, Ely Porat, and S. Muthukrishnan.
Avoiding flow size overestimation in the count-min sketch with bloom
filter constructions. IEEE Transactions on Network and Service Man-
agement (TNSM), 2021.

[32] Yaniv Sadeh, Ori Rottenstreich, Arye Barkan, Yossi Kanizo, and Haim
Kaplan. Optimal representations of a traffic distribution in switch
memories. In IEEE INFOCOM, 2019.

[33] Anshumali Shrivastava, Arnd Christian Konig, and Mikhail Bilenko.
Time adaptive sketches (ada-sketches) for summarizing data streams.
In International Conference on Management of Data, 2016.

[34] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan
Muthukrishnan, and Jennifer Rexford. Heavy-hitter detection entirely in
the data plane. In ACM Symposium on SDN Research (SOSR), 2017.

[35] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and
fast network-wide measurements. In ACM SIGCOMM, 2018.

[36] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic
measurement with OpenSketch. In USENIX NSDI, 2013.

[37] Zheng Zhang, Ming Zhang, Albert G Greenberg, Y Charlie Hu, Ratul
Mahajan, and Blaine Christian. Optimizing cost and performance in
online service provider networks. In USENIX NSDI, 2010.

[38] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on information theory, 23(3):337–
343, 1977.

