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Abstract. Atomic Commitment Protocol (ACP) is an important part for any 
distributed transaction. ACPs have been proposed for homogeneous and 
heterogeneous distributed database management systems (DBMS). ACPs 
designed for these DBMS do not meet the requirement of Grid databases. 
Homogeneous DBMS are synchronous and tightly coupled while 
heterogeneous DBMS, like multidatabase systems, requires a top layer of 
multidatabase management system to manage distributed transactions. These 
ACPs either become too restrictive or need some changes in participating 
DBMS, which may not be acceptable in Grid Environment. In this paper we 
identify requirements for Grid database systems and then propose an ACP for 
grid databases, Grid- Atomic Commitment Protocol (Grid-ACP). 

 

1 Introduction 

Atomic commitment is one of the important requirements for transactions executing in 
distributed environments. Among Atomicity, Consistency, Isolation and Durability 
(ACID) [4] properties of a transaction, Atomic Commitment Protocols (ACP) 
preserves the atomicity of transaction running in distributed environment. Two-phase 
Commit (2PC) and its variants are widely accepted as ACP for transactions running in 
distributed data repositories [2,3,14]. These data repositories are considered to be 
homogeneous, tightly integrated and synchronous. 

Grid infrastructure [7,8], a new and evolving computing infrastructure promises to 
support collaborative, autonomously evolved, heterogeneous, data intensive 
applications. Grid databases would access distributed resources in general and 
distributed data repositories in particular. Thus, protocols developed for 
homogeneous distributed architecture will not work in the Grid infrastructure. Hence 
classical approaches of data management need to be revisited to address challenges of 
grid databases. 

Transaction management is critical in any data based application, be it simple file 
management system or structured Database Management Systems (DBMS). 
Transaction management is responsible to manage concurrency control and reliability 



 

    
 

 
 

protocols. Many applications will not need transactional support, i.e. ACID 
properties, while executing on Grids e.g. Business Activities [12]. Our earlier work 
was focused on concurrency control in Grid environment [17]. In this paper we 
particularly focus on ACP in Grid environment. 

Grid databases [1,2] are expected to store large data from scientific 
experimentations viz. astronomical analysis, high-energy physics [16], weather 
forecasting, earth movement etc. These experiments generate huge volume of data 
daily. Particle physics experiments, e.g. Babar, may need to store up to 500 GB of 
data each day and is arguably world’s largest database that stores approx. 895 TB of 
data as of today (Mar ‘04) [15]. Wider research community is interested in generic 
data collected at various data collecting sites [1,10,13,15]. Distributed access to data 
raises many issues like security, integrity constraints, manageability, accounting, 
replication etc. But, here we will be mainly concerned with managing the transaction 
in Grids and its requirement of atomic commitment. In this paper distributed database 
is used in a broader sense to cover distributed/federated/multidatabase systems, since 
all these accesses data located at physically distributed sites, unless otherwise stated. 

The remainder of the paper is organized as follows. Section 2 explains the 
background work in distributed DBMS. Section-3 explains the working model and 
identifies the problem in applying existing ACP in the Grid model. We propose the 
Grid-ACP to meet Grid requirement for ACPs in section-4 along with proof of 
correctness of the protocol. Section-5 concludes the work and explains future work. 

2 Background 

Atomic commitment is an important requirement of transactions running in distributed 
environment. All cohort of distributed transaction should either commit or abort to 
maintain the atomicity property of the transaction and thus consequently maintain the 
correctness of stored data. We broadly classify distributed DB systems in two 
categories: (a) Homogeneous and (b) Heterogeneous distributed DBMS. Detailed 
classification can be found in [14]. 

2.1 Homogeneous Distributed Database 

2PC [4] is the simplest and most popular ACP proposed in the literature to achieve 
atomicity in homogeneous DBMS [3,14]. We briefly discuss 2PC from the literature 
to help our further discussion. The site where the transaction originates acts as 
coordinator for that transaction; all other sites where data is accessed are 
participants. 2PC works as follows [4]: 

The coordinator sends vote_request to all the participating sites. After receiving a 
request the site responds by sending its vote, yes or no. If the participant voted yes, it 
enters in prepared (or ready) state and waits for final decision from the coordinator. If 
the vote was no, the participant can abort its part of the transaction. After collecting 
all the votes, if all of them including the coordinator’s vote are yes then the 
coordinator decides to commit and send the message accordingly to all the sites. Even 



 

    
 

 
 

if, one of the votes is no the coordinator decides to abort the whole transaction. After 
receiving commit or abort decision from the coordinator, the participant commits or 
aborts accordingly from prepared state. While the participant is in prepared state it is 
uncertain of the final decision from the coordinator. Hence 2PC is called as a 
blocking protocol.  

2.2 Heterogeneous Distributed Database 

Multidatabase systems assume heterogeneous environment [5,9] for transaction 
execution. They typically execute a top layer of multidatabase management system for 
transaction management. These systems are designed for certain application specific 
requirements and mostly for short and synchronous transactions. Due to high 
autonomy (design and execution) requirements in multidatabase systems, the ACPs 
are not designed for replicated data. Thus these protocols are not suitable for Grid 
environment. In literature [9] following major strategies are discussed for atomic 
commitment of distributed transaction in heterogeneous database environment: (1) 
Redo (2) Retry (3) Compensate. 

Since all sites may not support prepare-to-commit state and thus even if global 
transaction decides to commit, some local sub-transaction may decide to abort while 
others may decide to commit. Hence, transactions that decided to abort must redo the 
write operation, and commit, to reach consistent global decision [9]. Another 
approach to deal with above problem is the retry approach, as discussed in [9]. In 
retry approach, the whole subtransaction is retried rather than redoing only the write 
operations. Inherent limitation of this approach is that the subtransaction must be 
retriable. A subtransaction is retriable only if the top layer of multidatabase system 
has saved the execution state of the aborted subtransaction. If the global decision is to 
abort and any local subtransaction has already committed, then compensating 
transactions can be executed [9]. Compensating transactions also need to access 
information stored in global DBMSs. 

3 Grid Database Model and Problem Identification 

In this section we first discuss the general model and terminology that we use in our 
study. Then we discuss the problem in implementing standard ACPs in this model. 

3.1 Model 

The Grid middleware will join geographically separate computing and data resources. 
Concept of virtual organization (VO) [7] has been coined for integrating 
organizations over network. Grid infrastructure is expected to support and make use 
of web-services for specialized purposes. We focus on the collaborative, data 
intensive work that need to access data from geographically separated sites. The 
general model is shown below: 
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Fig. 1. General model of Grid database system 

All individual database systems are autonomously evolved and hence 
heterogeneous in nature. These database systems may join and leave the Grid as per 
their convenience. A transaction is termed as global transaction if it originates at any 
site and need to access data from other sites, in other terms if the transaction has to 
access data from more than one site it is a global transaction. The division of the 
global transaction at individual sites are called subtransactions.  

3.2 Problem Identification 

2PC is the most widely accepted ACP in distributed databases. 2PC is a consensus-
based protocol that asks all the participating sites to vote whether subtransactions 
running at that site can commit. After collecting and analyzing all votes, the 
coordinator decides the fortune of the distributed transaction. It involves two phases, 
voting phase and decision phase, of communication messages before terminating the 
transaction atomically, hence the name two-phase commit.  

Many variations and optimizations have been proposed to increase the 
performance of 2PC. But, homogeneity between sites is the basic assumption behind 
the originally proposed 2PC for distributed databases. Multi/federated database 
systems are heterogeneous but the nature of transactions and applications these 
heterogeneous database systems are studied, designed and optimized are much 
different than their counterparts in Grid databases, e.g. for short, synchronized, non-
collaborative transactions, to name few of them. These systems have a leverage of a 
top level layer, known as multidatabase management system that assists in making 
decision but Grids may not enjoy this facility due to distributed nature of database 
systems. Multidatabase employs redo, retry and compensate approach for ACP. These 
requirements may not be implemented in absence of top-layer management system 
and at the same time may be too restrictive [6]. Grid databases need to operate in a 
loosely coupled service-oriented architecture. Apart from data consistency 
perspective Grid databases will be expected to access data from via WWW [11,12]. 
Most of the distributed DBMSs are not designed to operate in WWW environment. 



 

    
 

 
 

4 Proposed Protocol 

As discussed earlier, requirements of Grid DB systems cannot be satisfied by existing 
distributed DBMS. In this section we propose an ACP to meet these requirements. 

4.1 Grid Atomic Commitment Protocol (Grid-ACP) 

Before we proceed with the protocol we would like to remind that executing 
compensating transactions don’ t result in standard atomicity of transaction. The 
notion is referred as semantic atomicity [9].  

Figure-2 shows the state diagram of proposed Grid-Atomic Commitment Protocol 
(Grid-ATC). We introduce a new state and call it sleep state. The sub-transaction will 
enter in sleep state, when it finishes execution and is ready to release all acquired 
resources. Sleep state is an indication to transaction managers that the local sub-
transaction of global transaction has committed. But it is still waiting for decision 
from the originator of the transaction. If any of the other participating sites aborts the 
subtransaction, the coordinator informs all the sleeping sites to compensate the 
changes made by the transaction.  

State diagram of participating site 

Running 

Wait 

Commit Pre-Abort 

Abort 

Running 

Sleep 

Commit 

Abort 

Compensate 

State diagram transaction originator  

Fig. 2. State diagram of Grid-ATC 

The Grid-ATC algorithm is explained as follows: 

1. The transaction originator splits the transaction based on the information at 
Grid-middleware service and submits to participating database systems. 

2. Respecting the autonomy of participating sites, they execute their portion of sub-
transaction and goes to sleep state, after logging all the necessary compensating 
information in the stable storage. The site then informs the outcome of the sub-
transaction execution to the originator. 

3. The originator, after collecting response from all participants, then decides 
whether to commit or to abort. If all participants decided to go in sleep state the 
decision is to commit else the decision is to abort. If the decision is to abort, 
message is sent only to those participants who are in sleep state. If the decision 
is to commit, it is sent to all participants. 

4a. If the local site decided to commit and is in sleep state and the global decision is 
also to commit, the transaction can directly go to commit state. As everything 
went as expected by the local site. 



 

    
 

 
 

Grid-ACP: Originator’s Algorithm 

submit sub-transactions to participants; 
wait for response from all participants; 
if all response to sleep then begin 
  write commit record in log; 
  send global_commit to all participants; 
end if 
else begin 
  write abort record in log; 
  send global_abort to participants who decided to commit 
  wait for response from these participants; 
end 
return 
   
Grid-ACP: Participant’s Algorithm 

received sub-transaction from originator 
if participant decides to commit then begin 
  write sleep in log 
  send commit decision to originator 
  wait for decision from originator 
  if decision is commit then  

write commit in log 
end if 

end if 
else if decision is abort then begin 
  start compensating transaction for this transaction 
line 10: if compensating transaction aborts then begin 
   restart compensating transaction until it commits 
   write commit for compensating transaction 
  end if 
  else  
   write commit for compensating transaction 
  end 
end if 
else if participant decides to abort then begin 
  write abort in log 
  send abort decision to originator 
end if 
return 

4b. If the local site decided to commit and is in sleep state but the global decision is 
to abort the transaction, then the local transaction must be aborted. But as 
mentioned earlier when the local site enters the sleep state it releases all locks on 
data items as well as all acquired resources. This makes abortion of transaction 
impossible. Hence, a compensating transaction must be executed to revert all the 
changes, using compensation rules, to restore the semantics of database before 
executing the original subtransaction, thus achieving semantic atomicity. If the 
compensating transaction fails, it is resubmitted. We are not defining the 
compensation rules as they are out of scope of the paper. 

Maintaining autonomy of local sites is primary in Grid environment. Considering 
that, different sites may employ different protocols for serializability as well. Some 
sites may employ locking protocols while others may employ timestamping or 



 

    
 

 
 

optimistic concurrency control strategy at local sites. Thus, in presence of such an 
autonomous and heterogeneous environment in Grids and absence of a top-layer 
management system it may be impossible to avoid cascading aborts. The proposed 
sleep state restricts the number of cascading aborts. We would also like to highlight 
that the sleep state does not interfere with the autonomy of the local sites. 
Implementing this state does not need any modification in local transaction manager 
module. Whenever the site decides to join the Grid, the sleep state may be defined in 
the interface and hence no changes are required in any local modules. 

We briefly discuss the time and message complexity of the proposed algorithm. 
Grid-ACP needs 2 rounds (time complexity) of message under normal conditions: (1) 
after the local sites decide to commit/abort (2) the decision from the originator. 
Maximum number of messages required is 2n (message complexity) to reach a 
consistent decision under normal conditions i.e. without failure. Where n is the 
number of participants in ACP. Considering that originator sends the final decision to 
all the sites, the number of messages in each round is n. 

4.2 Correctness of Proposed Protocol 

We show the correctness of our ACP by following lemma: 

Lemma 1: All participating sites reach the same final decision. 
Proof: We prove this lemma in two parts, part-I for consistent commit and part-II 

for consistent abort. 
Part I: In this part we show that when the global decision is to commit, all 

participant commits. From step-2 of the algorithm it is clear that the participants 
execute autonomously. If local decision is to commit, the information is logged in the 
stable storage and the subtransaction goes in sleep state after sending a message to the 
originator. If the originator of the transaction finds all commit decision in response, it 
sends the final commit to all participants. In this case the participant is not required to 
do any action as all resources were already released when the participant entered the 
sleep state. Participant just has to mark the migration of state from sleep to commit. 

Part II: The participants have to do more to achieve this part. In this part we show 
that if the global decision is abort all participants decides to abort. All participants 
that decided to commit now receives abort decision from the originator. Those 
participants decided to abort have already decided to abort unilaterally. Those 
subtransactions that decided to commit, have already released locks on data items and 
cannot be aborted. Hence, compensating transactions are constructed using the event-
condition-action or the compensation rules. These compensating transactions are then 
executed to achieve the semantic atomicity (step-4b of the algorithm). To achieve 
semantic atomicity the compensating transaction must commit. If the compensating 
transaction aborts for some reason it is re-executed until it commits. The 
compensating transaction has to eventually commit, as it is a logical inverse of a 
committed transaction. This is shown in the state diagram by self-referring 
compensate state and line-10 of the participant’s algorithm. Though the compensating 
transaction commits, the semantic of the subtransaction is abort. Thus all participants 
terminate with consistent decision.                        



 

    
 

 
 

5 Conclusion 

We have seen that ACP proposed or homogeneous DBMS e.g. 2PC is not suitable for 
autonomously evolved heterogeneous Grid databases. Strategies for traditional 
heterogeneous DBMS like multidatabase management system are too restrictive and 
need a global management system. We have proposed an ACP to meet Grid database 
requirements that uses sleep state for participating sites. The proposed sleep state will 
also help in putting a cap on the number of aborting transactions. We also 
demonstrated correctness of the proposed protocol. In future we intend to quantify 
and optimize the capping values of the protocol. 
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