
Enabling self-verifiable mutable content items in
IPFS using Decentralized Identifiers

Nikos Fotiou, Vasilios A. Siris, George C. Polyzos
Mobile Multimedia Laboratory,

Department of Informatics School of Information Sciences and Technology
Athens University of Economics and Business, Greece

{fotiou,vsiris,polyzos}@aueb.gr

Abstract—In IPFS content identifiers are constructed based on
the item’s data therefore the binding between an item’s identifier
and its data can be deterministically verified. Nevertheless, once
an item is modified, its identifier also changes. Therefore when
it comes to mutable content there is a need for keeping track
of the “latest” IPFS identifier. This is achieved using naming
protocols on top of IPFS, such as IPNS and DNSlink, that map
a constant name to an IPFS identifier, allowing at the same time
content owners to update these mappings. Nevertheless, IPNS
relies on a cryptographic key pair that cannot be rotated, and
DNSlink does not provide content authenticity protection. In this
paper, we propose a naming protocol that combines DNSlink and
decentralized identifiers to enable self-verifiable content items.
Our protocol provides content authenticity without imposing
any security requirement to DNSlink. Furthermore, our protocol
prevent fake content even if attackers have access to the DNS
server of the content owner or have access to the content owner
secret keys. Our proof of concept implementation shows that our
protocol is feasible and can be used with existing IPFS tools.

Index Terms—decentralization, delegation, privacy, self-
sovereignty.

I. INTRODUCTION

Modern communication systems often try to provide content
integrity and authenticity protection. By protecting content
integrity, a content item recipient can verify that the received
item has not been modified during transmission, whereas by
protecting authenticity, a recipient can verify that the received
item is indeed the requested item. Although content integrity
can be easily provided, content authenticity protection is a
more challenging problem that even commonly used com-
munication systems, sometimes, fail to provide (e.g., Apple’s
iMessage lack of content authenticity verification allowed
attackers to send messages on behalf of legitimate users [1]).

The InterPlanetary File System (IPFS) [2] achieves content
integrity and authenticity protection by using content iden-
tifiers (CIDs) based on the content’s cryptographic hash. A
user can request a content item from the IPFS network by
providing the item’s CID; then she can easily verify that the
received item is indeed the requested one simply by applying
the same hashing algorithm. Nevertheless this approach has the
drawback that whenever an item is modified, its CID changes
also. In order to support mutable items IPFS natively supports
two “overlay” naming solutions that allow users to find the

“current” CID of an item: the InterPlanetary Name System
(IPNS) [3] and DNSlink [4].

A. InterPlanetary Name System (IPNS)

The InterPlanetary Name System (IPNS) uses public key
digests as content names. An IPNS name is mapped to a record
that includes “information” that can be used for retrieving an
item from the IPFS network. Such information could be the
CID of the item, another IPNS name, or a DNSlink name
(we discuss DNSlink names in the following subsection): this
information is referred to as the item’s address. These records
are stored inside the IPFS network, they can be retrieved using
standard IPFS tools, and they can be modified by the holder
of the corresponding private key (e.g., in cases they concern
mutable items).

IPNS provides content authenticity by signing its records
with the private key that corresponds to the IPNS name. On
the other hand IPNS does not allow key rotation; content
owners should maintain a key pair for each IPNS name: the
hash of the public key is the name and the private key is
used for signing the associated record. In case the private
key is lost or breached, the content owner loses control of
the corresponding record. Furthermore, this limitation of IPNS
impedes content storage delegation. Consider for example the
case of a service that ‘hosts’ dynamic web pages in IPFS
using IPNS. This service would be responsible for keeping
up-to-date the corresponding IPNS record. If the site owner
decides to change hosting service she cannot be sure that a)
the current hosting service will reveal to the site owner the
private key associated with the IPNS name, and b) the current
hosting service will erase that private key.

B. DNSlink

DNSlink uses domain names, usually prefixed with the
string “ dnslink” as content names. A DNS record for a
DNSlink name is an ordinary TXT record that includes an
item’s address. Even if the address is an IPFS CID, DNSlink
can be still used for mutable items, providing that every time
an item is modified the DNS record of its DNSlink name is
updated accordingly. Therefore, the retrieval of an item based
on a DNSlink name requires at least a DNS resolution.

DNSlink can take advantage of all features of DNS in order
to improve content availability (e.g., cached DNS records,ISBN 978-3-903176-39-3 c© 2021 IFIP



example.com

ns1.hosting.com

…
_dnslink.item1.example.com NS ns1.hosting.com

…
_dnslink.item1.example.com TXT “dnslink=…” 

Fig. 1. Delegation using DNSlink.

multiple DNS server, use of 3rd party DNS services with
greater availability, and others). Moreover, content delegation
can be easily achieved by adding a Name Server (NS) record
for the DNSlink (sub)domain in the content owner’s DNS
server, which will point to a DNS server owned by the
delegatee: in the hosting service scenario, the hosting service
DNS will become the Name Server of the corresponding
DNS record; when the site owner decides to change hosting
service she can simply modify the DNSlink domain record in
her DNS server to point the DNS server owned by the new
hosting service. An example of this process is illustrated in
Figure 1. In this example, content owner “example.com” has
delegated the item “item1.example.com” to the hosting service
“hosting.com”. For this reason the corresponding record in
the “example.com” DNS server maps to a Name Server that
belongs to “hosting.com”.

On the other hand, DNSlink relies on the security of DNS
to provide content authenticity: an attacker can modify the
mapping from a DNSlink name to the actual items stored in
the IPFS network by either having access to the DNS server
where the DNSlink record is stored, or by intervening to the
DNS resolution process.

C. Contributions

In this paper we propose a solution that uses decentralized
identifiers (DIDs) as content names and leverages DNSlink
to map a DID to an IPFS CID. A DID is new type of
self-administered, globally unique identifier [5]. Due to the
intriguing security and privacy characteristics of the DID
paradigm, many research efforts investigate the potential of
using DIDs for improving the security and privacy of emerging
technologies. Chadwick et al. [6] propose the integration
of DIDs and Verifiable Credentials with FIDO Universal
Authentication Framework (UAF) in order to provide safer
and more private online account management. DIDs are also
considered for improving the security and privacy of IoT
systems (e.g., [7], [8], [9], [10]). Davie et al. [11] propose a
four-layer architectural stack, based on DIDs, for establishing
trust between peers over the Internet and other digital net-
works. Lagutin et al. [12] investigate the application of DIDs
and Verifiable Credentials into the OAuth 2.0 authorization

process. Finally, Munoz [13] discusses the advantages of an
integration of eIDAS and DIDs.

A DID can be treated as an opaque string which is associ-
ated with a public-private key pair. The latter key pair is used
in our solution for signing (and verifying) some content item
metadata, which are then used as a proof of authenticity. Com-
pared to DNSlink, our solution achieves content authenticity
protection without making any assumption about the security
of DNS, by sacrificing however human readability. As opposed
to IPNS, signed records in our solution are attached to the
items themselves, hence items can be retrieved as long as
the DNS service is available. Additionally, and contrary to
IPNS, the signing key pair can be rotated, or even re-used for
many items, without needing to change the corresponding DID
(which is used as the name of the mutable item). The latter
property facilitates key management and makes our solution
more resilient to key breaches. Finally, our solution enables
content storage delegations and it can be used with existing
IPFS tools.

The remainder of this paper is organized as follows. In
Section 2 we introduce DIDs and we detail our DID-based
naming system. In Section 3 we present implementation details
of our solution and we analyze its security properties. Finally,
in Section 4 we discuss future extensions of our work and we
conclude our paper.

II. SYSTEM DESIGN

A. Decentralized Identifiers and the did:self method

Decentralized Identifiers (DIDs), defined by W3C, are a
new type of globally unique identifier designed to enable
individuals and organizations to generate their own identifiers
using systems they trust [14].

A DID architecture can be regarded as a key-value lookup
system, where the key is the Decentralized Identifier (DID)
and the value is a DID document. A DID document includes,
among other things, public keys that can be used as verification
methods. For example, a DID document may include public
keys that can be used for authenticating the DID owner,
public keys that can be used for verifying digital signatures
generated by the owner, and other related information. Usually,
a DID document is maintained by a DID registry which
is responsible for implementing proper security and access
control mechanisms. Registries allow 3rd parties to lookup
DID documents and they provide proofs of correctness (e.g.,
a proof can be a digital signature generated by the registry).

DID specifications do not dictate the actual contents of
a DID document, neither define how a registry operates.
Instead these are left as design choices to individual DID
instantiations, also referred to as DID methods. Our system
uses a DID method known as did:self [15].

A key property of did:self is that it does not require any
trusted registry. DID owners are responsible for disseminating
their DID documents by themselves, e.g., by directly transmit-
ting them to interested parties, or by storing them in a Web
server: did:self assures that a DID document is ‘correct’ even
if is retrieved over an unsecured channel.



A did:self-based DID is a base64url [16] encoded Ed22519
public key [17] prefixed with the string “did:self:”, e.g.,

did:self :6D0RjXZfW58v4DGt...Kzn9fghX94LvrMDxo

A DID document in did:self is a JSON-encoded file that may
include any of the properties defined by the DID specifications.
Our solution uses the following properties:

• id: The DID which the document concerns.
• assertion: An Ed22519 public key expressed using

the “JsonWebKey2020” notation [18].
The assertion key is used for generating digital signatures

on behalf of the DID owner. An example of a DID document
is included in the following listing. As it can be seen, line
1 includes the DID, and lines 3-10 define the assertion key,
which is in essence the JSON web key representation [19] of
an Ed22519 public key (lines 7-9).

1 {
2 “id”: “did:self:6varD0Rj...”,
3 “assertion”: [{
4 “id”: “#key1”,
5 “type”: “JsonWebKey2020”,
6 “publicKeyJwk”: {
7 “crv”: “Ed25519”,
8 “x”: “7wJkufDc...”,
9 “kty”: “OKP”

10 }
11 }]
12 }

Listing 1. An example of a DID document used in our solution.

Additionally, each DID document is associated with a proof
which is a the compact serialization of a JSON Web Signature
(JWS) [20]. The payload of the proof is a JSON string that
includes the following properties:

• id: The DID.
• created: The date and time when the proof was gen-

erated.
• expires: An optional expiration time.
• sha-256: The base64url encoded hash of the DID

document, calculated using SHA-256.
The signature of the proof is generated using EdDSA and

the private key that corresponds to the DID. This proof is
used for validating the binding between a DID document and
the corresponding did:self DID. In particular any entity can
trivially verify that a DID document is valid by executing the
following steps:

1) Verify that the DID is included in the id property of
the proof.

2) Verify that the digest of the DID document is the same
as the sha-256 property of the proof.

3) If the expires property is set, make sure that the proof
has not expired.

4) Verify the signature of the proof using did:self DID (it
is reminded that a did:self DID is a public key).

DID Document Proof Metadata Item Data

{
“id”:<DID>,
“assertion”: {

<public key>
}

}

{
“id”:<DID>,
“created”:”…”,
“expires”:”…”,
“sha-256”:”…”

} 
<signature>

{
“name”:<DID>,
“sha-256”:”…”

}
<signature>

[bytes]

Verifies

HashHash

CID

Verifies

Fig. 2. A self-verifiable content item.

B. Self-verifiable content items

Using did:self we can construct self-verifiable content items
in the sense that given an item name and its data, any entity can
verify whether or not these data are the “real” data of the item.
This verification is achieved without relying on any trusted
third party. Such a self-verifiable content item is constructed
as follows.

Initially, a content owner generates a self:did DID, and the
corresponding DID document and proof. The DID is used as
the content name. The generated DID document includes a
public key (i.e., the assertion property), which is used for
signing some metadata. These metadata are a JSON string
that includes two properties: the content name and the content
sha-256 digest. The final self-verifiable content item is a
bundle that includes the DID document, the proof, the signed
metadata, and the item itself. The latter bundle is published
in IPFS and receives an IPFS content identifier (CID): if any
of the elements of this bundle is modified the corresponding
IPFS CID is also modified accordingly. Figure 2 illustrates
an example of a self-verifiable content item. As it can be
seen the DID is used for verifying the signature of the proof,
and the assertion key is used for verifying the signature of
the metadata. Furthermore, the hash of the DID document is
included in the proof and the hash of the item data is included
in the metadata.

An assertion key can be re-used for signing the metadata
of multiple items. A content owner can rotate assertion keys
simply by changing the DID document and modifying the
proof accordingly (since by changing the assertion key the
hash of the DID document also changes). Of course the
updated self-verifiable item must be “re-added” to the IPFS
network and receive a new CID.

In order to map the generated DID (which is used as the
content name) to the corresponding IPFS CID of the self-
verifiable item we are using DNSlink. In particular the content
owner creates in her DNS server a TXT record that maps
the public key part of the did:self DID to the appropriate
content address. For simplicity reason we are assuming that
this address is an IPFS CID, but all other address types can



be used as well. Every time the CID of the item is modified
(e.g., the item data changes, or the assertion key is rotated)
the corresponding DNS record is updated. Therefore in order
for a third party consumer to locate a content item stored in
IPFS using our naming system, he must know the DID of
that item and the domain name of the content owner. Given
this information the consumer can retrieve the corresponding
content item and verify its authenticity using the process
described in the following.

Initially, the consumer performs a domain name resolution
and retrieves the appropriate DNS record: that record is
eventually translated into an IPFS CID. Then, the consumer
retrieves the item that corresponds to the CID from the IPFS
network. The consumer extracts the DID document and the
proof, and verifies the validity of the DID document by
executing the procedure described in the previous section. If
the DID document is valid the content authenticity can be
verified by executing the following steps.

1) Verify that the name property of the metadata includes
the did:self DID.

2) Verify that the sha-256 property of the metadata includes
the digest of the item’s data.

3) Verify the metadata signature using the key included in
the assertion property of the DID document.

An overview of this process is illustrated in Figure 3. In
particular, this figure illustrates the steps required to retrieve
and verify an item from the IPFS network, using a did:self-
based name stored under the “mmlab.edu.gr” domain. It should
be noted that except from the verification step, all other steps
are transparently executed by the IPFS client application. As
it can be seen, initially a DNS resolution is performed and the
DNSlink record is retrieved. The self-verifiable item’s CID is
extracted from the record and the item is retrieved from the
IPFS network. Finally, the authenticity of the item is verified
using the information included in the item itself.

C. Content storage delegation

We are now revisiting the “hosting service” scenario pre-
sented in Section 1. Since our solution builds on DNSlink,
content storage delegation can also be achieved by replacing
the TXT record of a DNSlink domain with a NS record that
points to a DNS server controlled by the hosting service.
Nevertheless, and since we are focusing on mutable items,
the hosting service needs to be able to sign the metadata
of the self-verifiable item whenever the item is modified.
Thanks to the use of DIDs this can be easily and securely
achieved as follows. The hosting service generates (or re-
uses) a key pair which can be used for singing-verifying
metadata signatures. The content owner generates a new DID
document that includes in the assertion property the public key
of the hosting service. Then, the content owner sends the DID
document and the proof to the hosting service. The hosting
service has not to (and cannot) modify the DID document
or the proof; it has only to include then in the self-verifiable
content items. Nevertheless, since the public key of the hosting

TABLE I
CRYPTOGRAPHIC OPERATIONS REQUIRED BY OUR SYSTEM AND THEIR

OVERHEAD.

Operation Time (ms)
Key pair generation 46

DID document and proof generation 2.7
JSON web signature calculation and serialization 0.7

DID document verification 1.5
JSON web signature verification 0.2

service is included in the DID document, the hosting service
can generate valid metadata signatures.

When the content owner decides to change hosting service,
she has simply to modify the DNSlink record in her DNS
server: the old hosting service cannot anymore “disseminate”
the CID of the self-verifiable items. Furthermore, a content
owner may set the expiration property in the proof of the
DID document sent to the hosting service. Therefore, the (old)
hosting service not only it will not be able to disseminate CIDs
but also, from a point on it will not even be able to generate
valid self-verifiable content items.

III. IMPLEMENTATION AND EVALUATION

We have used the Python3 implementation of did:self.1

Metadata are signed using JSON web signatures and they are
serialized accordingly. This functionality is implemented using
the JWCrypto library.2 SHA-256 hashes are calculated using
Python’s hashlib library. Our self-verified item “generator”
script can either generate by itself a did:self DID, and the
corresponding DID document, proof, and assertion key, or
these can be provided as input by the content owner. This
script also receives as input an existing file. Then the script
calculates the metadata, generates a digital signature, and
creates a new file which includes a line with the serialized
DID, DID document, proof, metadata, and metadata signature,
followed by the contents of the input file. This new file is the
self-verified version of the input file, and it is then added in
IPFS.

During the lifecycle of a self-verifiable item the following
cryptographic operations have to be performed. For the cre-
ation of the DID a user has to generate an Ed22519 key pair, a
DID document, and the corresponding proof. Additionally, she
has to sign the metadata property. For the item verification a
user has to verify the DID document using the provided proof,
as well as the signature of the metadata property.

Table 1 shows the time required (in ms) to perform the
cryptographic operations of our system, as measured in a
desktop PC running Ubutnu 18.04, on an Intel i5 CPU, 3.1Ghz
with 2GB of RAM. As it can be seen most operations are
executed in less than 3 ms.

When it comes to storage overhead, Table 2 shows the size
in bytes of the various components of a self-verifiable content
item. It should be noted that the size of these components is
constant and it is not affected by the size of the item data.

1https://github.com/mmlab-aueb/did-self-py
2https://jwcrypto.readthedocs.io/en/latest/



dig +short _dnslink.m4dfve8xsa-ss7arg7plrubzz5sq0jbrn6sgsmok24q.mmlab.edu.gr TXT

dnslink=/ipfs/QmVitvRs9FmNr75jbvPxKHUJVPxHPijp6b3jzQdDuFVGdc

ipfs cat /ipfs/QmVitvRs9FmNr75jbvPxKHUJVPxHPijp6b3jzQdDuFVGdc

{DID Document}{Proof}{Metadata}[data]

DNS Resolver

IPFS

{DID Document}{Proof}{Metadata}[data]verify

Consumer

Fig. 3. Retrieving a self-verifiable content item with DID did:self:m4dfve8xsa-ss7arg7plrubzz5sq0jbrn6sgsmok24q stored under the domain mmlab.edu.gr

TABLE II
SIZE IN BYTES OF THE COMPONENTS OF A SELF-VERIFIABLE CONTENT

ITEM.

Component Size (bytes)
DID document 400

Proof 420
Metadata + Signature 134 + 110

A. Security evaluation

Our system is secure against attackers that have access to
the metadata signing key (i.e., the assertion key), but cannot
intervene to the DNS resolution process. An attacker that has
access to the assertion key of an owner can generate fake
items. However since the attacker does not have access to the
DNS server of the content owner he cannot disseminate the
fake items. In any case, a content owner can periodically rotate
her assertion keys and use the expires property of the DID
document proof. Then, a breached assertion key can be used
only for a limited time.

An attacker that can intervene in the DNS resolution pro-
cess, but does not have access to the metadata signing key, can
only redirect consumers to a fake item or to an old version
of the requested item. Both cases are DoS attacks, with the
latter having bigger impact since it cannot be easily detected
by a consumer, whereas in the former case the consumer will
detect that the received item is fake.

The “old version of an item” attack can be mitigated by
creating a “freshness” indicator and having the consumers
rejecting items or DNS replies that are “old”. In the former
case (rejecting old items) a timestamp can be added to the
metadata property of the self-verifiable content item. In the
second case, a timestamp can be added to the DNSlink TXT
records and have that record signed with the assertion key. In
both solutions the timestamp must be updated periodically by

the content owner no matter if the item has been modified.
Although the first solution may appear simpler, it should be
noted that every time the timestamp included in the metadata
property is updated, the self-certified item must be “re-added”
to IPFS network and receive a new CID, then the correspond-
ing DNSlink record must be updated accordingly.

IV. DISCUSSION AND CONCLUSIONS

In this paper we proposed a method for generating self-
verifiable content items in IPFS. Our solution supports mutable
content items and leverages DNSlink to provide a mapping be-
tween the content name and its current IPFS content identifier
(CID).

The main reason for selecting DNSlink to implement the
latter mapping is compatibility with existing IPFS tools. In-
deed, using the available IPFS command line interface, any
user can retrieve a self-verifiable item from the IPFS network.
Alternatively, our solution could have been implemented using
IPNS as follows: the did:self DID would be the IPNS name,
and the IPNS record would include, in addition to the content
address, the DID document, the proof, and the singed meta-
data; then the record would be signed using the “assertion”
key of the DID document. Using this approach, IPNS can be
extended to support key rotation.

Our solution achieves content authenticity protection with-
out making any security assumption about the security of
DNSlink (and of DNS in general). In order to achieve this
property it sacrifices human readability. A trade-off between
usability and security could be the use of human readable
names and the application of the “trust on first use” principle.
In particular our solution can be modify to use human readable
domain names that include a DNSlink record that “points”
to the record of the actual did:self-based DNSlink name.
Assuming that the first time a client makes a DNS resolution



for the human readable name learns the correct DNSlink
record, and that this record is cached permanently, human
readable domain names can be safely used.

The presented solution does not take full advantage of
the did:self method. The did:self method supports the notion
of “controllers” which are in essence entities authorized to
make modifications the DID document. Using controllers it is
possible to rotate the keys used for signing a DID document
proof, to use the same key for signing multiple DID document
proofs, as well as to securely delegate DID management to a
3rd party. Similarly, in the presented solution the assertion key
is a public key but it can be as well a self:did DID. In that
case, self-verifiable content items must additionally include the
DID document and the proof that corresponds to the assertion
DID. What we gain is that in scenarios such as our hosting
service example, it will be possible for the hosting service to
rotate its metadata singing keys without needing a new DID
document from the content owner.

Finally, although the work on this paper is focused on IPFS,
self-verifiable content items can be used in other systems
as well. For instance, the project “Self-Certified Names for
Named-Data Networking” [21] experiments with a similar
approach in the context of Information-Centric Networking
paradigm. But even legacy systems could benefit from our
solution. For example, we believe that our approach can be a
more secure alternative to the “subresource integrity” HTML
tag that is used for protecting the integrity of web resources
loaded from a CDN; this tag suffers from the same limitation
as the CID IPFS identifier: every time the stored resource
is modified all web pages must change the integrity tag to
the correct value. By storing the resources in a self-verifiable
format the integrity tag is not required any more and the stored
resources can be securely modified.

ACKNOWLEDGMENT

This work was supported by a contract with the Waterford
Institute of Technology under Article 15 of Grant Agreement
number 871582 for financial support to third parties of EU
H2020 project NGIatlantic.eu, a Research & Innovation Action
in the field of Next Generation Internet, and by a grant
from Protocol Labs Inc. on “Multi-Level DHT Design and
Evaluation for IPFS.”

REFERENCES

[1] C. Garman, M. Green, G. Kaptchuk, I. Miers, and M. Rushanan,
“Dancing on the lip of the volcano: Chosen ciphertext attacks on apple
imessage,” in 25th USENIX Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, 2016, pp. 655–672.

[2] J. Benet. (2014) IPFS - content addressed, versioned, P2P file system.
[Online]. Available: http://arxiv.org/abs/1407.3561

[3] Protool Labs. (2021) InterPlanetary Name System (IPNS). [Online].
Available: https://docs.ipfs.io/concepts/ipns/

[4] Protocol Labs. (2021) DNSLink - linking content and services with
dns. [Online]. Available: https://dnslink.io/

[5] W3C Credentials Community Group. (2019) A primer for decentralized
identifiers. [Online]. Available: https://w3c-ccg.github.io/did-primer/

[6] D. W. Chadwick, R. Laborde, A. Oglaza, R. Venant, S. Wazan, and
M. Nijjar, “Improved identity management with verifiable credentials
and fido,” IEEE Communications Standards Magazine, vol. 3, no. 4, pp.
14–20, 2019.

[7] R. Ansey, J. Kempf, O. Berzin, C. Xi, and I. Sheikh, “Gnomon:
Decentralized identifiers for securing 5g IoT device registration and
software update,” in 2019 IEEE Globecom Workshops (GC Wkshps),
2019, pp. 1–6.

[8] G. Fedrecheski, J. M. Rabaey, L. C. P. Costa, P. C. Calcina Ccori, W. T.
Pereira, and M. K. Zuffo, “Self-sovereign identity for iot environments:
A perspective,” in 2020 Global Internet of Things Summit (GIoTS), 2020,
pp. 1–6.

[9] Y. Kortesniemi, D. Lagutin, T. Elo, and N. Fotiou, “Improving the
privacy of iot with decentralised identifiers (dids),” Journal of Computer
Networks and Communications, vol. 2019.

[10] S. Terzi, C. Savvaidis, K. Votis, D. Tzovaras, and I. Stamelos, “Securing
emission data of smart vehicles with blockchain and self-sovereign
identities,” in 2020 IEEE International Conference on Blockchain
(Blockchain), 2020, pp. 462–469.

[11] M. Davie, D. Gisolfi, D. Hardman, J. Jordan, D. O’Donnell, and D. Reed,
“The trust over ip stack,” IEEE Communications Standards Magazine,
vol. 3, no. 4, pp. 46–51, 2019.

[12] D. Lagutin, Y. Kortesniemi, N. Fotiou, and V. A. Siris, “Enabling
decentralised identifiers and verifiable credentials for constrained iot
devices using oauth-based delegation,” in Proceedings of the Workshop
on Decentralized IoT Systems and Security (DISS 2019), in Conjunction
with the NDSS Symposium, San Diego, CA, USA, vol. 24, 2019.

[13] C. Munoz. (2019) SSI and eIDAS: a vision on how they are connected.
[14] W3C Credentials Community Group. (2019) Decentralized identifiers

(dids) v0.13. [Online]. Available: https://w3c-ccg.github.io/did-primer/
[15] N. Fotiou. (2021) did:self method specification. [Online]. Available:

https://github.com/mmlab-aueb/did-self
[16] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,”

Internet Requests for Comments, IETF, RFC 4648, October 2006.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc4648.txt

[17] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of cryptographic engineering,
vol. 2, no. 2, pp. 77–89, 2012.

[18] W3C Credentials Community Group. (2019) Did method registry.
[Online]. Available: https://w3c-ccg.github.io/did-method-registry/

[19] M. Jones, “JSON Web Key (JWK),” Internet Requests for
Comments, IETF, RFC 7517, May 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7517

[20] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature (JWS),”
Internet Requests for Comments, IETF, RFC 7515, May 2015. [Online].
Available: https://tools.ietf.org/html/rfc7515

[21] Mobile Multimedia Laboratory. (2021) Self-Certifying Names for
Named Data Networking (SCN4NDN) project home page. [Online].
Available: https://mm.aueb.gr/scn4ndn/


