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Abstract—While data storage on the decentral-
ized web has received a great deal of attention
in research and practice, web services have re-
mained relatively underutilized in peer-to-peer
networks. This work-in-progress paper outlines
the preliminary design of a decentralized, peer-
to-peer service discovery system. In this system,
peers can provide and request services, opening
the door to a new “market of services” where
providers and brokers can compete on metrics like
price and uptime. Specifically, this report focuses
on leveraging decentralized identifiers (DID) as a
mechanism to discover these services.

I. INTRODUCTION

Core components of the decentralized web, such as
data storage, have received a great deal of attention,
including projects such as the Interplanetary File
System (IPFS) [1], Filecoin [2], Sia [3], and Storj [4].
These projects are demonstrating that distributed,
(incentivized) storage is possible, and even profitable.
However, services such as those traditionally found in
centralized systems via open (or closed) application
programing interfaces (APIs) are less common in p2p
systems. Examples might include RESTFul or RPC-
style APIs, data services, web-hooks, etc.

The “Thread Network” proposed here is a proof-of-
concept that aims to address this shortcoming. The
system consists of a network of peers working to
manage the discovery of a set of p2p services. In
this paper, we focus on a core piece of this proposed
system: service discovery. We propose the use of
decentralized identifiers (DID) as a means to discover
peer-to-peer services.

II. BACKGROUND
A. Alternatives

Existing alternatives for connecting p2p services exist
in the literature (see for example [5] and references
therein), and in practice. Indeed, a recent promising
project in the blockchain space includes the Fluence
distributed computing protocol [6]. The work pro-
posed here is not meant to replace these systems, but
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rather compliment them. The “Thread Network” is
designed to be simple, lightweight, and practical in
the very near-term. It leverages existing specifications
and protocols (namely, Threads and DIDs), does not
require a blockchain or strict consensus protocol, and
builds on tooling that already exists as part of the
IPFS/Filecoin ecosystem (libp2p + gossip-sub).

B. Decentralized Identifiers

A decentralized identifier, or DID, is a string identifier
of a subject, controlled by a controller. A DID might
be used to encode a reference to an account address
[7] on the Ethereum [9] blockchain, identify a resource
on a network of IoT (Internet of Things) devices, or
even represent a unique “identity” such as a user or
organization [10]. For DIDs to be useful, they must be
“resolvable” without reliance on a centralized network
component. Fig. 1 shows the interactions between
DID components.

Verifiable Data Registry |

generates

DID subject

DID method

DID URL

resolves to

Y

can modi
| DID controller |—w)| DID document "|

Resources
like public
keys,
service
endpoints,
etc

Figure 1: The basic components of DID architecture.
Source: [11] sec 1.3

The Verifiable Data Registry in fig. 1 could be a
blockchain or peer-to-peer network. The meaning
of wverification differs between DID implementations
— some provide a high level of verification through
blockchain transactions, while others rely purely on
the assumption that the majority of peers are good
actors, (e.g., IPID, an IPNS-based DID).

A DID can identify any actor or structure in the
network (the subject), and should resolve to a docu-
ment that is accessible from anywhere in the network.



Formally, a DID document describes the subject, and
the document is controlled by one or more controllers.
In practice, these are often the same entity, though a
subject may delegate control to a separate controller.
In short, DIDs point to relationships between the
components of a decentralized network. What can
this component do? Who/what can do it? Who/what
dictates who can do it? See [11] for the DID specifi-
cation.

C. Threads

A thread is a topic-based collection of single-writer
logs. A collection of logs represent updates to the
“state” of an object (or dataset). The basic units of
a thread — logs and records — provide a framework
for creating, storing, and transmitting data in a p2p
network. The thread protocol is outline in detail in
the threads whitepaper [12].

A log within a thread is essentially a set of cryp-
tographically linked (i.e., hash-linked) records, that
form a specific type [13] of Merkle-DAG (directed
acyclic graph) that represents a purely functional
[14] and authenticated [15] (i.e., immutable) singly-
linked list. The key insight here is that, assuming
two peers have received all of the same updates to a
thread, they will deterministically arrive at the same
thread structure, and that thread structure can be
summarized by the (set of) hash(es) of the head(s) of
the underlying log(s).

III. THREAD DIDs

A major motivator for exposing a DID-native threads
specification is the ability to uniquely identify an
append-only log on the network, without any “cen-
tralized” coordination. This is important, because
it allows developers to leverage access controlled
storage APIs without having to worry about API
keys, and with increased user-control of data, all while
leveraging the benefits that come with a decentralized
p2p system built on a content-addressable data layer,
such as IPFS. Indeed, the ability to advertise thread-
based services to the network and allow crypto-
native/web 3.0 users the ability to leverage and
pay for said services without API keys is a major
break-through in web-based service architecture. One
might think of this new architecture as crypto-native
distributed micro-services.

In practice, a thread network may have multiple actors
and structures (subjects) that can be described by
DID documents. Subjects include any of the following
entities:

Peers (e.g., did:p2p:foo) can offer network ser-
vices, such as thread “hosting,” pinning ser-

vices (i.e., IPFS, IPNS), Filecoin anchoring,

API services, and more. A thread peer’s DID

is derived from its embedded networking

host’s key (which in practice is a 1ibp2p

(https://1libp2p.io) peer]).

(e.g., did:key:foo, did:3:foo,

did:ethr:foo, etc.) are any external

identity that represents a network user,
and that may interact with the network
via a Peer. These may be identified by any

verifiable DID.

Thread (e.g., did:thread:id) documents con-
tain verification methods for all valid peers
and/or users. Other thread info such as the
log head, log metadata, and thread encryption
keys are not stored in the DID document,
as this information is only needed by peers
that are sharing a thread, and can be more
efficiently exchanged using the thread pro-
tocol [12] directly (vs. a global document
registry). Log addresses are referenced as
service endpoints, as defined in [11] sec 5.4.

Users

By identifying a thread as a global resource, any peer
can determine the following from its DID:

Who can write to the thread?

Who can read from the thread?

Where can the thread be bootstrapped from?
Who controls (1), (2), and (3)?

= N

It is important to note that a thread DID is an
identifier, not an identity in the usual sense. To
illustrate, a thread is considered a resource that a
peer on the network is attempting to identify, i.e.,
the thread itself is the subject, and the thread DID
document is a representation of the subject. However,
unlike in many DID-base schemes (particularly those
focused around identity), the thread is never the
controller of the DID [11]. The controller is always
one or more identity-based DIDs, e.g., did:key:foo,
did:ethr:foo, did:3:foo, etc., and the thread DID
delegates to its controller.

This distinction is important, as it implies that a
thread cannot “act” or be “acted upon” on its own.
Additionally, it provides a (so far, loose) definition
of access control to a thread’s DID document: access
is granted to the controllers listed in the document.
These controllers are publicly visible, and must be
resolvable by the network. Additionally, it provides
a means to validate the thread DID document: all
updates must be signed by a delegate (controller),
and given the hash-linked structure of a thread, the



entire history of said updates can be audited and
verified.

A. Document Structure

The canonical DID document structure has yet to be
established. However, an initial, working prototype
thread DID document is structured as in Ist. 1. In
this example, the controller (did:key:foo) is defined
by a key-based DID [16]. The controller is able to
modify the thread DID document. Additionally, both
did:key:foo" and did:key:bar" can authenticate
as did:thread:id, meaning they are part of the
access control list (ACL), or have “controlled access”
to the thread, allowing them to sign and append
records to a thread log directly, or via a thread
peer. Finally, the thread DID document in Ist. 1
also specifies two serviceEndpoints that outlines
which peers (/p2p/peer-id-1 and /p2p/peer-id-2)
are able to connect to and download logs/records
from the thread (this is an illustrative, rather than
canonical, example of the use of the services entry).

IV. METHOD DEFINITION

The crux of any DID implementation is defining
it’s DID method. The DID specification defines a
method as a “means to implement this specification
on different verifiable data registries” [11] (sec 8). The
core function of the spec is to ensure interoperability
between different DID methods.

Here we define a DID method specification for threads
which is composed of a method scheme (see [11]
sec 3.1) and operations (sec 8.2). Operations specify
how a DID document is created, how to read/verify
a document, as well as how a DID controller can
update or even deactivate a DID document. The
method scheme defines the structure of the DID
implementation’s string identifier(s).

A. Method Scheme

A thread DID method scheme prefixes the unique
identifier for a thread (see [12] sec 2.2), with the
globally unique did:thread: namespace, such that
a thread DID becomes did:thread:<thread-id>,
where thread-id is defined as:

Version Random Component
NN
0x62 0x01 0xb55 0x539bc...a4b546e
—~— ~—
Multibase Variant

This produces a string identifier of the form:
"did:thread:bafk6npbyp. . .6mfuhoebiesr". A
random component is used here in practice, because
Threads are designed to be uniquely identifiable,
but not necessarily tied to a given key or identity.

Listing 1 Proposed thread DID Document structure.

{
"Qcontext": "https://www.w3.org/ns/did/v1i",
"id": "did:thread:id",
"controller": "did:key:foo",
"authentication": [
{
"id": "did:key:foo#keys-1",
"type": "Ed25519VerificationKey2018",
"controller": "did:key:foo",
"publicKeyBase58": "..."
1,
{
"id": "did:key:bar#keys-1",
"type": "Ed25519VerificationKey2018",
"controller": "did:key:bar",
"publicKeyBaseb8": "..."
}
1,
"service": [
{
"id": "did:thread:<id>#peer-id-1",
"type": "threadService",
"serviceEndpoint": "/p2p/peer-id-1",
"serviceProtocol": "/thread/0.0.1"
3,
{
"id": "did:thread:<id>#peer-id-2",
"type": "threadService",
"serviceEndpoint": "/p2p/peer-id-2",
"serviceProtocol": "/thread/0.0.1"
}
]
3

An alternative specification might derive from an
asymmetric key pair held by the controller (with
some additional contextual information), though see
some of the previously stated motivations for the
separation of subject from controller for potential
limitations here.

B. Method Operations

As mentioned perviously, DID methods define a set
of operations that can be performed on/with DID
documents. DID implementations often use a smart
contract [8] on a blockchain like Ethereum to model
the global data registry, and to implement these
operations. For the implementation proposed here, we
assume that documents are stored in such a way that
they are made available to resolvers via the registry,
or directly via IPFS/IPNS. In the future, documents
could be stored on the Filecoin blockchain as non-



fungible token (NFT) actor types.

In our initial proof-of-concept network, a non-
consensus driven global data registry is used, based
on a p2p “gossip” protocol. In practice, this is im-
plemented using libp2p’s gossip-sub implementation.
This registry provides weak consensus, along the lines
of IPNS-over-pubsub [17]. The process of getting
a DID subject’s document from the verifiable data
registry is called resolution. Any peer can resolve any
document by querying the on-chain NFT representing
the subject, or in the shorter-term case, by posting
queries to the associated pubsub channel.

V. ARCHITECTURE

The network architecture should be flexible enough
that it can support a wide-range of services while
remaining straightforward for application developers.
The way in which a DID method is leveraged is
entirely up to the network itself. Here we outline
some system requirements and walk through some
common network operations.

A. Basic Network

First, let’s consider a network of completely open
peers. Open here means no identity authorization,
such that anyone can create/add and read/write to
threads.

A minimal set of requirements for this type of network
to operate includes allowing external identities to
leverage a peer (local or otherwise reachable by the
user) to create threads. Once a thread is created, it
can be considered globally available, i.e., thread peers
can do work on behalf of other thread peers.

In practice, only peers that have been used to
read/write to a given thread will follow said thread,
and as with most other operations, any peer can be
used to delete a thread. A simplified representation
of a “basic” thread network such as this is shown
in fig. 2. In this case, the network consists of n = 2
peers interacting with an external identity A that is
requesting operations.

B. Services

In our hypothetical basic network network, one of
the peers has a trusted relationship with a service.
Peers can advertise their services using the services
DID field. For example, consider a hypothetical web-
hook service that allows users to add web-hooks to
a thread. Every time the thread receives an update,
the web-hook fires on the user-defined endpoint. The
peer’s DID document includes the service information
shown in Listing 2.
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Figure 2: A basic thread network (n = 2) showing an
external identity (A) creating a thread on one peer
and writing to it from another peer.

Services in this context are relatively flexible, and
because “trust” is handled in separate layers of the
system (i.e., via blockchain transactions, payment
services, contracts, etc.), services can define their own
authorization patterns. Services may be free, have
free quotas, only be open to some users, etc.

To work with the Thread Network, a peer’s services
must be discoverable from their DID document.
Services must also be self-describing via the DID
service type , serviceEndpoint, and description
fields. The community can maintain a list of available
services by type to further aide in service discovery.

As alluded to above, service discovery is a key feature
of the proposed system. Peers/users must be able to
discover services on the network, without relying on
a single “indexer” or centralized API. In this initial
proof-of-concept, service discovery is handled via peer
gossip/pubsub: Peers are used to request service types
across the whole network via libp2p pubsub messages.
Matching host peers respond directly to the caller
with a verifiable service description.

At a minimum, a peer will advertise it’s own 1ibp2p
thread API. One of the key goals for the Threads
Network is to enable (and encourage) external tool
integration. By this we mean the ability to synchronize
data to the threads network via existing tools such as
databases (e.g., MongoDB, PostgreSQL, Redis), chat
and messaging protocols (e.g., Matrix, ActivityPub),
rich text editors (e.g., Quill, Slate, CodeMirror), etc.
Here are some examples of additional services a peer



Listing 2 Thread DID Document with service infor-
mation.

{
"services": [
{
"id": "did:key:peer-id#threads",
"type": "threadService",
"serviceEndpoint": "/p2p/peer-id",
"serviceProtocol": "/thread/0.0.1"
1},
{
"id": "did:key:peer-id#webhooks",
"type": "threadWebHookService",
"serviceEndpoint": "/p2p/peer-id",
"serviceProtocol": "/thread/0.0.1",
"cost": {
"hook": {
"amount": "xx nanoFIL",
"currency": "FIL"
3,
"hit": {
"amount": "xx nanoFIL",
"currency": "FIL"
}
}
]
}
might offer:
o Buckets

— Mutable filesystem API

— Pinning API
o A go-datastore interface (key-value store)
e Web-hooks
« Filecoin

— Thread anchoring
— Bucket archiving
— Deal retrievals

o Databases
— MongoDB (e.g., direct connection URI)
— PostgreSQL

¢ Media encoding

o ctc.

In addition to exposing more “traditional” web2 APIs
(e.g., REST, gRPC, etc.) as services, it is possible to
expose these APIs over p2p protocols. For example,
it is possible to allow peers to serve HT'TP endpoints
and make HTTP requests through 1ibp2p using Go’s
standard “http” and “net” stack. This provides a
simple on-ramp for web 2.0 developers to expose
their APIs over the threads p2p network. Couple
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Figure 3: A service-enabled thread network (n = 2)
with a hypothetical web-hook service. An external
identity (A) has used the service to add a web-hook to
a thread and then writes to the thread from another
peer.

service provision and remote database access with
the robust authentication and globally identifiable
assets afforded by thread DIDs, and we now have a
very clear path to onboarding web2 developers (and
data) to the decentralized web.

VI. CONCLUSIONS

Decentralized identifiers (DIDs) enable cross-
protocol /blockchain interactions by defining a
common interface to retrieve and validate entities,
such as users and data. A DID-driven threads
network offers an exciting opportunity to expose p2p
services as first-class components of a p2p network.

Threads and IPFS/Filecoin benefit from a native DID
in the following key ways (among others): 1) DIDs
provide globally-unique namespaces for resources,
such that thread IDs act as identifiers to network-
wide resources; 2) adopting a standardized system
for resource identification increases ecosystem(s) in-
teroperability, facilitating integration with external
DID methods available on systems such as Filecoin
or Ethereum, as well as a range of identity solutions
(e.g., Ceramic/IDX); 3) the use of DID-base threads
provides “crypto-native” access to off-chain data, this



includes Filecoin integration; and 4) globally unique
identifiers pave the way for distributed authorization
to network resources, this is because access control
mechanisms are globally and unambiguously defined,
which leads to a net increase in the decentralization
of network services.

In addition to distributed authorization, DIDs also
enable open, decentralized, service discovery. This
is a major stumbling block to many/most p2p sys-
tems. Additionally, because any peer is capable of
discovering and resolving thread DID namespaces,
and because all operations on a thread lead to
deterministic, content-addressable updates, network
peers can do work on each others’ behalf. This opens
the door to a kind of “market” of services, where
providers and brokers could attempt to compete on
price, uptime, etc.

What is next for thread DIDs? Development of
governance policies and standardization of norms for
the internal structure used within the DID document
— e.g. how webhooks and other services are described —
is required to push towards interoperable service defi-
nitions. Building on this, who or what, organization(s)
maintain(s) or coordinate(s) the document structure
in the long term is an open question. Additionally,
conventions around the separation of thread access
from thread DID access remain unspecified. As part
of the process of canonicalizing the thread DID
representation, conventions for providing more fine-
grained access control will be useful.
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