

Atomic Commitment in Grid Database Systems

Sushant Goel1 Hema Sharda2 David Taniar3

1,2 School of Electrical and Computer Systems Engineering, Royal Melbourne Institute of
Technology, Australia

1s2013070@student.rmit.edu.au
 2hema.sharda@rmit.edu.au

3 School of Business Systems, Monash University, Australia
David.Taniar@infotech.monash.edu.au

Abstract. Atomic Commitment Protocol (ACP) is an important part for any
distributed transaction. ACPs have been proposed for homogeneous and
heterogeneous distributed database management systems (DBMS). ACPs
designed for these DBMS do not meet the requirement of Grid databases.
Homogeneous DBMS are synchronous and tightly coupled while
heterogeneous DBMS, like multidatabase systems, requires a top layer of
multidatabase management system to manage distributed transactions. These
ACPs either become too restrictive or need some changes in participating
DBMS, which may not be acceptable in Grid Environment. In this paper we
identify requirements for Grid database systems and then propose an ACP for
grid databases, Grid- Atomic Commitment Protocol (Grid-ACP).

1 Introduction

Atomic commitment is one of the important requirements for transactions executing in
distributed environments. Among Atomicity, Consistency, Isolation and Durability
(ACID) [4] properties of a transaction, Atomic Commitment Protocols (ACP)
preserves the atomicity of transaction running in distributed environment. Two-phase
Commit (2PC) and its variants are widely accepted as ACP for transactions running in
distributed data repositories [2,3,14]. These data repositories are considered to be
homogeneous, tightly integrated and synchronous.

Grid infrastructure [7,8], a new and evolving computing infrastructure promises to
support collaborative, autonomously evolved, heterogeneous, data intensive
applications. Grid databases would access distributed resources in general and
distributed data repositories in particular. Thus, protocols developed for
homogeneous distributed architecture will not work in the Grid infrastructure. Hence
classical approaches of data management need to be revisited to address challenges of
grid databases.

Transaction management is critical in any data based application, be it simple file
management system or structured Database Management Systems (DBMS).
Transaction management is responsible to manage concurrency control and reliability

protocols. Many applications will not need transactional support, i.e. ACID
properties, while executing on Grids e.g. Business Activities [12]. Our earlier work
was focused on concurrency control in Grid environment [17]. In this paper we
particularly focus on ACP in Grid environment.

Grid databases [1,2] are expected to store large data from scientific
experimentations viz. astronomical analysis, high-energy physics [16], weather
forecasting, earth movement etc. These experiments generate huge volume of data
daily. Particle physics experiments, e.g. Babar, may need to store up to 500 GB of
data each day and is arguably world’s largest database that stores approx. 895 TB of
data as of today (Mar ‘04) [15]. Wider research community is interested in generic
data collected at various data collecting sites [1,10,13,15]. Distributed access to data
raises many issues like security, integrity constraints, manageability, accounting,
replication etc. But, here we will be mainly concerned with managing the transaction
in Grids and its requirement of atomic commitment. In this paper distributed database
is used in a broader sense to cover distributed/federated/multidatabase systems, since
all these accesses data located at physically distributed sites, unless otherwise stated.

The remainder of the paper is organized as follows. Section 2 explains the
background work in distributed DBMS. Section-3 explains the working model and
identifies the problem in applying existing ACP in the Grid model. We propose the
Grid-ACP to meet Grid requirement for ACPs in section-4 along with proof of
correctness of the protocol. Section-5 concludes the work and explains future work.

2 Background

Atomic commitment is an important requirement of transactions running in distributed
environment. All cohort of distributed transaction should either commit or abort to
maintain the atomicity property of the transaction and thus consequently maintain the
correctness of stored data. We broadly classify distributed DB systems in two
categories: (a) Homogeneous and (b) Heterogeneous distributed DBMS. Detailed
classification can be found in [14].

2.1 Homogeneous Distributed Database

2PC [4] is the simplest and most popular ACP proposed in the literature to achieve
atomicity in homogeneous DBMS [3,14]. We briefly discuss 2PC from the literature
to help our further discussion. The site where the transaction originates acts as
coordinator for that transaction; all other sites where data is accessed are
participants. 2PC works as follows [4]:

The coordinator sends vote_request to all the participating sites. After receiving a
request the site responds by sending its vote, yes or no. If the participant voted yes, it
enters in prepared (or ready) state and waits for final decision from the coordinator. If
the vote was no, the participant can abort its part of the transaction. After collecting
all the votes, if all of them including the coordinator’s vote are yes then the
coordinator decides to commit and send the message accordingly to all the sites. Even

if, one of the votes is no the coordinator decides to abort the whole transaction. After
receiving commit or abort decision from the coordinator, the participant commits or
aborts accordingly from prepared state. While the participant is in prepared state it is
uncertain of the final decision from the coordinator. Hence 2PC is called as a
blocking protocol.

2.2 Heterogeneous Distributed Database

Multidatabase systems assume heterogeneous environment [5,9] for transaction
execution. They typically execute a top layer of multidatabase management system for
transaction management. These systems are designed for certain application specific
requirements and mostly for short and synchronous transactions. Due to high
autonomy (design and execution) requirements in multidatabase systems, the ACPs
are not designed for replicated data. Thus these protocols are not suitable for Grid
environment. In literature [9] following major strategies are discussed for atomic
commitment of distributed transaction in heterogeneous database environment: (1)
Redo (2) Retry (3) Compensate.

Since all sites may not support prepare-to-commit state and thus even if global
transaction decides to commit, some local sub-transaction may decide to abort while
others may decide to commit. Hence, transactions that decided to abort must redo the
write operation, and commit, to reach consistent global decision [9]. Another
approach to deal with above problem is the retry approach, as discussed in [9]. In
retry approach, the whole subtransaction is retried rather than redoing only the write
operations. Inherent limitation of this approach is that the subtransaction must be
retriable. A subtransaction is retriable only if the top layer of multidatabase system
has saved the execution state of the aborted subtransaction. If the global decision is to
abort and any local subtransaction has already committed, then compensating
transactions can be executed [9]. Compensating transactions also need to access
information stored in global DBMSs.

3 Grid Database Model and Problem Identification

In this section we first discuss the general model and terminology that we use in our
study. Then we discuss the problem in implementing standard ACPs in this model.

3.1 Model

The Grid middleware will join geographically separate computing and data resources.
Concept of virtual organization (VO) [7] has been coined for integrating
organizations over network. Grid infrastructure is expected to support and make use
of web-services for specialized purposes. We focus on the collaborative, data
intensive work that need to access data from geographically separated sites. The
general model is shown below:

�

Interface to Grid Interface to Grid

Interface to Grid Interface to Grid

DB 1

DB 3 DB n

DB 2

Security Services

M etadata
Catalogues

Coherency Control

Replica
M anagement

Grid M iddleware’ s
Other Services

Fig. 1. General model of Grid database system

All individual database systems are autonomously evolved and hence
heterogeneous in nature. These database systems may join and leave the Grid as per
their convenience. A transaction is termed as global transaction if it originates at any
site and need to access data from other sites, in other terms if the transaction has to
access data from more than one site it is a global transaction. The division of the
global transaction at individual sites are called subtransactions.

3.2 Problem Identification

2PC is the most widely accepted ACP in distributed databases. 2PC is a consensus-
based protocol that asks all the participating sites to vote whether subtransactions
running at that site can commit. After collecting and analyzing all votes, the
coordinator decides the fortune of the distributed transaction. It involves two phases,
voting phase and decision phase, of communication messages before terminating the
transaction atomically, hence the name two-phase commit.

Many variations and optimizations have been proposed to increase the
performance of 2PC. But, homogeneity between sites is the basic assumption behind
the originally proposed 2PC for distributed databases. Multi/federated database
systems are heterogeneous but the nature of transactions and applications these
heterogeneous database systems are studied, designed and optimized are much
different than their counterparts in Grid databases, e.g. for short, synchronized, non-
collaborative transactions, to name few of them. These systems have a leverage of a
top level layer, known as multidatabase management system that assists in making
decision but Grids may not enjoy this facility due to distributed nature of database
systems. Multidatabase employs redo, retry and compensate approach for ACP. These
requirements may not be implemented in absence of top-layer management system
and at the same time may be too restrictive [6]. Grid databases need to operate in a
loosely coupled service-oriented architecture. Apart from data consistency
perspective Grid databases will be expected to access data from via WWW [11,12].
Most of the distributed DBMSs are not designed to operate in WWW environment.

4 Proposed Protocol

As discussed earlier, requirements of Grid DB systems cannot be satisfied by existing
distributed DBMS. In this section we propose an ACP to meet these requirements.

4.1 Grid Atomic Commitment Protocol (Grid-ACP)

Before we proceed with the protocol we would like to remind that executing
compensating transactions don’ t result in standard atomicity of transaction. The
notion is referred as semantic atomicity [9].

Figure-2 shows the state diagram of proposed Grid-Atomic Commitment Protocol
(Grid-ATC). We introduce a new state and call it sleep state. The sub-transaction will
enter in sleep state, when it finishes execution and is ready to release all acquired
resources. Sleep state is an indication to transaction managers that the local sub-
transaction of global transaction has committed. But it is still waiting for decision
from the originator of the transaction. If any of the other participating sites aborts the
subtransaction, the coordinator informs all the sleeping sites to compensate the
changes made by the transaction.

State diagram of participating site

Running

Wait

Commit Pre-Abort

Abort

Running

Sleep

Commit

Abort

Compensate

State diagram transaction originator

Fig. 2. State diagram of Grid-ATC

The Grid-ATC algorithm is explained as follows:

1. The transaction originator splits the transaction based on the information at
Grid-middleware service and submits to participating database systems.

2. Respecting the autonomy of participating sites, they execute their portion of sub-
transaction and goes to sleep state, after logging all the necessary compensating
information in the stable storage. The site then informs the outcome of the sub-
transaction execution to the originator.

3. The originator, after collecting response from all participants, then decides
whether to commit or to abort. If all participants decided to go in sleep state the
decision is to commit else the decision is to abort. If the decision is to abort,
message is sent only to those participants who are in sleep state. If the decision
is to commit, it is sent to all participants.

4a. If the local site decided to commit and is in sleep state and the global decision is
also to commit, the transaction can directly go to commit state. As everything
went as expected by the local site.

Grid-ACP: Originator’s Algorithm

submit sub-transactions to participants;
wait for response from all participants;
if all response to sleep then begin
 write commit record in log;
 send global_commit to all participants;
end if
else begin
 write abort record in log;
 send global_abort to participants who decided to commit
 wait for response from these participants;
end
return

Grid-ACP: Participant’s Algorithm

received sub-transaction from originator
if participant decides to commit then begin
 write sleep in log
 send commit decision to originator
 wait for decision from originator
 if decision is commit then

write commit in log
end if

end if
else if decision is abort then begin
 start compensating transaction for this transaction
line 10: if compensating transaction aborts then begin
 restart compensating transaction until it commits
 write commit for compensating transaction
 end if
 else
 write commit for compensating transaction
 end
end if
else if participant decides to abort then begin
 write abort in log
 send abort decision to originator
end if
return

4b. If the local site decided to commit and is in sleep state but the global decision is
to abort the transaction, then the local transaction must be aborted. But as
mentioned earlier when the local site enters the sleep state it releases all locks on
data items as well as all acquired resources. This makes abortion of transaction
impossible. Hence, a compensating transaction must be executed to revert all the
changes, using compensation rules, to restore the semantics of database before
executing the original subtransaction, thus achieving semantic atomicity. If the
compensating transaction fails, it is resubmitted. We are not defining the
compensation rules as they are out of scope of the paper.

Maintaining autonomy of local sites is primary in Grid environment. Considering
that, different sites may employ different protocols for serializability as well. Some
sites may employ locking protocols while others may employ timestamping or

optimistic concurrency control strategy at local sites. Thus, in presence of such an
autonomous and heterogeneous environment in Grids and absence of a top-layer
management system it may be impossible to avoid cascading aborts. The proposed
sleep state restricts the number of cascading aborts. We would also like to highlight
that the sleep state does not interfere with the autonomy of the local sites.
Implementing this state does not need any modification in local transaction manager
module. Whenever the site decides to join the Grid, the sleep state may be defined in
the interface and hence no changes are required in any local modules.

We briefly discuss the time and message complexity of the proposed algorithm.
Grid-ACP needs 2 rounds (time complexity) of message under normal conditions: (1)
after the local sites decide to commit/abort (2) the decision from the originator.
Maximum number of messages required is 2n (message complexity) to reach a
consistent decision under normal conditions i.e. without failure. Where n is the
number of participants in ACP. Considering that originator sends the final decision to
all the sites, the number of messages in each round is n.

4.2 Correctness of Proposed Protocol

We show the correctness of our ACP by following lemma:

Lemma 1: All participating sites reach the same final decision.
Proof: We prove this lemma in two parts, part-I for consistent commit and part-II

for consistent abort.
Part I: In this part we show that when the global decision is to commit, all

participant commits. From step-2 of the algorithm it is clear that the participants
execute autonomously. If local decision is to commit, the information is logged in the
stable storage and the subtransaction goes in sleep state after sending a message to the
originator. If the originator of the transaction finds all commit decision in response, it
sends the final commit to all participants. In this case the participant is not required to
do any action as all resources were already released when the participant entered the
sleep state. Participant just has to mark the migration of state from sleep to commit.

Part II: The participants have to do more to achieve this part. In this part we show
that if the global decision is abort all participants decides to abort. All participants
that decided to commit now receives abort decision from the originator. Those
participants decided to abort have already decided to abort unilaterally. Those
subtransactions that decided to commit, have already released locks on data items and
cannot be aborted. Hence, compensating transactions are constructed using the event-
condition-action or the compensation rules. These compensating transactions are then
executed to achieve the semantic atomicity (step-4b of the algorithm). To achieve
semantic atomicity the compensating transaction must commit. If the compensating
transaction aborts for some reason it is re-executed until it commits. The
compensating transaction has to eventually commit, as it is a logical inverse of a
committed transaction. This is shown in the state diagram by self-referring
compensate state and line-10 of the participant’s algorithm. Though the compensating
transaction commits, the semantic of the subtransaction is abort. Thus all participants
terminate with consistent decision.

5 Conclusion

We have seen that ACP proposed or homogeneous DBMS e.g. 2PC is not suitable for
autonomously evolved heterogeneous Grid databases. Strategies for traditional
heterogeneous DBMS like multidatabase management system are too restrictive and
need a global management system. We have proposed an ACP to meet Grid database
requirements that uses sleep state for participating sites. The proposed sleep state will
also help in putting a cap on the number of aborting transactions. We also
demonstrated correctness of the proposed protocol. In future we intend to quantify
and optimize the capping values of the protocol.

References

[1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid: Towards
an architecture for the Distributed Management and Analysis of Large Scientific Datasets” ,
Journal of Network and Computer Applications, vol. 23, pp 187-200, ‘01

[2] H. Stockinger, “Distributed Database Management Systems and the Data Grid” , 18th IEEE
Symposium on Mass Storage Systems ‘01.

[3] T,Ozsu, P.Valduriez, "Distributed and Parallel Database Systems", ACM Computing
Surveys, vol.28, no.1, pp 125-128, March ‘96.

[4] P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in
Database Systems, Addision-Wesley, 1987.

[5] K. Barker, “Transaction Management on Multidatabase Systems”, PhD thesis, Department
of Computer Science, The university of Alberta, Canada, 1990.

[6] P. Muth, T. C. Rakow, “Atomic Commitment for Integrated Database Systems”,
Proceedings of IEEE, 7th Intl. Conference on Data Engineering, pp 296-304, 1991.

[7] I. Foster, C. Kesselman, S.Tuecke, “The Anatomy of the Grid” , International Journal of
Supercomputer Applications, vol. 15, no. 3, 2001.

[8] I. Foster, C. Kesselman, J. M. Nick, S.Tuecke, “The Physiology of the Grid” ,
http://www.globus.org/research/papers/ogsa.pdf.

[9] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. “Overview of multidatabase
transaction management” . VLDB Journal, vol. 1, no. 2, pp.181-240, 1992.

[10] P. Watson, “Databases and the Grid” , Technical Report, CS-TR-755, Uiversity of New
Castle, 2002

[11] IBM, Microsoft, BEA, “Web Services Coordination”
ftp://www6.software.ibm.com/software/developer/library/ws-coordination.pdf, Sept. 2003.

[12] IBM, Microsoft, BEA, “Web Services Transaction”
http://www.ibm.com/developerworks/library/ws-transpec/, August 2002.

[13] M. P. Atkinson, V. Dialani, L. Guy, I. Narang, N. W. Paton, D. Pearson, T. Storey, P.
Watson, “Grid Database Access and Integration: Requirements and Functionalities” Global
Grid Forum, DAIS-Working Group, Informational Document, 2003.

[14] M.T. Ozsu and P. Valduriez, editors. Principles of Distributed Database Systems (Second
Edition). Prentice-Hall, 1999.

[15] Baber Home Page, http://www.slac.stanford.edu/BFROOT/
[16] http://www.griphyn.org/
[17] S. Goel, H. Sharda, D. Taniar, "Preserving Data Consistency in Grid Databases with

Multiple Transactions", 2nd International Workshop on Grid and Cooperative Computing
(GCC ‘03), Lecture Notes in Computer Science, Springer-Verlag, China, Dec. 2003.

