
Robustness of AutoML for
Time Series Forecasting in Sensor Networks

Tuomas Halvari
University of Helsinki

Helsinki, Finland
tuomas.halvari@helsinki.fi

Jukka K. Nurminen
University of Helsinki

Helsinki, Finland
jukka.k.nurminen@helsinki.fi

Tommi Mikkonen
University of Helsinki

Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract—Sensor data collection in IoT networks is sensitive
to malfunction of sensors and communications. Hence, it is
important that models using the data work in a reasonable way
even when there are some, potentially temporary, problems. In
this paper, we investigate the robustness of AutoML systems for
time series forecasting in sensor networks, using temperature
data as example. We experiment with different AutoML systems
and study how the resulting models tolerate faults in their
input data. The analyzed AutoML systems are Microsoft’s Azure
AutoML, Intel’s Analytics Zoo AutoML, and Facebook’s Prophet.
As a result, we rank AutoML systems based on their performance
with respect to data faults and their severity. In addition, we show
how the AutoML generated models differ given the data fault
type.

Index Terms—AutoML, time series, forecasting, robustness

I. INTRODUCTION

An increasingly promising approach for ML model creation
is the use of automated machine learning (AutoML). In gen-
eral, AutoML systems include several components of a typical
machine learning pipeline like data pre-processing, model
selection and hyperparameter optimization. AutoML systems
are typically used for tasks like classification and regression.
However recently some AutoML systems have started to
support more focused tasks like time series forecasting, which
in many cases builds on regressors.

Unlike laboratory experiments, real applications operate in
different and sometimes unexpected conditions. Therefore,
robustness is an important application attribute. A robust ML
model tolerates problems with respect to sensor readings, and
so on, but still produces good quality forecasts.

In this paper, we focus on the task of time series forecasting.
We study how tolerant some AutoML systems are to data
faults by controlling the type and the severeness of the data
faults injected to the training data and benchmarking them by
comparing the forecast to the real outcome. We use easy-to-
use AutoML systems, which require only the data, the task,
and a time limit for model search and optimization. The key
contributions of our paper are: (i) Implement a test setup to
study the effect of sensor network faults to the performance
of different AutoML time series forecasting systems (Section
III). (ii) Measure and compare how some popular AutoML
system perform with typical network faults (Section IV).

II. DATA FAULTS IN SENSOR TIMESERIES

Time series forecasting is the use of a model, based on
a series of data points listed in time order, to predict future
values based on previously observed values [1].

Faults in time series data can arise from multiple reasons.
Common sources of faults are misbehaving sensors, due to
hardware fault, wear, misconfiguration, or miscalibration for
instance, and misbehaving networking. Different underlying
reasons will be visible in different ways in the time series
data. Both the type and the scale of faults can vary.

A taxonomy of sensor network faults is missing. Sharma
et al. [2] identified three sensor network faults (single-sample
spikes, longer duration noisy readings, and anomalous constant
offset readings). Mahapatro and Khilar [3] classified sensor
network faults as crash, omission, timing, incorrect computa-
tion, fail-stop, authenticated Byzantine, and Byzantine.

We use the classification of Ni et al. [4], which identifies
nine different categories of sensor network faults: outliers,
spikes, stuck-at fault, high noise or variance, calibration fault,
failing connection or HW, low battery, environment our of
range, and clipping. We investigated outliers, stuck-at, and
high noise cases. In this paper we only report the results of
stuck-at case. In case of a stuck-at fault, the time series value
is fixed and experiences zero variance over a longer period of
time. In our tests data fault level controls the position of said
fault.

III. METHODOLOGY

We studied three systems with different operating principles.
Intel’s Analytics Zoo with the Bayes Recipe constructs
a neural network with Long Short-Term Memory (LSTM)
layers. Microsoft’s Azure AutoML constructs voting regres-
sor ensemble models using base regressors mostly from the
sklearn library 1. Facebook’s Prophet constructs an additive
regression model that is Bayesian-influenced [5]. It uses Stan
[6] for the underlying calculations.

The experimental task is forecasting the last 20% of the
time series dataset, based on temperature sensor data. Given
the AutoML system and some version of the training data,
each AutoML system is given a time limit in which to find
and train the optimal forecasting model. The time limits used

1https://scikit-learn.org/stable/Annex to ISBN 978-3-903176-39-3 ©2021 IFIP



Fig. 1: The score distributions for the benchmarks with stuck-
at fault in the training data. Logarithmic scale is used.

(a) Azure AutoML at level 4. (b) Analytics Zoo at level 2.

Fig. 2: Examples of bad forecasts with stuck-at fault.

in our benchmarks are 2 and 6 hours. We present the score
distributions of at least 10 runs for the 2 hour benchmarks and
at least 5 runs for the 6 hour benchmarks in Section IV. Before
running any benchmarks different versions of the training data
were generated for each combination of data fault type and
data fault level, using a fixed seed. As the dataset we use
real-world temperature data from the city of Montreal. Raw
data was acquired from the OpenWeatherMap website 2. For
comparing the forecasts to the actual testing data we used out-
of-sample mean absolute error (MAE). All benchmarks were
run locally on CSC’s Puhti cluster 3 using a total of 40 CPUs
and 192 GB of RAM.

We generated artificial faults to the dataset in a controlled
fashion. With stuck-at fault, at level 1, the stuck-at area is
the first fifth of the training data, and so on, until at level 5,
the stuck-at area is is the last fifth of the training data. Since
the size of the training data is not divisible by 5, the last 3
datapoints retain their original values.

To enable fair comparison, AutoML systems were only
given the number of datapoints to forecast, the time limit,
and the training data. Other parameters were set to default or
”auto” where possible. For Analytics Zoo and Azure we made
separate experiments with 2h and 6h time limits. Prophet’s
execution took only a few minutes and required no time limit.

IV. RESULTS

Full results are available at GitHub repository 4. The MAE
scores of different test cases are presented in Figure 1. In
the boxplots, the scores over multiple runs for each AutoML
system are presented as distributions for each discrete data

2https://openweathermap.org/
3https://docs.csc.fi/computing/overview/
4https://github.com/thalvari/AutoML Timeseries

type MAE batch size dropout 1 dropout 2 lr lstm 1 units lstm 2 units HOUR DAY MONTH WEEKDAY IS AWAKE IS BUSY HOURS IS WEEKEND
clean 4.13 32 0.2 0.2 0.01 106 125 1 1 1 1 0 0 1
clean 4.131 32 0.2 0.2 0.0020223380765712483 73 111 1 1 1 0 0 1 0
clean 4.093 32 0.2 0.2 0.01 103 128 1 1 1 0 1 0 0
clean 4.045 32 0.2 0.2 0.01 112 128 1 1 1 1 1 0 1
clean 4.008 32 0.2 0.2 0.001 128 117 1 1 1 1 0 1 0
stuck-at 5 21.511 74 0.21052768160683244 0.2220144611739566 0.009689433918060479 104 126 1 1 1 1 0 0 1
stuck-at 5 5.981 39 0.25569224248328365 0.23383956496145158 0.009881574694381088 121 77 1 1 1 1 0 0 1
stuck-at 5 5.373 32 0.20000000001166915 0.2 0.01 101 49 1 1 1 1 1 1 0
stuck-at 5 5.197 41 0.2 0.20000001419647961 0.01 125 74 1 1 1 1 0 0 0
stuck-at 5 4.818 42 0.2 0.2 0.009999998542925739 91 109 1 1 1 1 0 0 0

TABLE I: Models generated by Analytics Zoo in 2h runs.

type MAE step 0 step 1 step 2 step 3 step 4 step 5 step 6
clean 4.352 DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor LassoLars
clean 4.372 DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor LassoLars -
clean 4.384 DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor LassoLars
clean 4.51 DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor LassoLars -
clean 4.428 DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor LassoLars -
stuck-at 4 9.141 DecisionTreeRegressor DecisionTreeRegressor - - - - -
stuck-at 4 6.869 DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor - - - -
stuck-at 4 7.728 DecisionTreeRegressor DecisionTreeRegressor - - - - -
stuck-at 4 59.628 DecisionTreeRegressor DecisionTreeRegressor - - - - -
stuck-at 4 17.558 DecisionTreeRegressor DecisionTreeRegressor DecisionTreeRegressor - - - -

TABLE II: Models generated by Azure AutoML in 2h runs.

fault level, using the MAE metric described above. In the
figures, the means for each distribution are represented as
white circles.

For both Analytics Zoo and Azure AutoML, the generated
models for 5 runs in the 2h benchmark can be seen in Tables I
and II, respectively. In both tables, the first two columns tell us
what type of training data was used and the MAE score of the
run. The following columns are all the relevant information
scraped from the log file of each run. Looking at the column
names in Figure I, we can see that, with the Bayes recipe
that we are using, Analytics Zoo always builds Deep Learning
models with two LSTM layers with the corresponding Dropout
layers. We can also see that Analytics Zoo constructs some
new features from the data, related to periodicity and influence
of e.g. weekends. Looking at the column names in Figure II
we can see that, Azure AutoML constructs ensemble models,
and the columns represent the base regressors, whose results
are averaged by the voting regressor.

A. Clean data

The performance comparison for the tested AutoML sys-
tems for clean training data can be seen in Figure 1, when
looking at the distributions at level 0. Looking at the mean
values, at level 0, Analytics Zoo is the winner followed by
Azure AutoML as the close second and Prophet as the close
third. Looking at the score distributions at level 0 in the same
figure, there was little variance in the scores for all of the
benchmarked systems. Furthermore, increasing the time limit
to 6 hours seems to have a minimal impact to the performance
of both Analytics Zoo and Azure AutoML.

The generated models for all runs with Analytics Zoo and
clean training data can be seen in the corresponding rows of
Table I. Looking at rows of type clean, the first LSTM layer
seems to typically have less units compared to the second
layer. Also the Dropout probabilities and the learning rate do
not change much. In addition three of the features are only
used in half of the runs. The generated models for all runs
with Azure AutoML and clean training data can be seen in
the corresponding rows of Table II. Looking at rows of type
clean, it seems that Azure AutoML prefers to use Decision
Tree and Lasso Least Angle regressors as the base regressors.

B. Stuck-at faults

Looking at Figure 1, at level 1, Analytics Zoo and Azure
AutoML perform somewhat similarly, while Prophet ends



up trailing the two in performance. It is also interesting
that different AutoML systems seem to have different drop-
off points at mid levels. Analytics Zoo’s performance drops
clearly at level 2, Prophet’s performance drops clearly at level
4 and Azure AutoML’s performance drops clearly at the final
level, although there are also some bad forecasts at level 4.

A bad forecast for Azure AutoML at level 4 is presented
in Figure 2a. A bad forecast for Analytics Zoo at level 2 is
presented in Figure 2b. Comparing the two examples, while
Analytic Zoo’s forecast can start drifting off at some point,
Azure AutoML’s forecast experiences smaller stuck-at periods
within the forecast. While all systems are fine with the stuck-
at area being in the beginning of the data, Analytics Zoo is
the only system that can handle the stuck-at area being at
the end of the training data. So Analytics Zoo’s performance
actually improves drastically going from level 4 to level 5.
As can be seen in Figure 1, Azure AutoML had low variance
in its results, except at level 4, while Analytics Zoo had a
moderate amount of variance in its scores at mid and high
levels. Looking at the same Figure both Azure AutoML and
Analytics Zoo gained a bit performance and a reduced variance
at mid levels when time limit was increased to 6 hours.

Comparing the rows with type stuck-at in Table I to the
rows with type clean, we can see that both batch size and
dropout percentages are higher on average and that the second
LSTM layers have clearly less units on average. In fact, in
many cases the second LSTM layer has less units compared
to the first layer. Looking at Figure 1 we can see that at level
5 Azure AutoML fails to give a reasonable forecast. Judging
from Table II, at level 4 Azure AutoML prefers to use Decision
Tree regressors as the base regressors, though fewer than with
clean training data.

V. DISCUSSION

While all compared systems provide similar features, they
all are clearly different, making it difficult to compare them
technically in terms of other than input, output, and perfor-
mance. With LSTM models, deeper layers are used capture
more high level or abstract features from the data [7], which
in case of time series would correspond to longer term trends.
Analytics Zoo seems to exclusively generate two-layer LSTM
models (Table I). So, it can be said that the second layer is used
to capture more general trends in the training data, while the
first layer is used to describe the more immediate changes.
On the other hand the width of each LSTM layer, namely
the number of units on a layer, determines how strongly the
relationships between the inputs to a specific layer are taken
into account by the model [8]. So, too few units on a layer
can lead to underfitting, while too many units can lead to
overfitting. In addition, both LSTM layers have an associated
Dropout layer in our generated models. The Dropout layer
helps to reduce overfitting by excluding some units from
updates.

Thus if the number of units on the first layer is low, not
many units are required to describe the relationships between
nearby datapoints in the time series. Finally, if the number

of units on the second layer is low, it could be said that the
generated model tries to only capture the simpler relationships
between the longer term trends in the data. As shown in Table
I, this is the case with training data that has a stuck-at fault
that breaks the longer term trends.

With stuck-at fault Azure AutoML prefers using decision
tree regressors as base regressors. An example forecast using
such model is presented in Figure 2a. One reason why decision
tree regressors work with this type of data is that they do not
try to fit a single model for the whole data, but instead use
recursive partitioning and local fitting of simple models.

It was interesting to see that some systems performed well
with certain data fault type and level combinations, but did
not do so well with another setup. Also the generated models
were quite different given the type of fault in the training data.
Therefore, for a certain problem, one of the systems might be
much more effective than others, but in general this can be
found out by running suitable tests. For cases where training
must be fast, Prophet is clearly the best, with its forecasting
performance comparable with other tested systems.

Better understanding of the occurrence of different faults in
sensor networks and robust machine learning solutions to deal
with them still require further research.

REFERENCES

[1] C. Chatfield, Time-series forecasting. CRC press, 2000.
[2] A. B. Sharma, L. Golubchik, and R. Govindan, “Sensor

faults: Detection methods and prevalence in real-world
datasets,” ACM Transactions on Sensor Networks, vol. 6,
no. 3, pp. 1–39, 2010.

[3] A. Mahapatro and P. M. Khilar, “Fault Diagnosis in Wire-
less Sensor Networks: A Survey,” IEEE Communications
Surveys Tutorials, vol. 15, no. 4, pp. 2000–2026, 2013.

[4] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano,
S. Nair, S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and
M. Srivastava, “Sensor network data fault types,” ACM
Transactions on Sensor Networks, vol. 5, no. 3, pp. 1–29,
2009.

[5] S. J. Taylor and B. Letham, “Forecasting at scale,” PeerJ
Preprints, vol. 5, p. e3190v2, Sep. 2017.

[6] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee,
B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li,
and A. Riddell, “Stan: A Probabilistic Programming Lan-
guage,” Journal of Statistical Software, Articles, vol. 76,
no. 1, pp. 1–32, 2017.

[7] M. Hermans and B. Schrauwen, “Training and Analyzing
Deep Recurrent Neural Networks,” in Proceedings of
the 26th International Conference on Neural Information
Processing Systems - Volume 1. Curran Associates Inc.,
2013, pp. 190–198.

[8] S. Chakraborty, J. Banik, S. Addhya, and D. Chatterjee,
“Study of Dependency on number of LSTM units for
Character based Text Generation models,” in Proceedings
of the 2020 International Conference on Computer Sci-
ence, Engineering and Applications, 2020, pp. 1–5.


