
Dynamic Real-Time Stream Reservation with TAS
and Shared Time Windows

Alexej Grigorjew, Nicholas Gray, Tobias Hoßfeld
University of Würzburg, Germany

{alexej.grigorjew | nicholas.gray | tobias.hossfeld}@uni-wuerzburg.de

Abstract—Motivated by new use cases such as industrial
automation and in-vehicle communication, Time-Sensitive Net-
working is further improving the layer 2 standards for real-time
communication in Ethernet networks. As periodic traffic is a
common requirement in such scenarios, the Time Aware Shaper
(TAS) is a highly popular mechanism that allows the realization of
real-time guarantees in synchronized networks. Most applications
in literature suggest to configure the TAS for full stream isolation
such that the lowest delays can be achieved. However, this “zero-
queuing” strategy requires a high amount of computational
resources and time, as the configuration of the gate control lists of
each port is a complex task, which is not suitable for scenarios
with dynamically changing requirements. This paper presents
a novel approach with shared time windows. In combination
with stream reservation techniques that are commonly applied
for asynchronous mechanisms, the network is able to accept
new streams during operation without complex reconfiguration,
while still benefiting from some degree of isolation compared to
conventional asynchronous shapers. The evaluation shows that,
given the right circumstances, the number of accepted real-time
streams can be improved significantly.

I. INTRODUCTION

Industrial automation has driven modern facilities to rely
on periodic synchronization of states between sensors, actors,
and programmable logic controllers (PLCs) for several years.
Typically, the transmission of these states has been conducted
by means of various types of bus systems, including controller
area network (CAN) and Profibus. These bus systems offered
cheap and simple means of data transmission, featuring dif-
ferent types of collision avoidance (Profibus) and collision
resolution (CAN) methods. As there is typically no queuing
involved, the implementation of real-time capabilities is simply
a matter of allocating bandwidth for each stream. Due to
their simplicity, busses have been adopted by other fields with
similar requirements, such as in-vehicle networks connecting
large amounts of sensors and actors within modern cars.

As technology advanced, these use cases also required more
effective bandwidth, and global collision domains without
queuing were no longer sufficient. For this reason, various
mechanisms based on Ethernet have been developed to enable
reliable data transmission with provable latency bounds, e.g.,
Profinet and EtherCAT. Providing latency guarantees in queued
networks is no trivial matter, hence these individual mech-
anisms have been developed with very different approaches
in mind, making them mutually incompatible. The working
groups IEEE Time-Sensitive Networking (TSN) and IETF

Deterministic Networking (DetNet) are working on a common
set of standards on the lower layers 2 and 3 to mitigate these
problems.

Time Aware Shaping (TAS) is one of these standards, and
part of IEEE 802.1Q [1]. It is based on a global synchroniza-
tion of clocks in each participating device. Based on these
clocks, each port of each network device receives its own
gate control list (GCL) that dictates which traffic classes are
allowed to send at which time. In general, it can be seen as a
priority based time division multiple access (TDMA) system.
As these GCLs are pre-configured and repeat periodically, they
are best suited to define transmission windows for periodically
synchronizing applications.

Among the TSN shapers, TAS is often mentioned to achieve
the lowest latencies [2], but this also implies that an optimized
configuration for each individual transmission window in the
entire network must be found. Global optimization requires
full knowledge of all streams in the network and a high amount
of computational resources and time [2], [3], which makes it
suitable only for static scenarios. Dynamic use cases, as often
envisioned for Industry 4.0, require a more flexible approach.
It should be possible to plug and unplug devices, and therefore
add and remove new streams at any time without effect on
established streams in the network [4].

Contribution: This paper is addressing this requirement
by transmitting periodic traffic in synchronized networks
with dynamically changing streams and topologies. It relies
on simple, pre-configured global time windows for multiple
classes of traffic, and a dynamic stream reservation process
that can accept new streams for these classes during operation.
Therefore, this work suggests a distributed admission control
system for new streams with a global TAS configuration, and
briefly evaluates its efficiency compared to other shapers. The
results show that shared TAS windows may be a feasible
alternative to competing asynchronous mechanisms, depending
on the specific scenario.

The remainder of this work is structured as follows. Sec-
tion II covers important background information and related
work. In Section III, the stream reservation process is ex-
plained, and an admission control mechanism is suggested
that checks whether the new reservation still fits into its time
window. A comparison of the efficiency of different distributed
reservation strategies including Strict Priority (SP, no shaping),
Asynchronous Traffic Shaping (ATS), and TAS is presented in
Section IV. Finally, Section V concludes the paper.ISBN 978-3-903176-39-3 © 2021 IFIP

TSpec: burst, rate, ...

talker adv.

listener sub.

d < δ

talker listener

Figure 1. Two step reservation process: talker advertisement with traffic
specification, and listener subscription with delay check.

II. BACKGROUND AND RELATED WORK

This section covers important background information that
is necessary to understand the concept and is not directly
related to timed gates. It includes the aspect of dynamic stream
reservation and the computation of latency bounds without
perfectly isolating the individual streams through the gates.

A. Distributed Reservation Process

The reservation process, as illustrated in Figure 1, follows a
publish-subscribe model. Talkers may indicate that they have
information to share by broadcasting a talker advertisement
in the local network. This advertisement includes the required
maximum latency and a traffic specification that specifies how
much traffic will be sent in an arbitrary amount of time.
This advertisement is received by switches in the network,
investigated by their firmware, and flooded to all ports that do
not exceed the required latency. Eventually, the advertisement
arrives at other end devices, which may in turn subscribe
for that data with a listener subscription packet. This packet
includes the same information as the initial advertisement and
travels back to the talker along the previous path. During this
process, each switch will once again investigate the packet and
calculate the current upper delay bound d for the requested
traffic class. If it is still below the pre-configured latency
guarantee δ, the new subscription is accepted by the switch
and forwarded along the path back to the talker. Finally,
the talker acknowledges the subscription to the listener and
starts to transmit its data. This procedure is more thoroughly
documented in IEEE standards 802.1Qat [5], 802.1Qcc [6]
(Stream Reservation Protocol), and 802.1Qdd [7] (Resource
Allocation Protocol).

Unlike typical optimization workflows, this process assumes
that the switches have already been pre-configured with their
latency guarantee δ for each supported traffic class. The precise
information of the streams and their traffic volume is only
available during operation, after the configuration has already
been performed. The reservation process is primarily used to
ensure that, from the available pre-configured resources (i.e.,
bandwidth and delay), a sufficient amount is still available
to support the new stream. The amount of additional worst
case latency that is inferred from including the new stream is
computed based on a distributed latency bound formula, which
is presented in the following section.

B. Distributed Worst Case Latency Computation

Given a pre-configured network with dynamic stream reser-
vation, streams cannot be fully isolated by timed gates as often
pursued. Instead, the impact of new streams on the existing

stream reservations is calculated, and an admission control
algorithm compares the currently computed latency bound
with the pre-configured guarantee, similarly to asynchronous
mechanisms. Some degree of isolation can still be achieved,
i.e., groups of streams can be established that only influence
each other within the same time window, reducing the overall
latency impact. The worst case latency bound within such a
group can still be computed based on the same model and
formula as the overall latency. This model is based on our
previous work [8] and is briefly explained here.

Given the link speed r and traffic specification of each
stream x, namely the burst size bx, the minimum interval
between two bursts (period) τx, and the maximum frame
length ℓ̂x, then the worst case upper bound for the per-hop
queuing and transmission delay of traffic class p is given by:

dp ≤
∑

x∈Hp

yp(x)bx
r

+
∑

x∈Ep

z(x)bx
r

+ max
x∈Lp

ℓ̂x
r

(1)

yp(x) = ⌈(accMaxDx − accMinDx + δp)/τx⌉ (2)

z(x) = ⌈(accMaxDx − accMinDx)/τx⌉ (3)

The sets Hp, Ep, Lp contain the streams from higher prior-
ities, the same priority p, and lower priorities respectively.
The functions yp(x) and z(x) indicate the number of bursts
from higher priority and equal priority streams x that cause
interference and increase the queuing delay of class p. Here, δp
represents the pre-configured latency bound of traffic class p,
and the accumulated latency fields (accMaxDx, accMinDx) are
distributed along with the traffic specification during resource
reservation. The maximum latency is the sum of all per-hop
guarantees δp along the path of the stream, while the minimum
latency is based on the minimum frame size ℓ̌x. For more
details and a proof of this worst case upper bound, refer to [8].

In this work, the general upper bound is adapted to work
with the synchronized TAS windows and to take its potential
for isolation into account.

C. Related Work

In general, related work regarding this paper is divided into
two categories. The first deals with global optimization of
static networks by careful configuration of all gate control
lists to achieve maximum isolation of streams, effectively
removing all interference. This is pursued with various op-
timization techniques, such as integer linear programming [3],
[9], [10] and satisfiability modulo theories solvers [11]. In
general, this category can be extended to include scheduling
approaches for other TDMA technologies, such as Profinet and
FlexRay [12]–[15]. In addition, some works consider heuristics
to find solutions for larger networks, and to adapt to changing
network conditions and requirements during operation [16],
[17]. In particular, the evaluation of [16] is based on observed
statistics of simulated scenarios rather than proven guarantees.
This indicates different optimization objectives in literature,
as most scheduling approaches are focused on providing the
lowest guarantees, or scheduling the largest number of streams.
The feasibility of finding valid schedules is mostly limited

by computational resources and, in the case of fully isolated
schedules, by available temporal resources to fit all time
windows.

The second category investigates the asynchronous com-
putation of worst case delays for a given situation, effec-
tively providing an upper bound guarantee. Unlike explicitly
scheduling the traffic classes to isolate individual streams,
these approaches do not actively alter the transmission be-
havior of their underlying shaper with their configuration, but
calculate the introduced additional delay instead. This is more
suitable for dynamic situations, as it is often less expensive
to compute this bound, while also being more bandwidth
efficient, since links are not exclusively opened or closed for
individual streams. However, the guarantees achieved by this
method are inherently not as strict as the scheduled alternative,
especially with respect to lower bounds and jitter.

These asynchronous approaches can be further split into
those that require full network-wide knowledge, and dis-
tributed approaches that can work with local information on
each switch. In both cases, the impact of one stream on the
latency guarantee of the other streams depends on the distance
it has already covered, since higher jitter also leads to a higher
potential for accumulating bursts [8]. Therefore, most existing
works in literature focus on a static computation with network-
wide knowledge of all streams, as this allows to take all
such effects into account. Examples include holistic worst case
calculations for AFDX [18] and AVB [19] networks, as well as
several applications of network calculus [20]–[23]. Distributed
per-hop latency computation with switch-local knowledge is
often challenging, as changes in the latency of one stream are
usually not propagated through the entire network, but they
are necessary to adjust the upper bounds of other streams.
As shown in Section II-B, this can be approached by using
pre-configured guarantees as upper bounds for the varying
latency on previous hops. If the same guarantee is being
enforced by the admission control algorithm, overestimation
is mitigated considerably [8]. Another approach is to prevent
the buildup of accumulated bursts in the first place, as pursued
by Asynchronous Traffic Shaping (ATS) [24], [25]. The per-
hop latency bound of ATS can be solely based on the end
devices’ original traffic specifications, which are shared with
all participating switches during reservation.

In general, work on distributed switch-local computation is
very limited. Therefore, to support dynamic use cases, this
work presents a switch-local upper latency bound for a pre-
configured TAS network with little complexity. It combines
asynchronous post-configuration admission control with some
degree of isolation (i.e., based on priority) provided by the time
aware shaper. This makes it suitable for dynamic scenarios
with periodic streams, while still accepting more streams than
fully asynchronous approaches.

III. SHARED GCLS IN DYNAMIC NETWORKS

Typically, TAS is used to provide full traffic isolation by
configuring the GCL of each port individually such that there
is only one frame in each queue at any given time. This

strategy requires solving a complex scheduling problem and
is often very bandwidth inefficient, as some ports must often
keep all gates closed to maintain frame isolation on the next
hop. Instead, this paper suggests to configure all GCLs in each
port equally, implying a single global configuration that is
copied to each GCL on each port of the network. This has
several implications:

(i) Finding a suitable scheduling for the network becomes
much more simple, as there are much fewer decisions to
be made. (ii) Frames are no longer fully isolated during
transmission, as multiple open gates send towards the same
destination at the same time. Multiple frames can be in the
queue at the same time. (iii) Time windows in GCLs are
now configured for end-to-end transmission instead of per-hop
transmission. The window size corresponds to the maximum
accepted end-to-end delay during reservation. When a time
window ends, all frames from that group must have arrived
at their destination. (iv) GCLs do not have to be reconfigured
when new streams are deployed in the network. The global
time windows are shared by all streams of a given priority.
If there is still room within that time window, new streams
can simply start to transmit after reservation. (v) As streams
no longer have exclusive time windows, they cause additional
latency for other streams in the same window. This additional
latency must be computed during reservation, and it must
be ensured that it does not exceed a previously configured
maximum latency during the reservation process. This way, the
upper latency bound remains deterministic. This computation
is addressed in Section III-B.

A comparison of typical TAS configurations and the sug-
gested global configuration is presented in Figure 2. The
example topology considers three streams with two different
priorities. In a typical configuration, each time window repre-
sents the transmission of a single, individual frame from each
stream. In contrast, the global configuration keeps all gates
open until each frame has arrived at its destination. Note that
this is only true for the configuration of switches. End devices
are only allowed to send at the very beginning of each time
window, to prevent new frames from being injected into the
network when the window is almost expired.

A. Parameters and Configuration

In general, gate control operations [1, Table 8-4] consist
of the desired state (open, closed) of the gates for each
traffic class, and a time interval after which the next gate
control operation is executed. The GCL of each port consists
of an ordered list of such gate control operations. After the
last operation has finished, the process repeats with the first
iteration.

Up to eight individual traffic classes can be supported by a
switch [1]. Without loss of generality, it is assumed that up to
four traffic classes are reserved for real-time transmissions, and
the other four represent different classes of Best-Effort traffic.
For each real-time traffic class, three major parameters must
be selected. (i) The frequency (or period) of each class must
be defined. This refers to the number of gate-open events in

sw1 sw2

dev2

dev1

dev4

dev3

(a) Example topology with 2 switches, 4
devices, and 3 streams.

[dev1, sw1]

[dev2, sw1]

[sw1, sw2]

[sw2, dev3]

[sw2, dev4]

(b) Typical TAS configuration in literature.

[dev1, sw1]

[dev2, sw1]

[sw1, sw2]

[sw2, dev3]

[sw2, dev4]

(c) Global TAS configuration for dynamic scenarios.

Figure 2. Parameter description by means of a small example. Blue streams have priority 7, green streams have priority 6.

a given amount of time, and to the interval between two open
time windows. (ii) The duration of the open time windows
must be defined. This duration is equivalent to the maximum
end-to-end delay of the given traffic class. (iii) The per-hop
delay of the given class must be defined at each hop. It must
be smaller than the entire time window, as the sum of all
per-hop delays must not exceed the end-to-end delay. A pre-
defined per-hop delay is required for the dynamic admission
control during stream reservation. Typically, this delay would
be selected based on the expected load. Thus, trunk links
between two switches would be configured with bigger delays,
while links towards end devices receive stricter guarantees.

For example, in Figure 2c, both windows are open for
4.5 ticks. Both windows are configured to be large enough
for the entire end-to-end transmissions of all streams. In real
scenarios, these windows would be configured larger to allow
new stream reservations during network operation. The per-
hop delay guarantees are 1 tick for blue streams (priority 7)
at end devices, 2 ticks for blue streams between the switches,
and 1.5 ticks for green streams (priority 6) at each port.

Typically, these parameters can be selected by looking at
the scenario’s requirements. Streams with similar requirements
can be grouped a priori, and each group can be assigned to a
traffic class. Then, the minimum period of a group defines
the frequency of its class, the minimum required end-to-
end latency of the group indicates the window size, and the
maximum number of hops indicates the fraction of the window
size that is used as pre-defined per-hop delay.

Note that, sometimes it may be necessary to open gates for
two priorities at the same time, for example if the window
size of one class exceeds the period of another class. In this
case, streams of both classes are no longer isolated from each
other and are part of the same group during the computation
of the latency bound for admission control.

B. Distributed Latency Computation with TAS

Similarly to typical TAS configurations, it is assumed that
end devices are also synchronized and are able to adapt
their transmission behavior to the global network cycle. The
delay of a frame is only considered from the moment it is
being transmitted, not when the actual data in the end device
emerges, i.e., the time from “data available” to “time window
begins” is not considered. In addition, due to overlapping
schedules, time windows cannot always be reopened periodi-
cally after exactly one period, but must sometimes be slightly

shifted. This is in accordance with most other approaches, but
it should be kept in mind during practical application.

Based on the latency model from Section II-B, switches
with up to eight individual priorities and corresponding FIFO
queues are considered. The individual streams are now divided
into different groups by defining per-priority global time
windows. Therefore, the sets Hp, Ep, Lp from Equation 1
contain fewer streams and the latency bound is improved.
In the best case, if time windows do not overlap and guard
bands after Best-Effort time windows exist, the only set that
must be considered is Ep containing equal-priority streams:
dp ≤

∑
x∈Ep

bx/r. If there are no such guard bands, lower
priority transmissions can generally be considered by the time
it takes to transmit a single largest frame, including overhead:
ℓ̂MTU = 1542 bytes. If time windows do overlap, different
priorities must be considered as presented in Equation 1.
However, only such priorities that actually do overlap with the
observed class p are relevant. These priorities are later referred
to as latency group. Note that Equation 1 only covers queuing
and transmission delays. During productive application, prop-
agation delay, processing delay, and inaccuracies due to the
precision of time synchronization must also be considered.

During network operation, new stream reservations are
issued as described in Section II-A. This reservation includes
a requested priority and a requested end-to-end delay. If the
end-to-end delay exceeds the window size, it is trimmed to this
size. During reservation, at each hop, the new latency bound dp
is calculated according to Equation 1 under consideration of
the latency group. This bound dp is then compared to the
configured per-hop guarantee δp. If it does not exceed this
guarantee, the reservation is forwarded to the next hop. At the
destination, the sum of all per-hop delays, which is contained
in the accMaxD field in the reservation packet, is compared to
the requested end-to-end delay and the window size. If every
test has passed, the reservation is acknowledged and the device
may transmit its frames at the beginning of each respective
time window.

IV. EVALUATION

The key performance indicator for the configuration of a
real-time network is the number of real-time streams that can
actually be supported. This configuration includes the used
shaping mechanism, the per-hop guarantees, and the time win-
dows for each priority in case of TAS. Therefore, this section
presents a brief comparison of two different configurations for
various shapers in two topologies, highlighting when a global

transm.interv=τ1 topo=linear transm.interv=τ1 topo=tree transm.interv=τ2 topo=linear transm.interv=τ2 topo=tree

ats sp tas ats sp tas ats sp tas ats sp tas

0

200

400

600

shaper

n
u
m

b
e
r

o
f
a
c
c
e
p
te

d
 s

tr
e
a
m

s
priority

8

7

6

5

Figure 3. Mean number (and 95% confidence intervals) of accepted streams for various transmission intervals and shapers with distributed stream reservation.

Table I
PROPERTIES OF ALL 4 CLASSES USED FOR THE EVALUATION.

Prio. Per-hop Window Period Latency Period Latency
p delay δp size τ1 group 1 τ2 group 2

8 40 µs 200 µs 1ms {8, 7, 6, 5} 4ms {8, 5}
7 200 µs 1ms 5ms {7, 8, 5} 10ms {7}
6 400 µs 2ms 10ms {6, 8} 20ms {6}
5 800 µs 4ms 50ms {5, 8, 7} 80ms {5, 8}

TAS configuration with shared time windows may actually
outperform competing asynchronous methods.

Two types of topologies are considered here. The first is a
linear topology consisting of 7 consecutive switches in a row.
Each switch is connected to 5 end devices, each link has a
bandwidth of 1Gbit/s. The second topology is a binary tree
with a depth of 3 and 7 switches in total. On the leaves, all
4 switches are connected to 5 end devices. For both topologies,
streams with random properties perform reservations in a
simulated environment, and all accepted streams are recorded.
The simulation continues until 10 streams of each traffic
class have been rejected, as soon as they exceed the latency
guarantee and all resources are exhausted. The total number
of accepted streams is reported as performance indicator.

The generated streams belong to one of four traffic classes
{8, 7, 6, 5}. Each stream has a random source and random
destination node in the entire network. To keep the config-
uration simple, the maximum hop count is limited to 6. The
key properties of each traffic class are reported in Table I.
For example, each stream with priority 8 has a per-hop delay
guarantee of 40 µs for all switch ports, and an end-to-end
delay guarantee of 200 µs. This end-to-end guarantee is also
configured as the window size for this traffic class. Each class
has two different configurations for the transmission interval
(period) τ . In the first configuration, all four classes send their
frames more frequently, e.g., the first period configuration of
traffic class 6 is 10ms. In the second configuration, periods
are higher, therefore frames are transmitted less frequently,
and there is more temporal space between two consecutive
time windows of the same priority.

The available temporal space between two consecutive time
windows is an important information for the GCL configura-
tion. When the time between two windows is not sufficient

to schedule all other time windows that are required in that
context, some time windows must overlap in order to receive
a valid schedule. For example, it is impossible to place a
time window for priority 5 with duration 4ms between two
consecutive time windows of priority 8 with period 1ms,
therefore these two priorities must share a time window and
are part of each other’s latency group. Details of finding a
valid schedule are omitted here, as the optimization of this
configuration is beyond the scope of this paper. However, it is
necessary to know the overlapping groups of priorities in order
to compute their latency bound correctly. Table I includes the
pre-computed latency groups of all traffic classes based on a
simple greedy algorithm. In the second configuration where
periods are higher, these groups are smaller. In fact, only
classes 8 and 5 overlap in the second configuration, while
classes 7 and 6 can be fully isolated, respectively. It is expected
that the second configuration is more suitable for the shared
TAS mechanism.

Three shapers are compared: shared TAS, reservation with
Asynchronous Traffic Shaping (ATS, Equation 21 from [24]),
and reservation with Strict Priority (SP) transmission selection
(Equation 1, based on [8]). The results of the performed
stream reservation simulations are reported in Figure 3. Both
types of topologies behaved very similarly, therefore they are
discussed together in the following. In general, priority 8
accepted the lowest number of streams due to very strict
latency requirements. In addition, ATS and SP performed very
similarly because bursts do not accumulate if the delays are
smaller than the periods. Note that ATS has previously been
shown to perform significantly better than SP if end-to-end
delays are bigger than the periods [8]. Here, delays must be
smaller to achieve feasible time window configurations.

In configuration 1, TAS was able to accept more streams
from priority 8 than SP and ATS. In particular, TAS benefits
from guard bands that protect real-time traffic from lower
priority Best-Effort transmissions. The additional priority 8
streams have a bigger impact on the other latency bounds
than the lower priority Best-Effort traffic would have. As a
result, the amount of accepted streams from other priorities in
the same group is significantly reduced, as more streams from
the highest priority strongly affect their latency bounds. If this
behavior is not desired, further measures must be applied that

prevent over-reservation by individual traffic classes.
In configuration 2 with period τ2, the results for SP and

ATS are very similar. Due to slightly lowered bandwidth
requirements induced by higher periods, both mechanisms
were able to accept slightly more streams in general. However,
due to the fully isolated time windows of priority 6 and 7,
TAS has been able to accept significantly more streams in
each traffic class, both compared to configuration 1 and to the
other shaping mechanisms. This shows that using timed gates
in conjunction with asynchronous reservation techniques can
improve the efficiency of real-time networks with dynamic use
cases, given that the scenario and transmission periods allow
an efficient isolation of different classes of traffic.

V. CONCLUSION

This paper presented a novel approach to use the Time
Aware Shaper from Time-Sensitive Networking standards for
dynamic use cases. Unlike traditional approaches that focus
on full stream isolation for the lowest latencies, the presented
shared time window mechanism is able to adapt to dynamic
changes in streams and requirements without the need for
reconfiguration. Therefore, it does not require complex and
time-consuming optimization of gate control lists in the entire
network. Instead, it is based on a stream reservation pro-
cess similarly to asynchronous technologies that allows new
streams to be introduced during network operation.

The evaluation shows that, given the right circumstances,
timed gates can still isolate groups of traffic even when shared
time windows are used. Compared to other mechanisms suited
for dynamic stream reservation, TAS could accept significantly
more streams if the transmission periods were large compared
to the window sizes. In such scenarios, TAS presents itself as
a feasible alternative to the asynchronous shapers.

There are still possibilities for improvement in the current
mechanism. The latency bound can be improved further when
more information is shared with the control plane and higher
computational capacity is available. The configuration of time
windows and per-hop delays can be optimized for specific
types of traffic patterns. Finally, GCL configurations could be
slightly shifted along a non-circular path in the network to
allow higher end-to-end delays without changing the actual
window size on an individual switch. These optimizations are
subject of future work.

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Network – Bridges
and Bridged Networks”, IEEE Std 802.1Q (Revision of IEEE Std
802.1Q-2014), 2018.

[2] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M.
Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks: The
ieee tsn and ietf detnet standards and related 5g ull research”, IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 88–145, 2018.

[3] S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling
real-time communication in ieee 802.1 qbv time sensitive networks”,
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 183–192.

[4] J. Dorr, Requirements IEC/IEEE 60802, Contributions to IEC/IEEE
60802 TSN Profile for Industrial Automation, 2018. [Online]. Avail-
able: https : / / www. ieee802 . org / 1 / files / public / docs2018 / 60802 -
industrial-requirements-1218-v12.pdf.

[5] “IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks – Amendment 14: Stream Reservation Protocol
(SRP)”, IEEE Std 802.1Qat, 2010.

[6] “IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks – Amendment 31: Stream Reservation Proto-
col (SRP) Enhancements and Performance Improvements”, IEEE Std
802.1Qcc, 2018.

[7] “IEEE Standard for Local and Metropolitan Area Networks – Bridges
and Bridged Networks – Amendment: Resource Allocation Protocol
(RAP)”, IEEE Std P802.1Qdd, 2019.

[8] A. Grigorjew, F. Metzger, T. Hoßfeld, J. Specht, F.-J. Götz, F. Chen,
and J. Schmitt, “Bounded latency with bridge-local stream reservation
and strict priority queuing”, in 2020 11th International Conference on
Networks of the Future (NoF), IEEE, 2020.

[9] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl, “Ilp-based joint routing and scheduling for time-triggered
networks”, in Proceedings of the 25th International Conference on
Real-Time Networks and Systems, 2017, pp. 8–17.

[10] N. G. Nayak, F. Durr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks”, IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075, May
2018. DOI: 10.1109/tii.2017.2782235.

[11] R. S. Oliver, S. S. Craciunas, and W. Steiner, “Ieee 802.1 qbv gate
control list synthesis using array theory encoding”, in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
IEEE, 2018, pp. 13–24.

[12] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet io irt message
scheduling with temporal constraints”, IEEE Transactions on Industrial
Informatics, vol. 6, no. 3, pp. 369–380, 2010.

[13] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll, “Static
scheduling of a time-triggered network-on-chip based on smt solving”,
in 2012 Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE, 2012, pp. 509–514.

[14] P. Pop, P. Eles, and Z. Peng, “Schedulability-driven communication
synthesis for time triggered embedded systems”, Real-Time Systems,
vol. 26, no. 3, pp. 297–325, 2004.

[15] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and A.
Sangiovanni-Vincentelli, “Scheduling the flexray bus using optimiza-
tion techniques”, in 2009 46th ACM/IEEE Design Automation Confer-
ence, IEEE, 2009, pp. 874–877.

[16] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M.
Reisslein, and H. Elbakoury, “Performance comparison of ieee 802.1
tsn time aware shaper (tas) and asynchronous traffic shaper (ats)”, IEEE
Access, vol. 7, pp. 44 165–44 181, 2019.

[17] Z. Pang, X. Huang, Z. Li, S. Zhang, Y. Xu, H. Wan, and X. Zhao,
“Flow scheduling for conflict-free network updates in time-sensitive
software-defined networks”, IEEE Transactions on Industrial Infor-
matics, vol. 17, no. 3, pp. 1668–1678, 2020.

[18] J. J. Gutiérrez, J. C. Palencia, and M. G. Harbour, “Holistic schedula-
bility analysis for multipacket messages in afdx networks”, Real-Time
Systems, vol. 50, no. 2, pp. 230–269, 2014.

[19] X. Li and L. George, “Deterministic delay analysis of avb switched
ethernet networks using an extended trajectory approach”, Real-Time
Systems, vol. 53, no. 1, pp. 121–186, 2017.

[20] K. Lampka, S. Bondorf, and J. Schmitt, “Achieving efficiency without
sacrificing model accuracy: Network calculus on compact domains”, in
2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS),
IEEE, 2016, pp. 313–318.

[21] A. Bouillard, “Algorithms and efficiency of network calculus”, École
Normale Supérieure, 2014, Habilitation thesis.

[22] A. Bouillard and É. Thierry, “Tight performance bounds in the worst-
case analysis of feed-forward networks”, Discrete Event Dynamic
Systems, vol. 26, no. 3, pp. 383–411, 2016.

[23] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus: Design and evaluation of an accurate
and fast analysis”, Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 1, no. 1, p. 16, 2017.

[24] J. Specht and S. Samii, “Urgency-based scheduler for time-sensitive
switched ethernet networks”, in 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS), Jul. 2016, pp. 75–85.

[25] “IEEE Standard for Local and Metropolitan Area Networks — Bridges
and Bridged Networks — Amendment: Asynchronous Traffic Shap-
ing”, IEEE 802.1Qcr, 2020.

