
Poster: Automated Neural Network Structure
Selection for IoT Botnet Detection

Kashif Naveed
∗
, Hui Wu

†

School of Computer Science and Engineering, UNSW Sydney, Australia

Email: ∗mkashifn@gmail.com, †huiw@unsw.edu.au

Abstract—IoT botnet attacks are a major concern these days
and their detection is an active area of research. Artificial Neural
Networks (ANNs) have proven their power and capabilities to
detect botnets effectively. However, the process of ANN struc-
ture selection and training has been iterative and experimental
where one starts with a random number of layers containing
an arbitrary number of neurons within them. Experimental
results reveal that this work provides massive gains in terms
of computational efficiency over the manually selected network
structures.

Index Terms—ANN, OBS, OBD, Deep Learning, Perceptron,
Pruning

I. INTRODUCTION

Neural Networks (NNs) have been widely used in almost ev-
ery industry [1], ranging from education, engineering, health-
care, medicine, business, marketing, finance and agriculture, to
oil & gas. Such networks consist of layers of artificial neurons
whose input and output connections are determined by the
assigned weights. The structure of a NN plays a crucial role
in the performance and is determined by the number of layers
and the number of neurons within each layer.

Many open research problems exist in the field and one
of such problems is to determine the structure of a NN and
the number of epochs required to train the network. Existing
techniques, including trial-and-error, heuristics and pruning,
are not efficient, either incurring large overheads or failing to
achieve the desired acuracy.

Botnets attacks are growing in size and numbers as their
source code is available publicly. Such botnet devices are
costing an annual loss of up to 2 billion dollars and are
capable of generating huge traffic in the order of 1Tbps as
published by Symantec and [2]. Neural networks have proven
their capabilities to detect such botnets reliably if the neural
network structure is selected correctly.

In this work, we investigate the problem of finding an
efficient neural network structure for the botnet detection
problem for IoT devices such that the botnet detection time
is minimized and propose a novel analytical approach. The
proposed work analyzes the input data and the preliminary
neural network structure to come up with an efficient NN
structure. By the word efficient here we mean: (1) a neural

network with a fewer number of neurons and (2) a layer
structure with the minimum computation time.

A. Incompleteness of Existing Approaches

The design approaches of neural networks can be divided
into three categories: trial-and-error approaches, heuristic-
based approaches, and pruning-based approaches. The trial-
and-error approaches lay out a structure with randomly se-
lected hidden layers and neurons and keep revising until
the desired goals have been achieved. The heuristic-based
approaches apply some rules to determine the number of
hidden layers and their neuron counts. The pruning-based
approaches start with an over-sized NN and then remove
some layers, neurons and weights which do not contribute
significantly.

These approaches, however, are not efficient as more re-
sources are consumed than needed during network training,
optimization and operation. Therefore, there is a need for
a complete framework that administers the whole learning
process starting from devising the network architecture until
the completion of the training to achieve the target accuracy
and performance goals.

B. Our Contribution

We perform analysis on the data to determine the network
structure, while others either use heuristics [3], [4], [5], [6]
without considering all aspects of the data or make use of
pruning after the network training [7], [8], [9].

II. OUR APPROACH

This section presents various functions performed by our
proposed framework to compute the best suitable network
structure for IoT botnet detection.

A. Key Philosophy

Andoni et al. [10] conducted a study on the effectiveness
of gradient descent functions to approximate polynomial func-
tions. They made the following observations for a function f
comprising of a polynomial of degree d over n-dimensional
variable x ∈ Rn:

1) The number of hidden neurons required to approximate
the function is directly proportional to both d and n [11].

2) The existence of local optima will not stop the neural
network to converge to the global optima.Annex to ISBN 978-3-903176-39-3 © 2021 IFIP

Random Network
Structure

Training

Validation

Revision

Training and
Validation

Network
Structure

Computation

Data
Analysis

C
om

m
on

 A
pp

ro
ac

h

Proposed Approach

Fig. 1: Common vs proposed approaches.

3) A larger-than-needed network will still achieve similar
results if it is compressed as long as it still contains a
sufficient number of neurons to approximate the func-
tion.

We make use of these observations as key rules to compute
the neural network structure to detect botnets in IoT devices
using deep neural networks.

B. Conceptual Overview

The general network structure selection is an iterative
process starting with a random layout computed and taking
it through training and validation cycles and then revising
the design until the required computational and accuracy
requirements are met. Our proposed work automates the
whole process and computes the required network structure
by analyzing the input data alone. This results in a reduction
in the computing cost during the training and the operation as
presented in the evaluation section as shown in Figure 1.

C. Network Structure Selection

We start by measuring the normalized frequency ωf of
the output vector y for each of the feature f in the input
matrix X . Since the output vector y only contains binary
values, ωf is measured by counting the number of edges in
the output against the sorted f th column. The column sorting
is an important step because without sorting, the output will
be affected by the order in which the input data is presented
to the system. Once the normalized frequency is calculated,
the degree of sensitivity ζf is computed as dlogωfe. The
ascending chain $ is then computed by sorting the ζf in
non-decreasing order and keeping only the unique values. The
network structure vector L is computed as a function of $ and

ith entry is computed as b

√
ξ0

2ξν+1

$i
c, where ξ0 is the number of

rows in the input matrix X and ξν+1 is the number of neurons
in the output layer.

Each entry in the list L gives us the number of neurons in
each layer. Since the training and execution time complexity
depends upon the sizes of the matrices and the order they

are multiplied, we need to compute the optimal structure that
minimizes the term ΥNN . We then re-arrange the list L to
compute a sequence ξ1, ξ2, · · · , ξν such that ξ1ξ2 + ξ2ξ3 +
· · ·+ ξν−1ξν is minimized.

III. EVALUATION

In this section, we will present the details and results of
different experiments that were carried out to quantify the
effectiveness of our proposed framework. We made use of
Kaggle to run the tests and the Jupyter notebooks can be
accessed at GitHub1.

A. Dataset Description

In our evaluation, we made use of dataset contributed by
Meidan et al. [12]. This dataset contains traffic data for nine
commercially available IoT devices infected with botnets. The
dataset can either be accessed in a ready-to-use format from
Kaggle2 or the originally published source at University of
California Irvine’s Machine Learning Repository [13].

Attacking IoT Botnets: Botnets are Internet-connected IoT
devices that are infected with malicious software enabling
them to perform Distributed Denial-of-Service (DDoS) at-
tacks. Two of the most commonly open-source botnets are
BASHLITE3 and Mirai4. Most of the current botnets make use
of these botnets underneath. The dataset used in the evaluation
contains attacks from both of these botnets.

Gathered Statistics: The dataset contains both the benign
and attack traffic data coming from nine commercially avail-
able IoT devices. The infected traffic contains (1) SCAN
attacks; (2) TCP, UDP, ACK and SYN flooding; and (3)
COMBO attacks attempting to open connections and sending
spam data.

Comparison: We compare the performance of our proposed
work against (1) A Heuristic method making use of a 2-
layer network [14], (2) A Genetic algorithm with an 18-bit
chromosome and (3) A Random selection method [15].

B. Neural Network Structure Selection

We have compared different neural network structures gen-
erated by the proposed method and the other techniques that
are previously described. The first column contains the name
of the device whose data was used for the test. The name
of the method used for a particular structure is present in
the second column. The third column contains the number of
layers that were produced by each algorithm. The last column
contains several smaller columns indicating the number of
neurons within each layer.

Training and Validation Accuracy: Figure 2 plots the pre-
cision, recall, F1 and accuracy scores for both the training
and validation phases. The experiments reveal that the selected
neural network structures produce high scores.

1https://github.com/mkashifn/dahlia-exp
2https://www.kaggle.com/mkashifn/nbaiot-dataset
3https://github.com/anthonygtellez/BASHLITE
4https://github.com/jgamblin/Mirai-Source-Code

0.97
0.98
0.98
0.99
0.99
1.00
1.00

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell

Philips
B120N/10

Provision
PT737E

Provision PT838

SimpleHome
SNH1011

SimpleHome
XCS71002

SimpleHome
XCS71003

Precision

0.97
0.98
0.98
0.99
0.99
1.00
1.00

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell

Philips
B120N/10

Provision
PT737E

Provision PT838

SimpleHome
SNH1011

SimpleHome
XCS71002

SimpleHome
XCS71003

Recall

0.97
0.98
0.98
0.99
0.99
1.00
1.00

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell

Philips
B120N/10

Provision
PT737E

Provision PT838

SimpleHome
SNH1011

SimpleHome
XCS71002

SimpleHome
XCS71003

F1

0.97
0.98
0.98
0.99
0.99
1.00
1.00

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell

Philips
B120N/10

Provision
PT737E

Provision PT838

SimpleHome
SNH1011

SimpleHome
XCS71002

SimpleHome
XCS71003

Accuracy
Training

0.95

0.96

0.97

0.98

0.99

1.00

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell

Philips
B120N/10

Provision
PT737E

Provision PT838

SimpleHome
SNH1011

SimpleHome
XCS71002

SimpleHome
XCS71003

Precision

0.95

0.96

0.97

0.98

0.99

1.00

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell

Philips
B120N/10

Provision
PT737E

Provision PT838

SimpleHome
SNH1011

SimpleHome
XCS71002

SimpleHome
XCS71003

Recall

0.95

0.96

0.97

0.98

0.99

1.00

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell

Philips
B120N/10

Provision
PT737E

Provision PT838

SimpleHome
SNH1011

SimpleHome
XCS71002

SimpleHome
XCS71003

F1

0.95

0.96

0.97

0.98

0.99

1.00

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell

Philips
B120N/10

Provision
PT737E

Provision PT838

SimpleHome
SNH1011

SimpleHome
XCS71002

SimpleHome
XCS71003

AccuracyValidation

Fig. 2: Precision, recall, F1 and accuracy scores during training and validation.

1

100

10000

1000000

Danmini
Doorbell

Ecobee
Thermostat

Ennio Doorbell Philips
B120N10

Provision
PT737E

Provision
PT838

Samsung
SNH1011N

SimpleHome
XCS71002

SimpleHome
XCS71003

T
im

e
C

om
pl

ex
it

y

Proposed Heuristics Genetic Random

Fig. 3: Comparison of time complexity for network structures generated by different methods.

Time Complexity Comparison: Each of the neural networks
incurs training and execution time complexities based upon its
structure as analyzed in section IV. Figure 3 provides a graph
of the resulting time complexities for the network structures
generated by different methods for each of the nine devices.
As you can see, the proposed work achieves the lowest time
complexity compared to all other techniques.

IV. CONCLUSION AND FUTURE WORK

Our work automates the neural networks design process
and experimental results reveal that our proposed framework
produces a neural network structure that incurs the lowest
amount of training and execution time complexity compared
to other approaches. Since this work is focused on botnet
detection for IoT devices, there is a need to extend the concept
to provide solutions for (1) broader anomaly detection; (2)
multi-class classification and (3) regression problems.

REFERENCES

[1] G. Taylor, Neural networks and their applications. John Wiley & Sons,
Inc., 1996.

[2] C. Symantec, “Internet security threat report: Volume 24,” 2019.
[Online]. Available: https://docs.broadcom.com/doc/istr-24-2019-enf

[3] R. Hecht-Nielsen, “Kolmogorov’s mapping neural network existence
theorem,” in Proceedings of the international conference on Neural
Networks, vol. 3. IEEE Press New York, 1987, pp. 11–14.

[5] B. D. Ripley, “Statistical aspects of neural networks,” Networks and
chaos-statistical and probabilistic aspects, vol. 50, pp. 40–123, 1993.

[4] F. Wang, “The use of artificial neural networks in a geographical infor-
mation system for agricultural land-suitability assessment,” Environment
and planning A, vol. 26, no. 2, pp. 265–284, 1994.

[6] D. R. Hush, “Classification with neural networks: a performance anal-
ysis,” in Proceedings of the IEEE international conference on systems
engineering, 1989, pp. 277–280.

[7] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[8] V. Tresp, R. Neuneier, and H.-G. Zimmermann, “Early brain damage,” in
Advances in neural information processing systems, 1997, pp. 669–675.

[9] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993, pp. 164–171.

[10] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang, “Learning poly-
nomials with neural networks,” in International conference on machine
learning, 2014, pp. 1908–1916.

[11] A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Transactions on Information theory, vol. 39,
no. 3, pp. 930–945, 1993.

[12] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, and Y. Elovici, “N-baiot-network-based detection of iot botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12–22, 2018.

[13] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[14] G.-B. Huang, “Learning capability and storage capacity of two-hidden-
layer feedforward networks,” IEEE Transactions on Neural Networks,
vol. 14, no. 2, pp. 274–281, 2003.

[15] M. Naveed and H. Wu, “Celosia: An Immune-Inspired anomaly detec-
tion framework for IoT devices,” in 2020 IEEE 45th Conference on
Local Computer Networks (LCN) (LCN 2020), Sydney, Australia, Nov.
2020.

