
Solid over the Interplanetary File System
Fabrizio Parrillo

Dept of Mathematics and Computer Science
University of Basel, Switzerland
<fabrizio.parrillo@unibas.ch>

Christian Tschudin
Dept of Mathematics and Computer Science

University of Basel, Switzerland
<christian.tschudin@unibas.ch>

Abstract—Solid is a moderate re-decentralization architecture
for the Web. In Solid, applications fetch data from storage
providers called “pods” which implement discretionary access
control, permitting users to grant and revoke access rights and
thus keeping control over their data. In this paper, we propose
to apply an additional de-verticalization by introducing IPFS as
a common backend for Solid pods, the goal being to prevent pod
provider lock-in and permitting users to consider “self-poding”
where the heavy persistency task is out-sourced to IPFS. We have
implemented this Solid-over-IPFS architecture using the open-
source “Community Solid Server” and successfully ran several
Solid applications over IPFS.

Index Terms—IPFS, Solid, Dweb

I. INTRODUCTION

The Solid project [1] is Tim Berners Lee’s answer to the
massive centralization that has occurred in the Web: a few
companies dominate the Web ecosystem and are safeguarding
and mediating most of the world’s social media content. For
example, privacy violations [2][3] have been reported over and
over, yet giants like Facebook, Twitter or Google continue
to grow. Solid aims to get the end-users back in control by
separating service from data and identity providers (which
in the above cases are coinciding each time). In Solid, data
is stored in personal online data stores “pods” operated by
independent pod providers from which service providers have
to fetch them if the user grants such access.

Although Solid shifts the power balance towards the data
owner, it puts pod providers in a quasi-central role. This
position raises centralization risks insofar as barriers could be
created to make the provider change prohibitively expensive
(e.g. uploading data to Amazon’s cloud is cheap while data
export is expensive), as well as a risk of an oligopoly domi-
nated by the incumbents or –if real competition would ensue–
“market consolidation” working in that direction.

IPFS [4], on the other hand, has a more radical vision of
a peer-to-peer style Web where the uniting element is a flat
content-addressable storage space hosted in a decentralized
way. However, IPFS is currently not user-friendly as the data
access protocol is only supported directly by the Brave browser
and lacks compelling end-user applications.

In this paper, we argue in favor of extending Solid “at
the bottom of the protocol stack” and to separate the tasks
of pod operations (i.e. implementing access control and data
query support) from data persistence which IPFS would handle

HTTP over the Internet

Clients
Identity Providers Service

Provider

Pod Providers

Perssistent

File, SPARQL,
Access Ctrl

File, SPARQL,
Access Ctrl

File, SPARQL,
Access Ctrl

File, SPARQL,
Access Ctrl

IPFS backend

HTTP over the Internet

Identity Providers Service
Provider

Pod Providers

Perssistent

Fig. 1. Replacing Solid’s persistency layer with IPFS

(see Fig. 1). In this way, IPFS becomes the uniting element
among all Solid pod operators, effectively preventing them
from holding the data hostage. Moreover, end-users and their
browser do not have to (but can) be IPFS-aware because this
burden now shifts to the tech-savvy pod operators, offering a
smooth transition to a more IPFS-centric world.

We believe that our approach benefits and strengthens both
projects. Solid reduces its vulnerability to storage centraliza-
tion risks and for IPFS, it provides compatibility with the
current Web without having to wait for all browsers and
service providers to adopt IPFS.

This paper is structured as follows: First, we briefly in-
troduce Solid and IPFS. For Solid, we describe how Solid
structures data, how clients and servers communicate and how
an exemplary application benefits from Solid. For IPFS, on
the other hand, we provide a deep dive into its block storage
model up to file system abstractions. In Section III we present
our rationale to layer Solid over IPFS. Section IV describes
our “IPFS data accessor” implementation and its integration
into the storage module of a Solid server. We then report
in Section V on our encouraging evaluation results before
concluding.

II. BACKGROUND

A. Solid

Solid [1] stands for Social Liked Data and is a decentralized
platform for the social Web. The Solid Community Group1

openly develops the project. Furthermore, the startup Inrupt2

is a major contributor to the open-source Solid-Ecosystem and
provides Solid enterprise solutions. Solid’s decentralization

1https://www.w3.org/community/solid/
2https://inrupt.com/ISBN 978-3-903176-39-3 © 2021 IFIP

strategy builds based on separating storage, identity, and ser-
vice providers. In such an environment, the storage providers
equip users with a personal online data store (pods). Pods are
Web-accessible storage nodes that implement a fine-grained
authorization mechanism and can also be self-hosted. The
identity providers allow users to create a global identifier
to authenticate with pods. The service provider supplies the
user with apps and services that operate on the pods’ data
they were granted access. Ideally, service providers’ apps use
interoperable data formats and data objects to prevent vendor
lock-in users. In short, Solid aims to create a system where
individuals can maintain their autonomy, control their data and
privacy and can choose applications and services to fulfill their
needs [5]. The following two sections introduce the relevant
bits for this paper:

1) Linked Data Platform: Solid bases the concept of
resources on the definition of the Linked Data Platform
(LDP) [6] where resources are the most general class. All other
classes, namely the RDF, non-RDF and container resources,
are subclasses of the former. In other words, the LDP defines
files as RDF and non-RDF resources and folders as containers.

2) Application Protocol: Solid allows a client to commu-
nicate with pods over the HTTP protocol. All Solid complaint
servers must implement an HTTP interface and the required
methods that allow clients to create, read, update and delete
resources. Servers can also implement and advertise that
they accept SPARQL Protocol and RDF Query Language
(SPARQL) queries to manipulate resources or perform more
complex data retrieval tasks [1].

3) Community Solid Server: Together with the Node Solid
Server3 (NSS) and the Enterprise Solid Server4 (ESS), the
Community Solid Server5 (CSS) is an open-source implemen-
tation of the Solid specification [7].

The modular architecture allows for experiments with new
ideas on the server-side. Currently, the server code is in beta
stage. Nevertheless, a reasonable portion of the specification
seems to be implemented, as some Solid apps can already be
run against it.

The CSS server architecture reflects the Solid specification
and comprises five main modules: server, linked data platform,
authentication, authorization and storage. The storage module
connects the pod to the underlying storage system. Currently,
the storage module implements an in-memory, a file system
and a SPARQL data accessor.

4) Solid Applications: Solid apps ideally follow a user-
centric data model that allows other apps to reuse the data. For
example, any app (which was granted access to) could reuse
a user’s contact list by following the links starting from the
user’s profile document. MediaKraken6, which allows users to
curate lists of their favorite movies, is well designed in this
regard as it shows how an application can combine data from
multiple sources: The movie list is stored on a pod and the

3https://github.com/solid/node-solid-server
4https://inrupt.com/products/enterprise-solid-server/
5https://github.com/solid/community-server
6https://noeldemartin.github.io/media-kraken/

movies’ information comes from other services like IMDb.
This concept is highly relevant for today’s user experience:
With Solid, instead of having a locked up list for each service,
a favorites list could be stored on the user’s pod and be used
independently of the streaming service.

B. IPFS

The Interplanetary File System (IPFS) is a distributed file
system that combines ideas from established systems and con-
cepts such as Distributed Hash Tables (DHTs), BitTorrent [8],
Git [9] and Self-Certified Filesystem (SFS) [10] to create
a new decentralized content infrastructure upon which other
application can be built. The IPFS protocol can be divided
into several sub-protocols with different functionalities. The
following sections introduce three aspects in greater detail:

1) Objects data structure: The block is the elemen-
tary unit of the IPFS data model. Blocks contain the
raw binary data and the Content Identifier (CID), rep-
resenting the data’s cryptographic hash. The latest CID
format (CIDv1) is a concatenation of 5 binary segments
(<v><c-t><h-alg><h-len><h>) where the first segment
defines the CID format version (v), the second identifies the
block’s content type (c-t), the next segment defines the
used hash algorithm (h-alg), followed by the hash’s length
(h-len) and finally the hash (h) itself. In addition, the string
representation requires a prefix that defines the base encoding.
Protocol Lab7 created the Multiformat8 project to define self-
describing protocols which can be used independently from
IPFS. In the above CID’s definition we implicitly introduced
multihash (a self-describing hash protocol), multicodec (a
self-describing serialization protocol) and multibase (a self-
describing base encoding protocol). This scheme makes the
CIDv1 future-proof and crypto-agile from the bottom up and
results in an immutable storage model with a self-certifying
namespace. The IPFS peers use a distributed hash table and
the BitSwap protocol to distribute and retrieve content.

2) Complex Objects – Files: More complex objects can
be built by reusing the described blocks as a foundation.
To this end, IPFS uses “Merkle directed acyclic graphs”
(Merkle DAG), a data structure that permits to build several
important applications on top of it such as versioned file
systems, blockchains, or a permanent Web. The Merkle DAG
is defined by IPFSObject and IPFSLink protobuf objects.
Where a IPFSObject represents a node and the IPFSLink
represents a link of the Merkle DAG. A IPFSLink has three
properties: a CID, the size of the target block and a freely
chosen name property. A IPFSObject has two properties:
a collection of IPFSLink objects and a data property that
can store arbitrary data. For example, IPFS UnixFS stores the
Unix file system’s information with a Merkle DAG as shown
in Figure 2. A file is a IPFSObject without links and a
folder is a IPFSObject with zero or more IPFSLink to
other folders or files. In reality, UnixFS does some block size

7https://protocol.ai/
8https://multiformats.io/

Block 1

IPFS Object

Data:

Link: []

UnixFS Object (./folder/ipfs.txt)

C
ID

 1

Block 2

IPFS Object

Data:

Link: []

UnixFS Object (./folder/solid.txt)

C
ID

 2

Block 5

IPFS Object

Data:

Link:

Block 4

IPFS Link
name: ""
CID: CID 2
Size: 1002

C
ID

 4

UnixFS Object (./folder/)

C
ID

 5

Block 3

IPFS Link
name: ""
CID: CID 1
size: 1001

C
ID

 3

Fig. 2. Schematic representation of the IPFS UnixFS Merkle DAG

optimization by splitting big files into multiple blocks. Nev-
ertheless, in both cases, the resulting file system is immutable
and self-certifying.

3) Naming and Mutable State: Working directly with IPFS’
UnixFS is not practical as the file system is immutable;
moreover, CIDs are not human-friendly identifiers. Addressing
the first issue, a change to a file does not result in a mutation
but rather in creating a new file containing the mutated content:
in other words, the Mutable File System (MFS) creates the
illusion to the users that they can mutate files. On top of this,
the MFS translates a path from a location-addressed scheme to
a content-addressed scheme by mapping the human-friendly
paths to CIDs. It is worth mentioning that whenever a file
changes in a subdirectory, the MFS must not only re-reference
the CID of the changed file but all parent directories and files
up to the root because of the underlying immutable block
storage model.

III. RATIONALE

Table I shortly summarizes the fundamental decentralization
properties for Solid and IPFS. The Solid project is a moderate
approach trying to impose decentralization by defining a
specification targeting the service provider’s application model
that separates the services and pushes them to invest in
interoperability. Together with a fine-grained access control
mechanism, Solid aims to give users back control over their
data. For example, a user might have multiple Solid identities
(government, cooperate and private) and multiple pods. A
Solid application interacts with multiple pods simultaneously
by consuming and presenting information it was granted
access to depending on the configured access control for the
user identity and the service provider.

The IPFS project, on the other hand, is more radical from
a technical viewpoint. The protocol is designed in a full
peer-to-peer fashion, using concepts like DHTs and SFS to
build an immutable file system. Moreover, the IPFS project
successfully introduced Filecoin [11] as an incentive layer
on top of IPFS in order to sustain a storage infrastructure
capable of running distributed applications and implement
smart contracts. Ultimately, this system does not target the
service providers but tries to replace their current infrastructure
– the cloud.

In short, IPFS could provide the storage infrastructure for
Solid pods while the Solid specification could govern how
apps should be built on top such that users keep control over

TABLE I
SOLID AND IPFS PROJECT COMPARISON

Property Solid IPFS
Decentralization type moderate radical
Decentralization strategy social technical
Decentralization target service provider infrastructure
Decentralization methods service-separation, immutable and

interoperability and peer-to-peer
access control file system

Addressing Scheme location content
Compatible with Web2.0 Yes No (currently)

their data. The following two sections will shortly introduce
further opportunities for each project.

A. Opportunities for Solid

An IPFS-capable Solid server opens several future re-
search directions, such as offline-first adoption, pod provider-
independence, and data persistency with minimal centraliza-
tion risks. These options ultimately boil down to a pod’s
content being stored on the IPFS network as a series of
snapshots.

Having file-system snapshots means that switching pod
providers only require the root CID of the Merkel DAG to
be known such that a new pod service can be instantiated by
a different pod operator with a new location. This location-
independence may have some implication regarding Solid’s
location-based addressing scheme (referencing a pod’s service
instance instead of a pod’s data), which needs to be researched
in greater detail.

Using IPFS as a storage backend potentially enables offline-
first operations of Solid apps. However, diverging pod snap-
shots need to be handled, either by designating which of the
forks should become the new (global) root for a given user
or by merging cherry-picked changes into the primary IPFS
substrate, which may require app-dependent actions. More
insights from other re-decentralization projects like Hypercore
Protocol [12] and Secure Scuttlebutt [13] might be helpful
here.

B. Opportunities for IPFS

The IPFS project can profit from Solid regarding two
IPFS roadmap9 goals, namely the Decentralized Web and the
Personal Web.

Regarding the Protocol Lab’s Personal Web goal, we ob-
serve that Solid is fully aligned as it is all about putting users
in control over their data and access to it. Although Protocols
Labs’ definition of Decentralized Web does not fully align with
the Solid specification (as IPFS envisions the Decentralized
Web to function in fully peer-to-peer fashion), HTTP-based
client-server interaction allows organic growth and reuse of
existing end-user browsers, in parallel with the classic Web.
This fluid transition is a compelling short-term strategy where
end-users only have to learn about the pod concept but do not
have to wait for all browsers to support the IPFS protocol.

9https://github.com/ipfs/roadmap/blob/
a0ef950be691d74680050e77a89a12d1ca000fc6/README.md

PassthroughStore

<<Interface>>
ResourceStore

+ addResource: (ResourceIdentifier, Representation, Conditions) => Promise<ResourceIdentifier>
+ setRepresentation: (ResourceIdentifier, Representation, Conditions) => Promise<void>
+ deleteResource: (ResourceIdentifier, Conditions) => Promise<void>;
+ modifyResource: (ResourceIdentifier, Patch, Conditions) => Promise<void>;

DataAccessorBasedStore

IPFSAccessor
SingleRootIdentifierStrategy

- baseUrl: string

<<interface>>
DataAccessor

canHandle: (Representation) => Promise<void>
getData: (ResourceIdentifier) => Promise<Guarded<Readable>>
getMetadata: (ResourceIdentifier) => Promise<RepresentationMetadata>
writeDocument: (ResourceIdentifier, Guarded<Readable>, RepresentationMetadata) => Promise<void>
writeContainer: (ResourceIdentifier, RepresentationMetadata) => Promise<void>
deleteResource: (ResourceIdentifier) => Promise<void>

<<interface>>
IdentifierStrategy

+ supportsIdentifier: (ResourceIdentifier) => boolean
+ getParentContainer: (ResourceIdentifier) => ResourceIdentifier
+ isRootContainer: (ResourceIdentifier) => boolean

IPFSHelper

- node: Promise<IPFS>
- mfs: () => Promise<MFS>
+ stop: () => Promise<void>
+ write: (file: { path: string; content: Readable }) => Promise<void>
+ read: (path: string) => Promise<Readable>
+ stats: (path: string) => Promise<IPFSStats>
+ mkdir: (path: string) => Promise<void>
+ readdir: (path: string) => Promise<string[]>
+ rmdir: (path: string) => Promise<void>
+ unlink: (path: string) => Promise<void>

ExtensionBaseMapper

*omitted

<<interface>>
FileIdentifierMapper

mapFilePathToUrl: (filePath: string, isContainer: boolean) => Promise<ResourceLink>;
mapUrlToFilePath: (ResourceIdentifier, contentType?: string) => Promise<ResourceLink>;

BaseFileIdentifierMapper

Storage

Server LDP Authentication Authorization

*omitted

*omitted

*omitted*omitted

Interfaces Existing CSS Classes New IPFS Classes

Fig. 4. Detailed Solid Storage Module Class Diagram

IV. IPFS DATA ACCESSOR FOR SOLID

We successfully extended the CSS server with an
additional data accessor. Figure 3 shows the existing
FileDataAccessor which we replaced with the new
IpfsAccessor that heavily builds on the existing
FileDataAccessor. The IpfsAccessor connects the
Solid pod to the IPFS network as the persistence layer. Our
implementation adds the ipfs.js library as a dependency to
the CSS source code. As a result, if we run the CSS with
a configuration that instantiates an IPFSAccessor, a full-
fledged IPFS node will be started. We tested our extension
with unit tests and ran some experiments, yielding positive
results with existing Solid apps. As the CSS server is bleeding-
edge technology, we use this opportunity to give an in-
depth technical level overview of the classes relevant to our
implementation and facilitate future developments.

A. The IPFS Accessor Class for CSS

Figure 4 shows a detailed class diagram of the CSS
storage module to which we add the new data acces-
sor. From a top-down perspective, the implementation uses
a PassthroughStore, which invokes the corresponding
methods on the DataAccessorBaseStore. Our setup
composes the DataAccessorBaseStore with a Single
RootIdentifierStrategy and the IpfsAccessor.
The SingleRootIdentifierStrategy resolves all re-
source identifier from a single root on which all identifiers

IPFS Helper

MFS

IPFS Accessor File Accessor
(replaced)

Community Solid Server
(code base)

accessor interface definition

Fig. 3. Our IPFS Accessor is a full replacement for the CSS file accessor
module

build on. As shown in Figure 4 the IpfsAccessor imple-
ments the DataAccessor interface. The IpfsAccessor
can only handle binary data. Therefore the canHandle
method throws a BadReuqstHttpError for all repre-
sentation other than binary. The getData method returns
a byte stream of the corresponding resource. If the re-
source’s identifier is a container resource, the method throws
a NotFoundHttpError. The writeDocument method
writes data to a file identified by the resource identifier. The
methods use the FileIdentifierMapper to map the
resource identifier from an URL to a file path. As an example,
https://example.org/helloIpfs.txt is mapped to /helloIpfs.txt. It
is important to note that the MFS class requires the file
path to start with slash. Those paths are later passed to the

@prefix dc: <http://purl.org/dc/terms/>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.
@prefix posix: <http://www.w3.org/ns/posix/stat#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix ipfs: <http://ipfs.io/ns/ipfs#>.

<>
a
ldp:Container, ldp:BasicContainer, ldp:Resource;
posix:size 0;
posix:mtime 1615461843;
dc:modified
"2021-03-11T11:24:03.643Z"ˆˆxsd:dateTime;
ipfs:cid
<QmQPvWCPym2ZpUun3a5fK8XjZuHvf3GTS6xAPgbf4QTKRn>;
ipfs:cid
<QmQPvWCPym2ZpUun3a5fK8XjZuHvf3GTS6xAPgbf4QTKRn>;
ldp:contains <.acl>.

<.acl> a ldp:Resource;
posix:size 390;
dc:modified
"2021-03-11T11:23:57.442Z"ˆˆxsd:dateTime;
posix:mtime 1615461837;
ipfs:cid
<QmXHv61YkhVXazoq8Qa55HyiyP7VXhxDu7kMbTnTHqRxx5>.

Listing 1. A Solid pods’ root container that exposes the CID

IpfsHelper while invoking basic file system primitives.
Listing 1 shows the resulting Turtle representation of the

root directory after starting the server for the first time. This
Turtle file results from a client executing an HTTP GET request
against the pod’s root container. The server resolves the request
to the IpfsAccessor, which ultimately retrieves the data
that describes the root container (the information about the root
container and the .acl file). Listing 1 also shows the exemplary
IPFS vocabulary with the prefix http://ipfs.io/ns/ipfs# which
we defined to expose the cid property.

B. The IPFS Helper Class

The IpfsHelper class is a wrapper around the MFS
class. The IpfsHelper class’ primary purpose is to har-
monize the MFS class with the Node.js files system in-
terface. The IpfsHelper implements the basic file sys-
tem primitives: read, write, unlink, lstat, readdir,
mkdir, rmdir. The implementation maps the MFS specific
errors to Node.js system errors. The error object mapping is
required as the implementations describe errors differently.
For example, the IPFS stat method returns the string
“ERR NOT FOUND” while Node.js’s lstat method returns
“ENOENT”. For the lstat method, we extended the return
object to define the CID as an additional property. As a result,
the implementation complies with the Node.js file system
interface regarding the CSS’s upstream modules, which use
the IpfsAccessor class. Also, the helper provides some
utility methods to start and stop the IPFS node.

C. Limitations

Currently, the CSS server can only be used as a resource
server as version 0.8.0 does not implement any identity pro-

viding functionalities. This missing feature is a minor obstacle
for Solid apps that require the user to log in. Nevertheless, we
can easily overcome this problem by creating a Solid user with
an existing identity provider.

V. CSS COMPATIBILITY TESTS RESULTS

In this section, we present the compatibility experiments we
ran to test our Solid-over-IPFS stack. We try to determine if
the existing Solid apps are compatible with the original and
our modified CSS server. The compatibility tests are carried
out by manually testing the functionality of existing Solid
applications. We then rank the applications on the spectrum
from ‘not functioning’ to ‘full compatibility’, meaning that no
irregularities could be spotted. Fixing bugs in existing apps or
the CSS server code base was outside the scope of our work.

The test setup includes three components a local CSS server,
a Solid remote pod that provides a Solid user identity and Solid
apps. We used a Lenovo X1 Carbon Gen8 running Ubuntu
20.04.2 LTS as the operating system and the Firefox 88.0
browser for the testing. The local CSS server, which we set
up with two configurations, starts a local instance listening
to http://localhost:3000/. The first configuration uses the file
system, and the second configuration uses the IPFS network
to persist data. After each test, we delete the data folder and
restart the server.

The second component, the Solid remote server, provides
us with a Solid user identity for the compatibility tests since
most Solid apps require users to log in before exposing
additional functionalities. Therefore we create “solid-ipfs”, a
Solid user at solidcommunity.net. At the time of testing, the
solidcommunity.net server ran NSS 5.6.6. Further, we edited
the user’s personal profile document10 by adding the link to
http://localhost:3000/ as the prior location to instruct the apps
to persist data on the local CSS pod instance.

The last and third component of the test setup are the Solid
client-side apps which we ran by navigation to the publicly
hosted service instances. Table II shows a consolidated view
of the results for the six tested apps:

1) NSS Solid Data Browser: The NSS Solid data browser
is the data browser app that comes with NSS. We use the
one from solidcommunity.net: This data browser detects the
localhost storage and displays it in a tab. Unfortunately, it
throws a HTTP 404 Not Found while trying to open or browse
the storage.

2) Inrupt Pod Browser: The Inrupt Pod Browser11 is the
Solid data browser developed by Inrupt. Unfortunately, this
data browser did not allow us to browse the local pod since it
supports only HTTPS connections.

3) Solid File Browser: So far, the Solid File Browser12 is
the only data browser app that allows us to browse the local
pod. The app prompts the user with an option to open a pod
at a specific address. We can successfully create folder, files

10https://solid-ipfs.solidcommunity.net/profile/card
11https://podbrowser.inrupt.com/
12https://otto-aa.github.io/solid-filemanager/

TABLE II
CSS AND SOLID APPS COMPATIBILITY TESTS

The test results are classified in four groups: !!!No misbehavior found
even after extensive use; !!App works fairly but not ready for daily usage;
!App can be launched but bugs show up very early;#App can not be tested.

CSS with CSS with
Solid App FileDataAccessor IpfsAccessor

(1) NSS Data Browser !! !!

(2) Inrupt Pod Browser # #

(3) Solid File Browser !! !!

(4) Media Kraken ! !

(5) Solid Focus !! !!

(6) Dokieli !!! !!

and edit them. The browser’s only flaw we can detect is that
it cannot open files lacking a file extension in their name.

4) MediaKraken: As we introduced in the background
section MediaKraken13 is an app that allows users to curate
lists of movies. When the app launches, a movie folder is
created, but the app stops working after the HTTP GET request
on http://localhost:3000/movies/ results in an HTTP 404 Not
Found response. Without having consulted the app’s source
code we speculate that the app stops working because of a
client-side race condition or a faulty CSS response to the
client’s request.

5) Solid Focus: Solid Focus14 is a task management app.
This app allows us to freely choose the storage pod on
which our data should be persisted. We can successfully create
workspaces and to-do lists, but we encountered an error while
creating a to-do item. Consequently, the app does not create
the to-do item as there are conflicting metadata files indicated
by an HTTP 409 Conflict response.

6) Dokieli: Dokieli15 is a client-side editor for decentral-
ized article publishing, annotations and social interactions. We
use the app to save a copy of the Dokieli page itself to our
local pod. Although we logged in, we can only use the “save
as” functionality as the app disables the “save” button. This
app is the sole app that we encountered where an error only
occurs with the IPFS-configured CSS server: For our IPFS
configuration of CSS, the new resource path must end with a
file extension, otherwise the server responds with an HTTP 404
Not Found. This error is thrown by the server while fetching
the stats from the metadata.

A. Discussion of Test Results

Our experiments tested the compatibility between existing
Solid apps and the CSS server with two data accessor con-
figurations. Both configurations yield positive results, given
the early development stage of the server code. Moreover, we
show that the IPFSAccessor is usable without further ado
and is fully compatible with the IPFS data accessor, except
for a minor bug that currently occurs while testing the Dokieli

13https://noeldemartin.github.io/media-kraken/
14https://noeldemartin.github.io/solid-focus/
15https://dokie.li/

app. The test-driven development of CSS source code mainly
drives this positive result. We followed that lead and tested our
two classes with unit tests that reach a coverage of 88% for
the IpfsHelper and 96% for the IpfsDataAccessor.
This test coverage is slightly lower than the rest of the
server’s coverage which reaches 100%. Unfortunately, our unit
tests are slow as the test initializes an IPFS node for each
unit. Future work regarding the CSS implementation could
focus on introducing an Filesystem interface, which is
then used by the FileDataAccessor. As a result, the
integration tests can test the different filesystems, and the
FileDataAccessor remains independent of the filesystem.

VI. CONCLUSIONS

The contributed IPFS data accessor for the CSS server
shows that Solid and IPFS are orthogonal projects where
Solid classifies as an application layer protocol and IFPS
as an infrastructure layer. We believe that both projects can
profit from each other. The IPFS project could accelerate its
adoption to become the next Web infrastructure. With the
help of Solid, the IPFS protocol could be compatible with
the current application-layer protocols. This approach could
significantly ease IPFS’ accessibility for non-technical users.

REFERENCES

[1] A. V. Sambra, E. Mansour, S. Hawke, M. Zereba, N. Greco, A. Ghanem,
D. Zagidulin, A. Aboulnaga, and T. Berners-Lee, “Solid: A Platform for
Decentralized Social Applications Based on Linked Data,” 2016.

[2] J. Isaak and M. J. Hanna, “User Data Privacy: Facebook, Cambridge
Analytica, and Privacy Protection,” Computer, vol. 51, no. 8, pp. 56–
59, 2018.

[3] R. Tony, “France fines Google nearly $57 million for first major violation
of new European privacy regime,” The Washington Post, 2019.

[4] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[5] W. S. C. Group, “Solid Technical Reports,” 2021.
[6] S. Speicher, IBM-Corporation, J. Arwe, A. Malhotr, and Oracle-

Corporation, “Linked Data Platform 1.0,” w3c recommendation, W3C,
2014. https://www.w3.org/TR/ldp/.

[7] S. Capadisli, T. Berners-Lee, R. Verborgh, K. Kjernsmo, J. Bingham,
and D. Zagidulin, “The Solid Protocol,” editor’s draft 2021-03-10, Solid
Community Group. https://solidproject.org/TR/protocol.

[8] B. Cohen, “Incentives build robustness in BitTorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6, pp. 68–72, Berkeley, CA,
USA, 2003.

[9] D. Spinellis, “Git,” IEEE software, vol. 29, no. 3, pp. 100–101, 2012.
[10] D. D. F. Mazières, Self-Certifying File System. PhD thesis, Mas-

sachusetts Institute of Technology, 2000.
[11] B. Juan, “Filecoin: A decentralized storage network. protocol labs,

2017.”
[12] M. Ogden, K. McKelvey, M. B. Madsen, et al., “Dat-Distributed Dataset

Synchronization and Versioning,” Open Science Framework, vol. 10,
2017.

[13] D. Tarr, E. Lavoie, A. Meyer, and C. Tschudin, “Secure Scuttlebutt: An
Identity-Centric Protocol for subjective and decentralized applications,”
in Proceedings of the 6th ACM Conference on Information-Centric
Networking, pp. 1–11, 2019.

