FlowToss: Fast Wait-Free Scheduling of
Deterministic Flows in Time Synchronized
Networks

Randeep Bhatia*, T.V. Lakshman*, Mustafa F. Ozkog*, and Shivendra Panwar!
*Nokia Bell Labs, USA
{randeep.bhatia, tv.lakshman} @nokia-bell-labs.com
TDepartment of Electrical and Computer Engineering, New York University, USA
{ozkoc, panwar} @nyu.edu

Abstract—Motivated by important industrial automation use
cases, such as closed loop motion control and autonomous mobile
robots, we study wait-free scheduling of periodic flows with
stringent delay and jitter requirements in time sensitive networks.
The goal is to assign initial transmission time-slots to periodic
flows so that network queuing delays are eliminated or are very
small. We make use of Bézout’s Identity to develop simple and
fast scheduling algorithms for this NP-hard problem. Operating
in an online mode, our algorithms can quickly allocate contention
free start time-slots to new flows, without changing allocations of
already scheduled flows. Our main results are greedy and random
scheduling algorithms that can trade speed for solution quality.
Our simulations on different network topologies show that these
algorithms are computationally efficient and can easily schedule
a large number of flows, thus meeting the requirements of many
industrial automation use cases.

Index Terms—Time Sensitive Networking; Zero Queuing;
Scheduling Algorithms; Industrial Automation

I. INTRODUCTION

With greater control of physical devices, machines, pro-
duction processes, and supply chain, Industry 4.0 promises
to usher in a new era of unprecedented levels of automation
and productivity for physical industries and associated infras-
tructure. It is facilitating increased integration and deployment
of connected devices and driving new use cases that require
periodicity and very high determinism (see Table I), such
as closed-loop industrial monitoring, control, optimization
applications, and closed loop motion control.

The industrial flows we consider in this work are periodic
and need to be delivered through the network by specified hard
deadlines. Specifically, this means that the delays through the
network should be small and the jitter should be very close
to zero. Low delays are required in many factory situations,
such as where commands to immobilize robots need to be
sent and acted upon in real-time to ensure the safety of
workers. Very low or zero jitter is also required in other
common factory use cases such as keeping movements of
machines and their parts precisely synchronized, achieving
which requires reacting in unison to the commands received
from the industrial controller. For this, the network needs to

ISBN 978-3-903176-39-3 (©2021 IFIP

have short paths, with small propagation and processing delays
as well as negligibly small queuing delays.

Specialized networks and protocols, such as Fieldbus and
Profinet [1], that provide bounded network delays and jitter
are used extensively in industrial settings. Recently IETF
and IEEE have started to standardize enhancements for de-
terministic real-time networks. In particular, the IETF stan-
dard on Deterministic Networking (DetNet) [2] addresses
the delivery of data flows with extremely low packet loss
rates and bounded end-to-end latency over IP networks. The
IEEE standards for Time-Sensitive Networking (TSN), such
as IEEE 802.1Qbv [3], which defines enhancements for the
so-called scheduled traffic, addresses lower layer technolo-
gies. Specifically, IEEE 802.1Qbv, in conjunction with IEEE
802.1AS [4], deals with clock synchronization of switches and
end systems and the injection of frames into the network by
host network interface cards (NICs) at precisely defined points
in time according to a schedule. Although it defines the basic
scheduling mechanisms, the problem of calculating optimized
time sensitive schedules for NICs, to achieve bounded end-to-
end network delay, is beyond the scope of the standard. This
is the problem we address in this work.

We consider a network where the “short” paths for the
periodic flows are picked in advance. Our goal is to perform a
wait-free scheduling of flows using their respective paths. We
assume time is slotted and the host NICs have control over the
time-slots at which they can allow flows to start injecting their
packets into the network. However, NICs are not allowed to
subsequently delay any other packets of a flow. For instance,
a host NIC can select the time-slot ¢, for a flow with period
T, to inject its first packet into the network. But then, the
flow packets must be injected into the network precisely at
time-slots ¢,7 +¢,2T +t,.. ..

The goal of wait-free scheduling is to pick these start time-
slots ¢ for the flows, for which there is no “contention” at any
switch in the network, thus ensuring zero network queuing
delays. The scheduling has to be performed online as the flows
arrive. Fig. 2, shows two simple periodic flows, f; with period
6ms and fo with period 9ms, that share switch 4 on their
common path. fo starts at time 2ms. Note that (as shown in

TABLE I
INDUSTRIAL AUTOMATION USE CASES [12].

Service
Area

Number of
Devices

>100 | 100m

~20 | 3m

Cycle Time
(ms)

Payload Size
(bytes)

20
50

Use Case

Printing Machine < | |

Machine Tool <05 | |
Packaging Machine <1 | 40 | ~5 | 3m

\ \

| |

| |

| |

|
Motion Control |
|

Cooperative Motion Control 1 40-250 100 | <tkm?
40-250 4 | 10m

40-250 2 | 50m

Mobile Control Panels | Assembly Robots or Milling Machines 4-8

with
Safety Functions I
Process Operation (Process Monitoring) 50

Mobile Cranes 12

I
I
|
| Mobile Robots |
I
|
!

Variable 10,000 devices/km?

the top half of the figure), if flow f; were to start at time 3ms
then its packets will contend with packets of flow f5 at switch
r4. However, this contention can be avoided (as shown in the
bottom half), if it were to start at time 1ms, which is a better
time-slot choice for it.

Past work has shown that the wait-free scheduling problem
is NP-hard and highly intractable (as hard as job shop schedul-
ing) and hence no efficient optimal algorithm is likely [5].
Most of the past approaches have therefore been on formulat-
ing and solving the offline version of the problem via integer
linear programming (ILP) [5]-[9]. Motivated by the heuristics
of [10] for scheduling of no-wait manufacturing processes, [5]
develops a start time assignment heuristic for the problem of
minimizing “flow makespan”. However, the issues with this
approach are that it can only scale up to a few hundred flows,
which makes it impractical, and it is also not applicable in
an online setting. Nayak er al. [8] present algorithms for
online (incremental flow) scheduling. They make use of a
time division multiple access (TDMA) approach to limit the
number of active flows over any path to one for the duration
of a base period of the flows. Hellmanns et al. [9], propose
optimizations to improve execution time and solution quality.
The aforementioned past work differ from ours as they assume
the same period length for all flows. However, when we do
not place any such restriction, the problem size grows out of
the reach of today’s commercial ILP solvers.

We take a different approach than the ILP approach, instead
we make use of the Bézout’s Identity [11], a simple modular
arithmetic identity, to quickly determine feasible time-slots for
assignment even when the flow periods are different. Thus,
we create efficient algorithms for contention checking and
scheduling. Our main contributions are as follows:

e Simple and online greedy and random combinatorial
algorithms that are much faster and can find wait-free
schedule for many more flows than previous ILP based
algorithms.

« A simple contention checking identity based on greatest
common divisor (gcd) of time periods of pairs of flows.

« Extensive simulations on different size topologies that
show these algorithms are computationally efficient and
can easily schedule a large number of flows, thus meeting
the requirements of many industrial automation use cases.

II. SYSTEM MODEL

The high level architecture of the system is illustrated in
Fig. 1. It is made up of host nodes that are the sources and
sinks of flow traffic. These hosts are connected through a

Flow start time
allocation request

Fig. 1. System Architecture

network of switches. Although our solution is applicable to
arbitrary flow paths, we assume flows are routed on shortest
paths (based on a delay metric) which are also unique.

We present some system-level assumptions mainly for ease
of exposition as well as to serve as a guide for designing
practical solutions for industrial applications. For industrial
networks, typical link speeds of 10GbE and a switch packet
processing time of 100ns are assumed'. Note that the latter
is approximately the time it takes to transmit 125 bytes at
10GDbE speeds. Our choice of 125 byte packets is consistent
with the use of small packets in most industrial applications
(see Table I). To take into account the typical applications
listed in Table I, flow periods are assumed in the range of 1
to 100ms.

We consider a standard switch model where switches for-
ward packets by matching input ports to output ports. As
a result, as long as there is at most one packet arrival per
port and there is at most one packet departure per port, the
packets can be forwarded as they arrive. When this happens,
the only delay incurred by the packets within the switch is the
forwarding (processing) time. However, anytime the matching
conditions are violated, in particular when two packets arrive
simultaneously destined to the same outgoing port, at least
one packet cannot be forwarded and must wait for its turn in
the next round of matching of input and output ports. Such
packets must incur an additional queuing delay at the switch.

In our system, there is a central flow scheduler that
maintains global knowledge of the network (e.g., topology,
propagation, and processing delays) and the set of active flows
(e.g., their periods, arrival schedule, allocated start time-slots).
Scheduling requests from the hosts come to the scheduler one
at a time, and each request is allocated its start time-slot upon
arrival. The scheduler makes new allocations without changing
the time-slot allocations of already scheduled flows. Hosts
start packet transmissions for their flow into the network at
precisely their allocated start time-slots. They also inform the
scheduler when their flows have been completed.

Let 7 denote the size of a time-slot (typically 100ns).
We denote the set of flows by F. Each flow f € F is
characterized by a tuple (T'(f), t(f), P(f)). Here T(f), which
denotes its period in time-slots, is sometimes expressed in the
more natural units of milliseconds. For flow f, ¢(f) denotes
the absolute time-slot, when it becomes ready to start packet
transmission. However, before flow f can start transmitting
its packets, it must be granted a start time-slot for its first
packet. Ideally this start time-slot s(f) should lie in the interval

'Smaller packets can be processed without any conflict within the same
time-slot size used for 125 byte packets.

f1:T(f) =6 ms, s(fy) =3ms p;. Arrivals at r
\4 Flow f4: 6,12,18,24,30 ..
Flow fp: 3,12,21,30 ..

I’g/ m

/,,, Controller 1
H\’S)—”\)\A
v Lz/
fo : T(fo) =9 ms, s(fp) =2 ms Controller2

. Arrivals at .
f1:T(f)) =6 ms, s(f1) =1 ms p(f _Len e
o ! (\14) Flow fy: 4,10,16,22,28

T
* 2ms r3 Flow f: 3,12,21,30,39 ... 7 T8)=H4{)
J—M\ /%A,,,\ W Controller 1

a5 —
£3 uz/ \)\fry 151

Controller 2

f2 : (fg) =9 ms, S(fg) =2ms

Fig. 2. Contentions at switch r4 happen at time-slots 12 and 30 for s(f1) =
3ms (top figure) but are avoided when s(f1) = 1ms (bottom figure).

[t(f),t(f) + T(f)] so as to not delay flow f by too much.
P(f) denotes the network path assigned to flow f. Let the set
of switches and links in the network be denoted by R and L
respectively with the propagation delay (in time-slot units) of
link [€ L denoted by PD(l) and the per packet processing
time (in time-slot units) of switch r € R denoted by PP(r).
Let D.,.(f) denotes the total propagation and processing delay
before a switch € R on the path P(f). Then for any k,

k—1
D?"k(f) :ZPD(Z

where [q,[o, ... are the links and rq, 75, ... are the switches
on P(f) and link I; = (r;,7,41) goes from switch 7; to 7;11.

Note that, if there is a link [= (rg,rp) that is shared
among paths P(f1) and P(f2) of different flows f, and fa,
then a queue may be needed to handle packet “contentions”
at switch r,. These contentions can happen, for instance, if
packets of flows f; and f arrive in the same time-slot at
ingress switch 7, of link [(as they must both depart through
the same outgoing port of switch r, corresponding to link 7).
This in turn may depend on the choice of start time-slots s(f1)
and s(fz) for the flows f; and f. For instance, for periodic
flows f; and f,, contention at switch r, is avoided if and only
if start time-slots s(f1) and s(f2) are selected, for which:

s(f1)+Dr, (f1)+ir-T(f1) # s(f2)+Dr, (f2)+i2-T(f2), (2)

for all choices of non-negative integers i; and ¢s. Our goal
is to assign start time-slots to flows to avoid such contentions
in order to eliminate the need for queuing at the switches.
Fig. 2, which shows two simple periodic flows, illustrates how
by assigning the right set of start time-slots to different flows,
contentions among them, and hence network queuing, can be
avoided.

k—1
i)+ Y PP(r), (1)
1=1

III. ALGORITHMS

In general, the wait-free scheduling problem is NP-hard
as it can be reduced to the NP-hard no-wait job scheduling
problem [5]. We, therefore, design fast heuristic algorithms

focusing on generating a wait-free schedule for this NP-hard
problem. Unlike [5] and [8] where the solution optimality
is evaluated by the overall make-span of the flows and by
link usage, respectively, our notion of an optimal solution is
when the generated schedule results in a wait-free operation.
Our main results are a greedy and a random scheduling
algorithm. Both these algorithms can operate in an online
mode, to quickly assign start time-slots to flows as they
arrive. The randomized algorithm can be used in situations
where somewhat faster scheduling is required, possibly even
at the expense of slightly lower solution quality (meaning the
solution is not 100% but is almost wait-free). For instance,
it may be used to quickly re-allocate start time-slots to flows,
whose start time-slot allocations no longer work, possibly after
re-routing due to network failures.

Checking for contentions among flows can be computation-
ally quite expensive. However, we make use of flow periodicity
to design a fast contention checking algorithm based on the
greatest common divisor (gcd) of time periods of pairs of
flows. We obtain further efficiencies by restricting contention
checking to a single switch on only one of the links shared
among flow paths. In addition, our algorithm carries out a
majority of its computation in advance, thereby speeding the
contention checking during flow scheduling. Finally, as we
show below, contention checking can be parallelized, with
almost a linear speedup.

We start with some basic notation. Recall that the goal is to
assign a start time-slot to flow f from the interval [¢t(f), ¢(f)+
T(f)]. We denote these candidate set of time-slots by C'(f).
Thus, there are |C(f)| = T'(f) candidate time-slots for f. The
flows in F' are arranged in their order of arrival f1, fo,.... We
denote by Fj;,i > 0 the first ¢ flows in F, with Fy = (). In
the following, lcm denotes least common multiplier and ged
denotes greatest common divisor. Let indicator variable dy, r,
be 1, if flows f; and f; share a link on their paths, and be 0
otherwise. We denote by 6(F;_1) the set of flows f; € F;_4
for which 6y, r, = 1. These are the only set of flows that need
to be evaluated for contention when scheduling flow f; as they
have a link in common with it. Note that the sets d(F;_1) may
be a much smaller subset of F;_;, as only a small portion of
the flows in F;_; may share a common link with flow f;.

A. Greedy algorithm

The flows are presented to the greedy algorithm (Algo-
rithm 1) in their order of arrival f1, fs,.... When processing
a flow f;, the greedy algorithm computes the quantity Q;(s),
for each possible start time-slot s € C(f;). Here Q;(s) is the
number of flows in §(F;_1) that f; will contend with, if it
were to start at time-slot s(f;) = s. Note that it is also a
measure of the queue sizes required at switches on the path
P(f;) for s(f;) = s. The greedy algorithm sets s(f;) to a time-
slot s in C(f;) for which Q;(s) is minimized. In Algorithm 1,
these time-slots are in the set (); (the argmin operator there
returns all time-slots s for which @;(s) is minimized). In the
case of ties, s(f;) is drawn randomly from the set @;. The
computation of the Q;(s) values is the most challenging part of

the algorithm. Later (Section III-C) we present a fast algorithm
for computing the Q;(s) values.

Algorithm 1 Greedy start time-slot assignment
: for i + 1 to |F| do
: Qi + argmin o (y,) Qi(s)

1

2

3 s(f:) « any random time-slot in Q;

4: end for

5: A < start time-slot assignments s(f1),s(f2),...
6: return A

B. Random algorithm

Just as is the case for the greedy algorithm, the flows are
presented to the random algorithm (Algorithm 2) in their order
of arrival f1, fa,.... However, when processing a flow f;
the random algorithm only evaluates @;(s) for a randomly
sampled subset of time-slots RC; C C(f;). It then assigns
s(fi) to be that time-slot s in RC; for which Q;(s) is
minimized (ties broken randomly). The time it takes to pick
the best time-slot s in RC); is proportional to the size n of the
set RC;, which is passed in as an argument to Algorithm 2.

Note that, in the random algorithm, there can be a tradeoff
between speed and quality. That is, for smaller values of n,
even though the random algorithm may run faster, the solution
it finds, may not always be wait-free. However we find that
even for n = 25, the random algorithm almost always delivers
a wait-free solution for up to 100000 flows, thus making 25 a
good choice for n in practice.

Algorithm 2 Random start time-slot assignment

1: procedure RANDOM(n)

2 for i < 1 to |F| do

3 RC; < n random slots from C(f;)
4: Qi + arg min e pe, Qi(s)

5: s(fi) < any random time-slot in @;
6

7

8

9:

end for
A < start time-slot assignments s(f1), s(f2), ...
return A

end procedure

C. Flow pair contention checking algorithm

Algorithms 1 and 2 require Q;(s) values for flow f;, for
all start time-slots s € C(f;). When flow f; is assigned start
time-slot s, we can determine whether the packets from flows
fi and any flow f; € §(F;_1) can arrive simultaneously at
any of the ingress switches r on the common links between
paths P(f;) and P(f;), by checking for it in all the time-
slots in one lcm of their periods. However, computationally
this can be very expensive. For instance, consider checking
10000 flows f; € 6(F;—1) against 100000 time-slots s in
C(f:) (assuming T'(f;) = 10ms flow period and time-slots
of size 7 = 100ns). This checking has to be done for each of
the lem(T(fi), T(f;)) > 100000 time-slots ¢ (as that is the
number of time-slots in the common period of the two flows).
Thus, even if flow paths share only one link on the average,
the number of computations required makes this “brute force”
approach highly intractable.

We design an efficient algorithm by leveraging some prop-
erties of the solution which are established before. First, for
flows f; and flow f; € 0(F;_1), we only check for contention
at the ingress switch 7 on the first common link among their
paths. This follows from Theorem 1 whose proof is omitted.

Theorem 1. Let e1,es,... be the set of common links on
the paths P(f1) and P(fs) for the flows f1 and fs. These
links ey, es, ... form a single connected path SP (merge only
once) [13]. Furthermore, flows f1 and fo contend if and only
if they contend on the ingress switch of the first link on their
shared sub-path, where their paths merge.

Second, we use the fact, derived using Bézout’s Iden-
tity [11], (proof omitted) that there is at least one contention
at switch r, among packets of flow f; with transmission time-
slots t1, 61 +T'(fi),t1+2T(f;) ... and packets of flow f; with
transmission time-slots t2,to + T'(f;),t2 + 27(f;) ..., if and
only if the following delay differential equality is satisfied:

t+ Dy(f) = (t2+ Do(f;)) =0 mod ged(T(£), T(f;)).
3)

In the rest of this section we use the terms GCD and
gcd(T(f;),T(f;)) interchangeably. The algorithm works by
keeping an array for the ;(s) values, corresponding to
the time-slots C(f;), initialized to all zeros. It then picks
t = GCD — rem, where rem is the non-negative remainder:

rem = (D.(fi) — (s(f;) + Dr(f;))) mod GCD. (4)

Note that, (3) is satisfied for t; = ¢ and t; = s(f;). Thus,
with start time-slot ¢ for flow f;, at least one of its packets that
arrive at time ¢+ k1 T(f;), for integers k1, will contend with at
least one of the packets for flow f; at switch r (the ones that
arrive at time s(f;) + k2T'(f;) for integers k). In particular,
this contention will happen with any of the starting time-slots
t,t+GCD,t+2GCD,. .. for flow f;. The algorithm therefore
increments the positions in the array for the Q;(s) values
corresponding to these time-slots. By doing this, the algorithm
is able to identify all starting time-slots for flow f;, for which
it will contend with flow f;. It repeats this process for all
flows f; € 6(Fi—1).

Algorithm 3 Contention detection

1: procedure COMPUTECONTENTION(%)

2 Q; < array of size T'(f;) initialized to zeros

3 for fj S (5(Fi71) do

4: r « first_ingress_switch (P(f:), P(f;))

5: rem <« Dy(fi) — (s(f;) + D-(f;)) mod GCD
6
7
8

t<+ GCD —rem

T(fi)—t
K« { GCD J]{
for £ €0,1,... K do

0: Qi(t + kGCD) + Qi(t + kGCD) +1
10: end for
11: end for

12: return Q;
13: end procedure

Running time of Algorithm 3: The time it takes to compute
contending starting time-slots t,t + GC'D,t + 2GCD, ... for

a given pair (to,tp) is T(f;)/GCD. This is done for every
flow f; € 6(F;—1). The total time for this is bounded by:

z T(fi)

fi€d(Fi—1) ng(T(fi)’ T(fj)) '

Note that, as the computation for different flows f; €
0(F;—1) can be carried out independently, linear speedup is
possible with the use of multiple processors. Thus the overall
time to compute ;(s) for Algorithms 1 and 2, with P
processors, is upper bounded by:

1
OFZ

fi€6(Fi—1)

®)

T(fi)
ged(T(f3), T(f;))

(6)

" T(f:) i
Furthermore, note the quantities G dT)T,y e typi

cally small in practice. For instance, for T(f;) = 5ms or
50000 time-slots and T'(f;) = 3ms or 30000 time-slots
m = 5. Thus the running time of the Algorithm 3
is mainly O(+|0(F;—1)|).

Running time of Algorithm 1: For scheduling flow f;, in
addition to computing the Q;(s) values, the greedy algorithm
needs to find the time-slots s for which @;(s) is minimum.
This takes an additional T'(f;) time serially, as that is the
number of potential start time-slots for flow f;. With P
processors a speedup of almost P is possible for computing
the minimum. Thus the running time of the greedy algorithm,
for the i-th flow, with P processors, is upper bounded by:

T(f) 1
P P Z

T(f;
1 ()
fi€6(Fi—1

| 9ed(T (1), ()

Running time of Algorithm 2: Just like the greedy algo-
rithm, the random algorithm needs to find the time-slots s for
which @Q;(s) is minimum. However for the random algorithm
this step takes only n/P time with P processors, which is a
small constant (as n may only be 25). Thus, the running time
of the random algorithm for the ¢-th flow, with P processors,
is upper bounded by:

n 1

ol =+ =
FYF X 5
fi€8(Fi-1)

O

)

T(f)
d(T'(f), T(f;))

(®)

D. Other Considerations

Incremental updates: Note that both our algorithms natu-
rally support incremental addition or deletion of flows. For
both the algorithms, only the sets F; need to be updated,
either to add a new flow or to delete an existing flow. These
operations can be supported in constant time with a data
structure for fast insertion and deletion.

Handling Contention: In some cases, especially when the
number of flows is very large (for high flow loads), the
algorithms may fail to find a wait-free solution. In this case,
one option is to increase the switch capacity reserved for TSN
flows. The other option is to use an admission control policy.
One possibility is to outright reject any flows that cannot be

admitted without a contention. The other option is to reject
flows, only if admitting them would make the number of flow
contentions exceed a threshold. Although the schedule may not
be wait-free, the worst case jitter may still be kept in check
because the maximum contention experienced by admitted
flows is limited. Also, in many industrial applications, there is
tolerance against packet losses, particularly if the losses are not
bursty [14]. For such applications, packets may be selectively
dropped, which may help eliminate or limit contention. For
instance, for two contending flows that have the same period,
by alternately dropping their packets, their contentions can be
completely eliminated, while also avoiding contiguous packet
losses. In general though, much more sophisticated packet
dropping schedules may be needed to avoid any unnecessary
packet drops. Finally, other options such as sending some flow
packets on alternate paths, may also be employed for avoiding
contention [14].

IV. PERFORMANCE EVALUATION

We evaluate our algorithms in three different networks A,
B, and C, where the former one is undirected and the latter
two are directed. There are 59 nodes connected by 96 links in
A, whereas there are 81 nodes and 296 links in B and finally,
33 nodes and 100 links in C. The average path-lengths of the
networks A, B, and C are 4.46, 5.01, and 4.75, respectively.

We evaluate and compare the performances of the random
and the greedy algorithms. We use three different sampling
sizes, n = {5, 25,100}, for the random algorithm in order to
illustrate the trade-off between the solution run-time and the
solution quality. We focus on three different performance met-
rics, namely scheduling duration of an arriving flow, expected
number of conflicts that will be caused by an arriving flow,
expected number of maximum conflict that will be experienced
by any flow in the system. We run 100 randomly generated
experiments. For every experiment, we generate 100000 flows
each with a random period between 1 ms to 100 ms, a random
source node, and a random destination node that is different
from the source. Our choices are guided by the number and
type of flows expected in an industrial network.

We assume the network controller completed the pre-
computation (shortest path routing, link propagation delays,
and processing delays) before the arrival of the first flow. The
total pre-computation times for the networks A, B, and C are
35.6, 137.3, and 3.6 seconds, respectively. We schedule the
incoming flows based on their order of arrival and record the
run-time of the scheduling algorithm. The reported scheduling
duration in Fig. 3(a) is the smoothed plot of the average
scheduling duration of the i-th flow over the 100 experiments.
Fig. 3(b) illustrates that the average number of contentions
experienced by the i-th flow over the 100 experiments. For a
fair comparison, we evaluate all our algorithms on the same set
of ordered flows, within an experiment. As seen from Fig. 3(a)
and Fig. 3(b), the greedy algorithm has the longest run-time,
but always finds a contention free solution. The run-time of
the random algorithm has a proportional relationship with the
size n of the random set RC;. However, the improved speed

a)

b) <)

0.12 3
_ Topology, Algorithm Topology, Algorithm Topology, Algorithm
2 @ A Greedy w0251 -@- A, Greedy -@- A Greedy
E -%- A, Random 5 z -%- A, Random 5 _ 304 "% A Random5
'; 01079 @ A, Random 25 = - A Random 25 T B A Random 25
o - A, Random 100 T 4k A, Random 100 w 4k A Random 100
k=S 4 B, Greedy @ 0201 ¢ B, Greedy S 2.5{ @ B, Greedy
£ 0.081 -4 B, Random 5 S -4 B, Random 5 k= -4 B, Random 5
g A B, Random 25 i} A B, Random 25 8 A B, Random 25
19 B, Random 100 2 B, Random 100 5 20 B, Random 100
£ £ 015 x S
= 0.06 C, Greedy 15 C, Greedy c C, Greedy
© C, Random 5 ° C, Random 5 5 C, Random 5
% -@- C,Random 25 . ° -@- C, Random 25 x/ + £ 151 -@ C Random 25
kA -#- C, Random 100 “” g 0101 - C Random 100 F -#- C, Random 100
£ 004 o £
? / § Wl o 10 el
o < E x/
v T o005 - . 1] &
g 002 e X7 £ 05 I
- 1 P = w %
< < T Yod f
2 . Y . " e {
0.00] # 0.00 M o . 0.0 1S -
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

Number of flows in the system

Number of flows in the system

Number of flows in the system

Fig. 3. a) The time to schedule an incoming flow increases linearly with the number of flows in the system. The greedy algorithm has the longest run-time.
As the sampling size of the random algorithm decreased the run-time is reduced. b) The expected number of conflicts caused by an incoming flow is the
lowest for the greedy algorithm and the highest for the random 5 algorithm. As the sampling size of the random algorithm decreased, the run-time is reduced.
This in turn increases the average number of conflicts caused by the incoming flows. ¢) The expected number of maximum contentions experienced by the
flows in the system. The random 5 algorithm can schedule 100000 flows with 3 — 4 maximum conflicts per flow.

of the random algorithm comes at the expense of marginally
higher contentions. Thus, when small amounts of jitter can be
tolerated or handled with previously mentioned methods i.e.,
admission control, additional switch capacity, or packet drops
(see Section III-D), random algorithms may be used for faster
scheduling.

Random algorithms limit the search space significantly and
may miss out on a wait-free schedule opportunity, but in
practice, they can find wait-free schedules even for a large
number of flows: up to 25000 flows for n = 5 and 80000
flows for n = 100. To further illustrate the solution quality of
the algorithms, we present the expected number of maximum
conflicts experienced by a flow in the system in Fig. 3(c). The
greedy algorithm can schedule all 100000 flows without any
conflicts. Random 5 algorithm can schedule the 100000 flows
with only a maximum of 3 or 4 conflicts per flow. Note that
the reported number of conflicts is only an upper bound on the
actual conflicts within individual switches (the number of flow
arrivals on any common time-slot at any switch). The actual
contention within the switches may be much lower than this
upper bound 2.

V. CONCLUSION

We designed and evaluated fast greedy and random algo-
rithms for wait-free scheduling of periodic flows in TSN. For
this, we introduced a contention checking algorithm that makes
novel use of Bézout’s identity combined with fast processing
of network delays and already scheduled flows to quickly
eliminate possible conflicting start time-slots. Compared to
prior ILP based algorithms, that are only able to handle a
few hundred flows, our greedy algorithm easily scales to
hundreds of thousands of flows. Our random algorithm offers
additional tuning for the solution quality vs. run-time trade-
off. In our simulations for up to 100000 flows, the greedy

2For example, even if a flow conflicts with two other flows, that does not
necessarily mean all three flows will arrive at a switch at a common time-
slot. Consider flows f%, fi, fm with periods (in time-slot units) 7'(fx)
15, T(f;) = 6, T(fm) = 10 and delays D, (fr) = 10, D.(f;) = 1,
D, (fm) = 0, respectively. Flows fj and f; conflict at ¢ = 25, and flows f}
and fp, conflict at ¢ = 40 but flows f; and f;, do not conflict.

algorithm always finds a wait-free solution and the faster
random algorithm delivers almost wait-free schedules.

ACKNOWLEDGMENTS

This work was supported in part by NYU Wireless, an Ernst
Weber Fellowship, and by the NY State Center for Advanced
Technology in Telecommunications (CATT).

REFERENCES

[1] E. Tovar and F. Vasques, “Real-time Fieldbus communications using
Profibus networks,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1241—
1251, 1999.

N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic networking
architecture,” Internet Requests for Comments, RFC Editor, RFC 8655,
2019. [Online]. Available: https://datatracker.ietf.org/doc/rfc8655
“IEEE Standard for Local and metropolitan area networks — Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” IEEE Std 802.1Qbv-2015, pp. 1-57, 2016.

“IEEE standard for local and metropolitan area networks—timing and
synchronization for time-sensitive applications,” IEEE Std 802.1AS-2020
(Revision of IEEE Std 802.1AS-2011), pp. 1-421, 2020.

F. Diirr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proc. ACM Int. Conf. Real Time Netw.
Syst., Brest, France, 2016, p. 203-212.

J. Falk, F. Diirr, and K. Rothermel, “Exploring practical limitations of
joint routing and scheduling for TSN with ILP,” in Proc. IEEE 24th Int.
Conf. Embedded Real-Time Comput. Syst. Appl., 2018, pp. 136-146.
N. G. Nayak, F. Diirr, and K. Rothermel, “Time-sensitive software-
defined network (TSSDN) for real-time applications,” in Proc. ACM Int.
Conf. Real Time Netw. Syst. Brest, France: ACM, 2016, p. 193-202.
N. G. Nayak, F. Diirr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans.
Ind. Informat., vol. 14, no. 5, pp. 2066-2075, 2018.

D. Hellmanns, L. Haug, M. Hildebrand, F. Diirr, S. Kehrer, and R. Hum-
men, “How to optimize joint routing and scheduling models for TSN
using integer linear programming,” in Proc. ACM Int. Conf. Real Time
Netw. Syst., Nantes, France, 2021.

R. Macchiaroli, S. Mole, and S. Riemma, “Modelling and optimization
of industrial manufacturing processes subject to no-wait constraints,”
Int. J. Prod. Res., vol. 37, pp. 2585-2607, 11 2010.

G. A. Jones and J. M. Jones, Elementary number theory. New York:
Springer-Verlag, 1998.

5G ACIA, “5G for connected industries and automation,” 5G-ACIA,
Tech. Rep., February 2019. [Online]. Available: https://bit.ly/3vfaBKp
G. Bodwin, “On the structure of unique shortest paths in graphs,” in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2019, pp. 2071-2089.

J. Gebert and A. Wich, “Alternating transmission of packets in dual
connectivity for periodic deterministic communication utilising survival
time,” in 29th European Conf. on Netw. and Commun. (ECNC), 2020.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]
[12]

[13]

[14]

