IPLS: A Framework for Decentralized
Federated Learning

Christodoulos Pappas
University of Thessaly
chrpappas @uth.gr

Dimitris Chatzopoulos
HKUST
dcab@cse.ust.hk

Abstract—The proliferation of resourceful mobile devices that
store rich, multidimensional and privacy-sensitive user data mo-
tivate federated learning, a paradigm that enables mobile devices
to produce a machine-learning model without sharing their data.
However, the majority of the existing federated frameworks
follow a centralized approach. In this work, we introduce IPLS, a
fully decentralized federated learning framework that is partially
based on the interplanetary file system (IPFS). By using IPLS
and connecting into the corresponding private IPFS network,
any party can initiate the training process of a machine-learning
model or join an ongoing training process that has been started
by another party. IPLS scales with the number of participants, is
robust against intermittent connectivity and dynamic participant
departures/arrivals, requires minimal resources and guarantees
that the accuracy of the trained model quickly converges to that
of a centralized federated learning framework with a negligible
accuracy drop of less than 1%.

Index Terms—machine learning, federated learning, interplan-
etary file system, mobile computing

I. INTRODUCTION

Federated learning (FL) is a recently proposed machine
learning (ML) paradigm that allows parties holding potentially
privacy-sensitive data to collectively train a model without
having to disclose their local data to a third party [1]. The most
prominent example is Google Keyboard that uses metadata
from users’ typing to propose next words or to auto-correct
typed words, while preserving user privacy [2].

Conventional FL. works in a centralised way, whereby a
single server orchestrates the training process. More specif-
ically, the server determines the type of the model (e.g., a
deep neural network) to be trained as well as the loss function
and optimisation algorithm to be used (e.g., stochastic gradient
descent [3]), registers agents that wish to participate in the
training processes and records their contact information in
order to be able to communicate with them directly, randomly
samples a subset of the agents for the next training round,
sends to each of these agents the most updated values of the
global model parameters, and aggregates the individual agent
contributions in order to update the global model parameters
that will be used in the next training round.

The choice of the model, loss function and algorithm as
well as the registration of the interested agents, are done
as part of an initialisation process, which takes place before

ISBN 978-3-903176-39-3© 2021 IFIP

Manolis Vavalis
University of Thessaly
mav @uth.gr

Spyros Lalis
University of Thessaly
lalis@uth.gr

the actual training starts. The training process, depicted in
Figure 1a, takes place in rounds, until the global parameters
converge. In each round, the chosen agents receive the global
parameters from the server, execute the optimisation algorithm
for a predetermined period (specified in time units or number
of iterations) using only their locally stored (private) data.
When the period expires, each agent calculates the difference
between the locally trained model and the global model that
was received from the server, and reports this difference back
to the server.

It is obvious that this approach introduces a single point of
failure and any unavailability of the central server may disrupt
the training process. Also, the server needs to have reliable
and high-bandwidth communication links with the agents
in order to support the transfer of potentially voluminous
data with all of them. Additionally, a server with access to
individually trained models may be able to extract privacy-
sensitive information [4]-[6].

An alternative is to use a decentralised approach where the
participating agents train the model while relying only on their
own resources and without sharing all the model parameters
with a single agent. In such a decentralised version of FL,
illustrated in Figure 1b, the agents train a model in a peer-to-
peer fashion, without the assistance of a server. Any agent can
initiate the training process by specifying the model, the loss
function and the training algorithm to be used. Then, interested
agents may register and participate in the training process.

In contrast to the centralised approach, where only the server
is responsible for storing, updating and broadcasting the model
to the participating agents, in decentralised FL, the model
is split in multiple partitions that are replicated on multiple
agents. For example, a model using a neural network of 100
layers [7] can be split in 10 partitions of 10 layers each. As a
result, each agent is responsible for storing a part of the model,
updating the corresponding parameters and communicating
them to the agents working on the other partitions.

Also note that multiple agents may be responsible for
the same partition of the model, in which case, after each
training round, they ideally need to synchronize in order to
agree on the same values, by running a suitable aggregation
protocol [8]. However, this synchronization may introduce
significant delays, especially when the connections between
the agents are not reliable. For this reason, in this work, we
consider more relaxed, asynchronous aggregation protocols

| @
| |
‘ FedAvg ® e

®) o % &

@ @ @ e

2

QD
(next iteration) -——;—:—d-—-—} Q
w
(

7
\ @
ﬁ(” n @
@

6 5
o — n
» §(3)_A

e o

(a) Centralised FL.

— o

:J (=575 28
h \\ o @) 'm
m o K= 6o o 0]

e 1
R o)
FedAvg ® o | o0 FedAvg e »
(5) d) s
£ 28 e o0 | e 5% 3
L 6_85 & o] & o 8 0] S o o o]
(0) K

ok ‘ ; 2
< & e B
2) ‘ / O\ ~(3)
PEC @ ﬂ j&i@@
W o o0 o
=0

(b) Decentralised FL.

Fig. 1: In centralized FL (a), each agent sends the updated model to the server, the server produces the new model, and begins
a new training phase. In IPLS (b), each agent is responsible for some partitions of the model and agents interact with a limited
number of other agents by exchanging partitioned gradients or model updates.

that do not require (full) synchronization after each round.
We show that this does not impact significantly the accuracy
of the trained model.

Contributions. Inspired by the design and functionality of the
Interplanetary File System (IPFS) [9], this paper introduces a
decentralized FL framework, named Interplanetary Learning
System (IPLS)!, which allows a large number of agents to
collaborate in the training of a model without relying on any
central entity. The main contributions are: (i) We propose a
new approach towards fully decentralized and scalable FL.
(ii) We completely relax the synchronization requirements
between agents by the use of asynchronous stochastic gradient
descent (SGD), without this having a negative effect on the
accuracy of the trained model. (iii) We present a concrete
implementation, in the form of a middleware atop IPFS, which
can be used through a structured API by anyone who wishes
to train an ML model, without having to employ a centralized
service. (iv) We evaluate our implementation via a series of
simulation experiments, showing that it achieves very good
accuracy and convergence compared to a centralized approach.

Why IPFS. We build our implementation on top of IPFS,
which allows devices of any type to exchange files without the
requirement of a having a direct persistent connection between
them. This way, the agents participating in an IPLS-based
training process can communicate, indirectly by uploading and
downloading files into IPFS. As part of our future work we
intend to further improve IPLS by exploiting additional IPFS
services (e.g., IPNS, CRDTs) as well as to examine other
alternatives such as gossip learning protocols.

The rest of the paper is structured as follows: Section II
introduces IPLS in detail. In Section III, we evaluate the
performance of IPLS. Section IV compares IPLS to related

IThe current implementation of IPLS is publicly available here:
https://github.com/ChristodoulosPappas/IPLS-Java-API

work. Finally, Section V concludes the paper and points to
future research directions.

II. INTERPLANETARY LEARNING SYSTEM

The design of IPLS is based on two assumptions in order
to guarantee four desirable properties.

Assumptions. We assume that any agent that participates
in the training of a model using IPLS may get temporarily
disconnected from its peers or unilaterally decide to terminate
and depart from the ongoing training process to save resources.
This may happen at any point in time. However, we assume
that agents remain disconnected only for a while, unless they
exhibit a permanent failure or leave the training process.

Properties. We design IPLS in such a way to guarantee the
following properties:

Convergence. The global parameters of the trained model
converge to a fixed set of values. Also, the accuracy of the
resulting model is close to that of a model trained in a
centralised fashion with the same data.

Scalability. The produced traffic increases sub-linearly to
the number of participating agents. Moreover, the number of
participants does not affect the total amount of data that needs
to be sent/received over the network by each individual agent.

Lightweight storage requirements. Besides the local (pri-
vate) data each agent owns and uses during training, IPLS
itself requires relatively little extra space in order to store part
of the model during the training process.

Fault-tolerance. Even if some of the agents leave unex-
pectedly, the training process terminates successfully without
harming convergence.

A. Training a model with IPLS

Given a model M with weight parameters W, and a set of
agents A with each agent a; € A owning a private dataset d;,

Symbol Meaning Symbol Meaning

M model w model parameters

K partitions W parameters in partition k

d; dataset of agent a; ki partitions stored by a;

T min partitions per agent p max replications per partition

TABLE I: Notation table.

we next describe how IPLS trains M in a decentralised way.
The introduced notation is summarized in Table I.

Initialisation phase. Any agent can initiate the training pro-
cess by determining the characteristics of M, i.e, the topology
of the model (e.g., ResNet [7]), an optimisation algorithm, and
a loss function that will be used to optimise the weights W
of M. IPLS uses the pub/sub module [10] of IPFS to notify
agents about the initialisation of a training process and invite
them to express their interest.

Model partitioning and distribution. Depending on the
model size, W can be split into partitions that are assigned
to different agents. Each agent can be assigned multiple
partitions. In addition, the same partition can be replicated
on multiple agents. Formally, let W be split into K partitions,
W = U,iil wy. Also, let k; denote the partitions that have
been assigned to agent a,. Note that a; and a; can be assigned
non-disjoint partitions, k; N k; # . The distribution of the
partitions is based on two tuning parameters 7 and p, for the
minimum number of partitions an agent can store and the
maximum number of times a partition can be replicated, re-
spectively. In the beginning, the agent that initiates the training
process stores all the partitions. When a new agent joins, she
gets 7 partitions from the agent that is currently responsible
for the most partitions. If there are several such agents, the
new agent selects the 7 least replicated partitions. Model
partitioning and assignment occur as part of the initialisation
phase. Once this completes, each agent knows which agents
are responsible for each partition and their addresses.

Partitioning example. Agent a; initiates the process with
K = 6 partitions, let k; = {1,2,3,4,5,6}, It also sets 7 =4
and p = 2. When agent as joins, it will store 4 partitions, let
ks = {3,4,5,6}, while a; remains responsible for partitions
k1 = {1,2,3,4}. Next, agent az joins and stores partitions
ks = {1,2,5,6}. Any other agent that wishes to participate
will not be considered as it is of no use. This is because p = 2
and all partitions have already been (fully) replicated twice.

Training phase. During the training phase each agent a; € A
initially contacts a sufficiently large subset of agents so as
to be able to collect all global parameters. The number of the
contacts depends on the number of the partitions stored locally
and the rest of the partitions needed in order to have the whole
model. Next, the agent uses the locally stored data, d;, the
predetermined optimisation algorithm and the loss function to
update the model parameters by running the algorithm for a
given number of iterations. Finally, the agent calculates the
difference between the locally updated parameters and the
global values received before starting the training round, and

informs the contact agents responsible for each partition (not
stored locally). In turn, these agents receive the individual local
updates from several other agents, calculate, and send back the
new corresponding global parameters of the model.

The impact of 7. The value of 7 determines the degree of dis-
tribution for the partitions and the amount of communication
that needs to take place among the agents for the partitions
that are not stored locally. For example, if # = 1 and p = 1,
each of the K partitions will be assigned to a different agent
(assuming a sufficient number of participants), and at the end
of a training round every agent needs to communicate with
the rest of the K — 1 agents in order to inform them about its
local updates and receive the corresponding global parameters
from them. In the extreme case where 7 = K and p = 1, all
partitions will be assigned to a single agent that will become
the equivalent of a centralized server.

The impact of p. Larger values of p increase robustness:
whenever an agent for a given partition is not available,
the other agents can get the corresponding updated global
parameters from any other agent that is responsible for it.
Furthermore, having more agents responsible for the same
partition, distributes the load of receiving and processing
corresponding local updates. For example, if p = 2 then each
agent responsible for a given partition will receive updates
from only half the agents. However, this increases the amount
of communication between the agents used to replicate a given
partition in order to reach a consensus about the corresponding
new global parameters. Ideally, all replicator agents should
synchronize with each other, after each training iteration, to
produce a consistent global update for this partition before
this is disseminated to the other agents. IPLS relaxes this strict
synchronization requirement. More specifically, an agent waits
to synchronize with its peer replicators only for a configurable
amount of time. After this timeout, the agent proceeds with
the dissemination of the global update and the next iteration
as usual. Delayed synchronization messages that arrive out of
context, are ignored.

Scalability and storage requirements. The data sent and
received by each agent is constant because on each commu-
nication round it sends and receives data of at most of the
size of the model. Assuming p = 1 and K partitions of equal
size (i.e., |lwi| = ... = |wg| = w), each agent a; sends
to every other agent a; an update of size k; x w. Thus, the
differences (gradients) send by agent a; after each training
round are of size datai = 3., kj x w = (K—k;)xw < W.
The same holds for the received updates data]. Thus, the
total amount of data each agent a; exchanges with other
agents in each round is dataj + data; < 2 x W. It follows
that the total amount of data communicated in each round is
> = datai + data] < 2 x |A| x W, which is the same
volume as in conventional centralized FL. As the value of
p increases and the same partition is replicated on a larger
number of agents, each agent communicates with fewer agents
in order to receive gradients and send back the respective
updates. However, the agents that store the same partition

Algorithm 1: Operation of agent a; € A using the
IPLS primitives.

IPLS.Init(filepath, bootstrapper)

while accuracy < Threshold do
M + IPLS.LoadM odel()
AW « M. fit(d;, SGD)
IPLS.UpdateModel(AW)

end

need to exchange additional synchronization messages for the
calculation of the global partition parameters. In terms of
storage, IPLS has lightweight requirements as agents only need
to store the models in which they participate in their training.

B. IPLS API

IPLS is build atop IPFS [9], a fully decentralized peer-to-
peer file system with a pub/sub functionality that assists agents
on communicating with each other. IPLS offers an API of four
methods: Init, Update Model, LoadM odel and Terminate
Algorithm 1 shows how the first three methods are used during
the training of the model. The fourth method is used only when
the agent wishes to quit the training process prematurely.

First, the agent invokes the IPLS Init method. This ini-
tializes the IPFS daemon, retrieves the model M, the loss
function, 7, p and the optimisation/training algorithm to be
used, and broadcasts the local communication addresses via
the pub/sub service of IPFS. It then waits for responses from
already participating agents, containing their communication
addresses and the partitions for which they are responsible.
Once responses have been collected from a sufficient number
of agents, the method selects the partitions for which the
local agent will be responsible for, and communicates this
information to all other participants. Finally, a daemon is
started that take care of all the interactions that occur in the
background while the agent is busy training the model.

Before starting the next training iteration, the agent needs
to call the LoadM odel method in order to retrieve the cur-
rent model. In the very first invocation, this call returns the
model that is retrieved during initialiation. In all subsequent
invocations, it returns the updated local model, which is
combined with the global updates that were received from
agents responsible for the corresponding partitions at the end
of the previous training round.

At the end of each training iteration, the agent calls the
UpdateModel method in order to update the local model.
For each partition, a lookup is performed to find agents that
are responsible for it. There can be many criteria for choosing
the suitable agent, such as locality, connectivity, trust, load
and energy. The current implementation does not employ any
such optimization criterion, but can be extended to do so. After
selecting the appropriate agents for each partition, a request is
sent to each one of them, containing the partition identifier and
the gradients sub-vector that resulted from local training, and
a reply is received with the updated global sub-vector that is

used to update the local sub-vector of the model. Each agent
also performs the necessary actions for the partitions which
is responsible. More specifically, upon receiving a gradient
update Oy, for partition k, the corresponding model parameter
wy, is updated by subtracting the gradient with a weight factor
€ and send back to the agent, to wy, < wy — € X dg. Also, the
weight factor itself is updated according to the number r of
local gradient updates received, to € <— o x € + (1 —a) x 1,
where « € (0,1) set during the initialization phase.

Finally, when an agent wishes to stop participating in the
model training process, it calls the T'erminate method. As
a result, IPLS uploads to IPFS a file containing the model
partitions for which the leaving agent was responsible along
with the current global parameters. It then looks up for other
agents that could assume these responsibilities, and broadcasts
a message with the corresponding partition assignment. Upon
receiving such message, these agents update the partitions
for which they are responsible, download the corresponding
partition parameters and aggregate them with their own local
weights in order to form a new global sub-vector. Note that this
is done in the background, and any changes in the partitioning
are communicated to the application layer of the agent the next
time it invokes the LoadM odel method.

III. PERFORMANCE EVALUATION

We have conducted various experiments to examine the
performance of our implementation. In this Section, we present
the experimental setup and discuss the results of indicative
experiments in terms of model training convergence, fault-
tolerance and scalability.

A. Setup

For the simulation of the connectivity between the agents
we use mininet*. Each mininet node is an agent that uses IPLS
in order to participate in the training of a model. Additionally,
we set up a private IPFS network where every node runs as
part of an IPLS agent.

We use the MNIST dataset [11] that contains 60000 images
of digits that are categorised in 10 classes (i.e., 0 —9). We use
MNIST to train a four-layer (785 x 500 x 100 x 10) neural
network that can classify an image that contains a digit. We
split MNIST into |.A| parts, with uniformly distributed labels
and assign to each agent a; a dataset of d; = 60000/|A]
samples. For instance, when using 10 agents, each agent stores
6000 samples and the probability of each such sample to
belong to a particular class is the same for every agent.

B. Experiments

Model training convergence. First, we examine the con-
vergence of the model training process when using IPLS
(decentralized) vs conventional (centralized) FL, for three
scenarios with 10, 25 and 50 agents. In these experiments, we
set 7 =1 and p = 1. Figure 2a depicts the accuracy increase
as a function of the number of iterations performed. It can be

Zhttp://mininet.org/

0.97
095 -

092

e
)
[9%)
S

I
o

centralised - 10 agents —4&— |
centralised - 25 agents —X—
centralised - 50 agents —©—
decentralised - 10 agents -4 |
decentralised - 25 agents -~ X
decentralised - 50 agents -

Accuracy
=1
o0
W
:

=4
oo
T

0.75

20 Iteration3 0 40 30

(a) Accuracy of decentralized vs centralised FL.

0.1
10 agents —4&— 50 agents —©—
. 25 agents —K—
g ool
s
&4
<
-
2
é 0.001 \/u\/i/é/ﬁ&
0.0001,5 20 ‘ 40 50

Ite%gtion
(b) Accuracy loss due to decentralisation.

Fig. 2: Convergence of IPLS (decentralized) vs conventional
(centralized) FL when using a different number of agents.

seen that IPLS has similar convergence to conventional FL.
Additionally, we confirm that if a fixed dataset is partitioned
in fewer parts and given to less agents, the accuracy of the
model is higher. This is explained by the fact that each agent
has more data when updating her local model. Figure 2b shows
the loss of accuracy due to decentralisation. After 40 iterations,
this becomes less than 1%e, which is practically negligible for
most applications.

Fault-tolerance. Next, we examine how the partition replica-
tion ratio impacts accuracy. We run experiments with 8 agents
and p = 1,4 for perfect and imperfect connectivity. The latter
is simulated by de-activating and then re-activating the agent’s
network access. Figure 3a depicts the results. It can be seen
that increasing the replication ratio decreases the accuracy
achieved. This is due to the fact that the agents who are
responsible for the same partition do not synchronise in a strict
manner to produce the correct global parameters after each
iteration. Interestingly, imperfect connectivity does not have a
grave impact on accuracy or convergence, which demonstrates
the ability of IPLS to handle such scenarios in a graceful way.
We note that the behavior of the no-replication configuration
(p = 1) is the same way as in the perfect connectivity scenario
and is not shown separately in the figure. The reason is that
each agent has to receive the global update for each partition
that is not stored locally from the single responsible agent,
waiting for it to re-connect (if needed). This introduces an
extra delay, but it does not affect convergence.

Further, we examine the robustness of IPLS for dynamic
agent departures and participation. More specifically, we in-

Replication ratio = 1 - perfect connectivity
Replication ratio = 4 - perfect connectivity
Replication ratio = 4 - imperfect connectivity

T —
ST M
30'95 BHMM H
g g MM 069;
oo .M ol
Ee 0-111‘02‘03‘04‘05‘
09 ‘ ‘

20 Iteratio%o 40 0

(a) Different replication and connectivity scenarios.

097 AU YT
0.95 IRREERLEAA AR R L RLLELIY L
il et
- |
. 09] e ‘
Q
<
R
goss
<
08 8 online 1
4 online - 4 memoryless
4 online - 4 with memory
0.75 10 20 30) 50
Iteration

(b) Different agent departure/join scenarios.

Fig. 3: Robustness of IPLS in the presence of intermittent
connectivity and dynamic agent departures/arrivals.

Number of agents 4 5 6 7 8

7.14 7.6 79 816 826
6.67 6.9 7.1 7.2
856 872 883 8.86
7.096 7.2 74 742

p =1 in network

p =1 in middleware 6.4

p = 2 in network 7.9
6.91

p = 2 in middleware

TABLE II: Data (MB) sent by each agent per iteration.

vestigate a scenario with 8 agents, half of which leave and
then re-join the training process. We consider the case where a
joining agent starts completely memoryless without retrieving
the current model or can continue with the model it had locally
available when it left (with memory). In these experiments,
we set m = 1 and p = 1. As shown in Figure 3b, the
accuracy of the trained model does not deteriorate significantly
vs the case where all agents participate throughout the entire
training process. In fact, if the joining agents have memory,
convergence is practically identical to the case where there
are no departures at all. Joining without memory introduces
some inaccuracy, but this is repaired to a large degree, given
a sufficient number of iterations.

Communication Complexity. Table II shows the data traf-
fic of IPLS for different configurations. This is reported at
the layer of IPLS as well as at the network/transport layer
(measured using wireshark). As discussed in Section II, for
p = 1 each agent has to send/receive approximately two

times the size of the model. For our model of 3.55 MB,
this amounts to 7.1 MB. We can see that this assumption is
valid, despite the extra communication overhead of the IPFS
daemon. Note that for p = 2 the amount of data exchanged
over the network is larger than for p = 1. This is because of the
extra data exchange that takes place to synchronize the agents
responsible for the same (replicated) partitions. However, the
overall impact is relatively limited due to the small replication
ratio.

IV. RELATED WORK

Existing decentralized FL systems are mostly based on
gossiping schemes. For example, the authors of [12] and
[13] implement the classic decentralized ML algorithm on
which agents download the model from multiple neighbouring
agents. An alternative approach is proposed by Ramanan et
al. [14] who use a blockchain to aggregate agents’ updates.
However, their approach has several limitations related to the
gas costs and the data size of blockchain-based transactions.

Although the work of Hu et al [15] is close to IPLS, since
it also partitions the model into non overlapping segments, it
differs heavily from IPLS because it is based on gossiping,
and not on a distributed memory abstraction. Moreover, IPLS
differs from [12]-[14] because it does not download the entire
model from selected peers but only partitions of that model.
The disadvantage of [12]-[14] compared to IPLS, is that
in order to gain better accuracy agents have to download
the same partition from different agents. Compared to the
aforementioned works, IPLS not only transmits significantly
less data over the internet, but also reaches approximately the
same convergence rate and accuracy as our centralized rival.
Moreover given that IPLS is based on distributed shared mem-
ory, gives the API users more freedom to apply classic parallel
optimization algorithms such as [16] which can heavily reduce
the communication complexity.

V. CONCLUSION AND FUTURE WORK

The unavailability of a decentralized federated learning
framework that can be used directly in mobile devices and
especially smartphones motivated the development of IPLS.
Although in an early stage, IPLS can be used to train models
with the same convergence rate and the same traffic, as
traditional FL frameworks.

There are multiple directions towards which IPLS can be
further developed. First of all, it needs to be installed in hetero-
geneous devices in order to analyse its needs and performance.
Similarly, we plan to examine its feasibility in training as
many as possible state-of-the-art models. Furthermore, a more
sophisticated algorithm that allows agents to change the parti-
tions for which they are responsible based on their bandwidth
and their available resources can increase significantly the
performance of IPLS because more updates will be delivered
on time. Additionally, split learning techniques [17], [18] can
be integrated to IPLS in order to enable devices with limited
computational capabilities to participate. Last but not least,
IPLS should incorporate an incentive mechanism, similar to

Filecoin [19] and Flopcoin [20], to motivate mobile users to
share their resources.

ACKNOWLEDGEMENT

This research has been co-financed by the European Union
and Greek national funds through the Operational Pro-
gram Competitiveness, Entrepreneurship and Innovation, un-
der the call RESEARCH-CREATE-INNOVATE (project code:
T1EDK-02161).

REFERENCES

[11 Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, Jan. 2019.

[2] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied federated learning: Improving google
keyboard query suggestions,” CoRR, vol. abs/1812.02903, 2018.

[3] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400407, 1951.

[4] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc. of
CCS, 2015, p. 1322-1333.

[5] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 3-18.

[6] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 9, pp. 2805-2824, 2019.

[71 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

[8] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proc. of ACM CCS, 2017,
p- 1175-1191.

[9] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.

K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed

systems,” in Proceedings of the Eleventh ACM Symposium on Operating

Systems Principles, ser. SOSP *87, 1987, p. 123-138.

[11] L. Deng, “The mnist database of handwritten digit images for machine

learning research [best of the web],” IEEE Signal Processing Magazine,

vol. 29, no. 6, pp. 141-142, 2012.

A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic

optimization and gossip algorithms with compressed communication,”

arXiv preprint arXiv:1902.00340, 2019.

A. G. Roy, S. Siddiqui, S. Polster]l, N. Navab, and C. Wachinger,

“Braintorrent: A peer-to-peer environment for decentralized federated

learning,” CoRR, vol. abs/1905.06731, 2019.

P. Ramanan, K. Nakayama, and R. Sharma, “BAFFLE : Blockchain

based aggregator free federated learning,” CoRR, vol. abs/1909.07452,

2019.

C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A

segmented gossip approach,” CoRR, vol. abs/1908.07782, 2019.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach

to parallelizing stochastic gradient descent,” in Advances in neural

information processing systems, 2011, pp. 693-701.

K. Palanisamy, V. Khimani, M. H. Moti, and D. Chatzopoulos,

“Spliteasy: A practical approach for training ml models on mobile

devices,” in Proc. of ACM HotMobile, 2021, p. 37-43.

P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning

for health: Distributed deep learning without sharing raw patient data,”

CoRR, vol. abs/1812.00564, 2018.

[19] J. Benet, “Filecoin research roadmap for 2017,” 2017.

[20] D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui, “Flopcoin: A cryp-

tocurrency for computation offloading,” IEEE Transactions on Mobile
Computing, vol. 17, no. 5, pp. 1062-1075, 2017.

[10]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

