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Abstract—Mobile devices expose information about their hard-
ware and manufacturer while searching for available WiFi
networks via a Media Access Control (MAC) protocol. Thus,
to protect the users’ privacy and prevent MAC address tracking,
manufacturers typically provide anonymity through MAC ran-
domization techniques by randomly and periodically modifying
the MAC address. This paper presents the ASIMOV tracking
approach, which shows through the correlation of randomized
information concerning the displacement of devices in space-time
dimensions that it is possible to gain insights into identifiable
device information. The proposed system is entirely passive and
uses a combined Received Signal Strength Indicator (RSSI) value-
based localization and the Information Elements (IE) transmitted
in every IEEE 802.11 probe request frame.

I. INTRODUCTION

The analysis of wireless signals emitted by portable de-
vices, such as smartphones, laptops, and tablets, enables the
extraction of positional data from those devices passively, i.e.,
devices can be tracked even if not directly connected to an
Access Point (AP) of an IEEE 802.11-compatible wireless
network. Tracking devices and their behavior are key aspects
of strategic business planning by tracking people’s movement
and behavior. For instance, business owners can use wireless
sensing to understand customer behavior and arrange products
corresponding to the customers’ interest points inside stores.
Also, wireless sensing is an enabler for contact tracing apps
used during pandemics [1].

Many different devices carried around, such as telephones,
laptops, and watches, expose information about their hardware
and manufacturer while probing on their own for available
wireless networks via the Media Access Control (MAC) pro-
tocol. This is technically necessary to be online and attached to
a wireless network actively. As a central piece of information,
the MAC address can link and connect different information
since it allows for a unique identification of every device
participating in wireless data transmission. On the contrary,
to protect the users’ privacy and prevent MAC address track-
ing, manufacturers typically provide anonymity through MAC
randomization techniques [2].

ASIMOV circumvents “difficulties” introduced by the MAC
randomization concerning tracking targets. The approach taken
uses the estimated localization and Information Elements (IE)
to determine whether traffic captured originates from the same
device passively or not, thus, enabling the tracking of devices
even when they use a MAC address randomization. For this,
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the prototype ASIMOV was implemented. Unlike previous de-
anonymization approaches, such as NiFi [3] and Wobly [4],
ASIMOV does not rely solely on specific data fields that
are not assumed to be stable over time or universally equal
from device to device. On the contrary, ASIMOV uses a
combined Received Signal Strength Indicator (RSSI) value-
based localization and the IE transmitted in every IEEE 802.11
probe request frame. ASIMOV is entirely passive and can
determine how many devices are present and track overtime a
single device in the area covered.

Three limited experiments were conducted — Corona pre-
vented a planned for larger-scale, public experiment — to
demonstrate the feasibility of the proposed solution. In two of
these, ASIMOV located devices at different positions in space
within the covered area with high accuracy. The third exper-
iment, conducted during a smaller real-life event, evidences
that ASIMOV is very practical for counting the number of
devices and localizing them in space over time, correcting the
bias introduced by MAC randomization.

The main contributions of this paper include (i) a method-
ology to distinguish MAC-randomized devices as well as a
tracking tool in Section II and (i) an evaluation based on
three experiments that comprehend the localization and device
counting capability in Section III. The summary and future
work are part of Section IV.

II. ASIMOV OVERVIEW

ASIMOV consists of a process to distinguish devices,
divided into 1. data gathering and 2. data analysis. Both
processes are started by the user, who manages devices and the
processes through an intuitive management interface (cf. Fig-
ure 1). The data gathering process orchestrates components to
obtain data from available devices, aggregate these data, and
store relevant data. This process starts with Monitor nodes
being configured to capture devices’ signals within a specified
area. Monitor nodes dump Probe Requests (PR) received at the
specified Network Interface Card (NIC), extract relevant data
fields, such as MAC address, timestamps, RSSI values, and
IEs, and return them to the Sync node. Sync nodes aggregate
and store data from monitors in a shared database for posterior
analysis, interacting with the Interface on one side and with
the Monitor nodes on the other side.

The data analysis process is composed out of three steps. In
the information retrieving step (Step A), the system loads data
from the shared database for posterior analysis: all packets are
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Fig. 1: ASIMOV Architecture and Process to Distinguish
MAC-randomized Devices

reassembled, such that for each PR, the RSSI values measured
at different monitor nodes are stored. The positioning step
(Step B) uses RSSI information to localize devices using
multilateration, as described further in Subsection II-A. In
the discrimination algorithm (cf. Figure 1 Step C) ASIMOV
determines, whether the original device is applying MAC
address randomization. The algorithm relies on snapshots
of measurements over time, combining knowledge from the
current snapshot and the aggregation of past snapshots, to
classify devices as “not seen before”, “randomizing” if they
are randomizing their MAC addresses, or “non-randomizing,”
if devices do not apply MAC randomization at all.

During the first step, the discrimination algorithm checks
whether the database contains a combination of MAC address
and IEs for that device. If it is true, it is assumed that the
device does not apply MAC address randomization. When
the database contains equal IEs, but the MAC address is
different, ASIMOV uses the position estimated as additional
tracking information. ASIMOV then compares this position
with previous locations containing these IEs to determine if the
device is the same. If these locations are within a predefined
distance defined via a threshold, devices are assumed to be the
same.

A. Localization

The localization solution is based on the log distance path-
loss model for trilateration [5]. All RSSI values received at
different APs can be used to localize devices.

The basic equation of the log distance path-loss model
sets the finding that a logarithmic function can approximate
the decay of a signal over distance. With RSS(d) being the
received signal strength at distance d, dy a reference distance,
n the path-loss coefficient, and X, a zero-mean Gaussian
random variable, it can be defined as follows:

RSS(d) = RSS(dy) — 10nlog (j) +x, (D)
0

In practice, the reference distance dj is often set to 1 m and
noise is ignored for the calculation, simplifying the model even
further. With RSS¢c being the received signal strength at 1 m
it can be expressed as follows:

RSS(d) = RSSc — 10nlog(d) )

RSSc depends on each device and has to be calibrated.
The path-loss coefficient n is a factor depending on the
environment. For free-space, it is often chosen at n = 2.

By applying the equation 1 to the RSSI values measured
at the different receivers yields in an approximation of the
distance, the sender has to each AP. The sender’s position can
be estimated by combining these distance estimates with mul-
tilateralism. Multilateration combines the multiple distances
between a device with an unknown location and multiple
spatially separated APs with a known site to estimate the
unknown device’s location, as expressed in equation 3.

(z; — 2u)* + (i — yu)? =77 for rin 1..3 3)

Mathematically, this corresponds to solving the following
non-linear system, with (z;, y;, z;) being the position of the i-
th point, (z, y, z) the position of the object, and d; the distance
of the object to the ¢-th point. This can be simplified for planar
problems, leading to the following system in two variables:

(x—21)*+ (y — )’ =di
(z—22)’ + (y—12)? = d5 4)
(z—23)° + (y — y3)* = d3

However, multiple measurements exist for the same posi-
tion, and more than the minimum of three APs are receiving a
signal from the same sender. ASIMOV profits from the excess
of data by incorporating as much information as possible into
the multilateration process.

III. EVALUATION

Three experiments had been conducted to test the
localization-based  approach of MAC address de-
anonymization. Two experiments were focused on localization;
the third one was run during a real-life event.

A. Localization Experiments

In Experiment 1 (conducted in the open field space),
only WiFi signals were measured. Four Monitor nodes were
placed at the corners of an 8 by 5 m grid, with 48 mea-
surement points. The sender was a Raspberry Pi 3 with Alfa-
AWUSO036NHA Wifi-Adapter and monitored four Spitz GL-
Routers. Experiment 2 (conducted in an urban environment on
a concrete balcony) combines the location estimates of RSSI
measurements from both WiFi probe requests and Bluetooth-
based measurements [6]. Four nodes were placed at corners
of a 5 by 5 m grid, with 32 measurement points, including an
additional Bluetooth device in place.

For experiment 1, the overall error in meters was 87 m
without filtering and 58 meters applying Kalman Filter based
smoothing. It results in a per step error of 1.7 m or 1.1 m with
the Kalman Filter. Including the maximal possible distance
of 10.8 m, this results in an error of 0.15 without filtering
and 0.1 using Kalman Filter. The deviation of the unfiltered
location estimates ranges from 0.03 to 5 m. A sample of
Experiment 1 on position (0, 1) is shown in Figure 2. The true
position is shown with the empty big blue circle. The different



estimates of the unfiltered (light blue), Kalman Filter based
(dark blue), and variance-based approaches (orange, green,
violet) are shown as filled dots.
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Fig. 2: Sample of Experiment 1 on Position (0, 1)

In Experiment 2, the overall error in meters was 72 m
without filtering and 68 m applying Kalman Filter based
smoothing. It results in a per-step error of 2.2 m or 2.1 m
with the Kalman Filter. It implies an error rate of 0.26
without filtering and 0.25 with Kalman Filter. The deviation
of unfiltered location estimates ranges from 0.44 to 4.5 m.
Bluetooth-based localization [6] in Experiment 2 achieved an
overall error of 68 m, yielding a per-step error of 2.1 m. The
deviation of the unfiltered location estimates ranges from 0.8
to 3.8 m. It implies an error rate of 0.25.

B. In-Field Experiment

Experiment 3 (conducted during a real-life event on June 2,
2020) counted devices instead of verifying location estimates.
Hence, the effectiveness of using the combined approach of
IEs and location estimate was evaluated using ASIMOYV, too.
The setup of this experiment included a Livealytics booth
placed at the event with a 4 by 4 m area. Figure 3 details the
setup: a cyan square represents the Livealytics booth, and red
dots represent monitoring devices. ASIMOV Monitor nodes
were placed at the height of 2 m above the floor.
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Fig. 3: Map of the Livealytics Booth at the Event

Two external data sources were available, too: a ticketing
system and a ceiling camera. The ticketing system counts the

number of people entering and the number of people leaving
the site. The ceiling camera keeps track of the number of
people entering and exiting the LiveAlytics booth area. Thus,
it was limited to the booth’s exact borders and did not include
any person that stood outside of this area.

An overall number of 566 people’s first entrances was
accounted for, which corresponds to the number of total
visitors that entered the site for the entire day. This count,
however, does not includes visitors only but also staff and
exhibitors. The official number of visitors during the entire
day was 360. Additionally, the number of people seen multiple
times using MAC address randomization was 370.

IV. SUMMARY AND FUTURE WORK

ASIMOV applies a combined approach to overcome the
trade-off between effectiveness, stability over time and de-
vices, and straightforward deployability. The solution uses the
stability and device independence of a location-based approach
and combines it with the informative value of a content-based
approach. ASIMOV distinguishes two devices from each other,
even if both devices are using MAC address randomization,
as three experiments were conducted to evaluate this capabil-
ity. The evaluation demonstrated that RSSI-based localization
performs better than anticipated, and it suffices as a proxy
to distinguish different devices from each other. Future work
includes (i) the design of a responsive user interface, (ii) the
improvement of error handling of monitor nodes in the event
of unexpected behavior, and (iii) an evaluation of ASIMOV
with different hardware types to analyze.
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