
 Simulating Complex Dynamical Systems in a
 Distributed Programming Environment

E. V. Krishnamurthy1 and Vikram Krishnamurthy2

1Computer Sciences Laboratory,
Australian National University, Canberra , ACT 0200, Australia

abk@discus.anu.edu.au
2Department of Electrical and Computer Engineering,

University of British Columbia,V6T 1Z4 Vancouver, Canada,
vikramk@ece.ubc.ca

Abstract. This paper describes a rule-based generic programming and
simulation paradigm, for conventional hard computing and soft and innovative
computing e.g., dynamical, genetic, nature inspired self-organized criticality
and swarm intelligence. The computations are interpreted as the outcome
arising out of deterministic, non-deterministic or stochastic interaction among
elements in a multiset object space that includes the environment. These
interactions are like chemical reactions and the evolution of the multiset can
mimic the evolution of the complex system. Since the reaction rules are
inherently parallel, any number of actions can be performed cooperatively or
competitively among the subsets of elements. This paradigm permits carrying
out parts or all of the computations independently in a distributed manner on
distinct processors and is eminently suitable for cluster and grid computing.

1 Introduction

Most systems we observe in nature are complex dynamical systems that consist of a
large number of degrees of freedom. They may contain several inhomogeneous
subsystems that are spatially and temporally structured on different scales and
characterized by their own dynamics. Such complex systems often exhibit collective
(“Emergence”) behaviour that is difficult to model. Stochastic and chaotic
dynamical systems provide an efficient methodology for modelling and simulation
of complex systems by capturing the behaviour of the system at different spatial and
temporal scales. The simulation based approach of a stochastic or chaotic dynamical
system can be viewed as “soft computation”, since unlike in conventional
computation where exactness is our goal, we allow for the possibility of error and
randomness.
 This paper describes a generic multiset programming paradigm for the simulation
of complex systems. This paradigm permits us to write a generic program [2], [3]
called a program shell - that implements the common control structure. It includes a
few unspecified data types and procedures that vary from one application to another.
Hence, this Unified Multiset Simulation Paradigm (UMSP) can be used for all
conventional algorithms [15], Tabu search, Markov chain Monte Carlo (MCMC),
Particle Filters [6], Evolutionary algorithms-classifier systems, bucket brigade
learning , Genetic algorithms and Programming [14], Immunocomputing, Self-

organized criticality [4] and Active Walker models (ants with scent or
multiwalker-paradigm where each walker can influence the other through a shared
landscape based on probabilistic selection [9], and Biomimicry [16]. Also it is
applicable to non-equilibrium systems using oscillatory mechanisms involving
catalytic reactions - as for example of producing ATP (Adenosine triphosphate)
from ATP [8].

Structure of Unified Multiset Simulation Paradigm (UMSP)
 The UMSP has the following features:
(i) One or more object spaces (multisets) that contain elements whose information
is structured in an appropriate way to suit the problem at hand.
(ii) A set of interaction rules that prescribes the context for the applicability of the
rules to the elements of an object space. Each rule consists of a left-hand side (a
pattern or attribute) of named objects and the conditions under which they interact,
and a right hand side that describes the actions to be performed on the elements of
the object space, if the rule becomes applicable based on some deterministic or
probabilistic criteria.
(iii) A control strategy that specifies the manner in which the elements of the object
space will be chosen and interaction rules will be applied, the kinetics of the rule-
interference (inhibition, activation, diffusion, chemotaxis) and a way of resolving
conflicts that may arise when several rules match at once.
 (iv) A mechanism to evaluate the elements of the object space to determine the
effectiveness of rule application (e.g., evaluating fitness for survival).
 Thus, UMSP provides a stochastic frame-work of “generate and test” for a wide
range of problems, Yao [19], and Michalewicz and Fogel [14]. Also the system
structure of UMSP consisting of components and their interaction is supported by
contemporary software architecture design [2].

Computational Features of UMSP
 The UMSP has the following computational features:
(i) Interaction -Based: The computations are interpreted as the outcome of
interacting elements of the object space that produce new elements (or same
elements with modified attributes) according to specific rules. Hence the intrinsic
(genotype) and acquired properties due to interaction (phenotype) can both be
incorporated in the object space. Since the interaction rules are inherently parallel,
any number of actions can be performed cooperatively or competitively among the
subsets of elements, so that the new elements evolve toward an equilibrium or
unstable or chaotic state.
(ii) Content-based rule activation: The next set of rules to be invoked is determined
solely by the contents of the object space as in chemical reactions.
(iii) Pattern matching: Search takes place to bind the variables in such a way to
satisfy the left hand side of the rule. This characteristic of pattern (or attribute)
matching makes the UMSP suitable for innovative computing.
(iv) Suitable for deterministic, non-deterministic and probabilistic modes.
(v) Choice of objects, and actions: We can use strings, arrays, sets, trees and graphs,
multisets, tuples, molecules, particles and even points, as the basic elements of

computation and perform suitable actions on them by defining a suitable topology,
geometry or a metric space.
 We describe in Sections 2 and 3, the general properties of rule based paradigms. In
Section 4 we give examples for UMSP. Section 5 contains the conclusion.

2 Rule -Based Programming Paradigm

Specification:
The main feature of the rule - based paradigm is the specification of the program:
G(R, A)(M) = If there exists elements a, b, c,.. in an object space M such that an
interaction rule R (a, b, c,...) involving elements a , b, c is applicable then
G(R, A)((M- {a , b, c,.. }) + A(a, b , c,...)) else M.
 Here M denotes the initial object space with components of appropriately chosen
data type. This is a multiset or a bag in which a member can have multiple
occurrences, Calude et al. [5]. The operator - denotes the removal (annihilation) of
the interacted elements; it is the multiset difference; the operator + denotes the
insertion (or creation) of new elements after the action A; this is multiset union of
appropriately typed components. Note that R is a condition text (or interaction
condition that is a boolean) that is used to check when some of the elements of the
object space M can interact. The function A is the action text that describes the
result of this interaction. Note that both R and A are exact and deterministic. Testing
for R involves a deterministic search, and evaluation of truth or falsity of Boolean
predicates. Also actions performed in A are assumed to be exact.
 The function R can be interpreted as the query evaluation function in a database M
and the function A can be interpreted as the updating function for a set of database
instances. Hence, if one or several interaction conditions hold for several non-
disjoint subsets of object space at the same time, the choice made among them can
be nondeterministic or probabilistic. This leads to competitive parallelism. Then the
actions on the chosen subset are executed atomically and committed. That is, the
chosen subset undergoes an 'asynchronous atomic update'. This ensures that the
process of matching and the follow-up actions satisfy the four important properties
used in Transaction Processing [13] namely, ACID properties: Atomicity
(indivisibility and either all or no actions or carried out), Consistency (before and
after the execution of a transaction), Isolation (no interference among the actions),
Durability (no failure). Once all the actions are carried out and committed the next
set of conditions are considered. As a result of the actions followed by commitment,
we derive a new database; this may satisfy new conditions of the text and the actions
are repeated by initiating a new set of transactions. These set of transformations halt
when there are no more transactions executable or the database does not undergo a
change for two consecutive steps indicating a new consistent state of the database.
 However, if the interaction condition holds for several disjoint subsets of elements
in the database at the same time, the actions can take place independently and
simultaneously. This leads to cooperative parallelism.

Deterministic and Nondeterministic Iterative Computation:
This consists of applications of rules that consume the interacting elements of the
object space and produce new or modified elements in the multiset. This is
essentially Dijkstra’s guarded command program. It is well-known that the Guarded
command approach serves as a universal distributed programming paradigm for all
conventional algorithms with deterministic or nondeterministic components [10] So
we will not elaborate on this aspect any further.
Termination: For the termination of rule application, the interaction conditions R
have to be designed so that the elements in the object space can interact only if they
are in opposition to the required termination condition. When the entire elements
meet the termination condition, the rules are not applicable and the computation
halts leaving the object space in an equilibrium state (or a fixed point).
Non–termination, instability, chaos: These cases arise when the rules continue to
fire indefinitely as in chemical oscillations. Then the object space can be in a non-
equilibrium state. It is also possible that the evolution leads to instability and chaos
of the deterministic iterative dynamics.
 For example, consider the rule-based iterative dynamical system: For X(0) in the
range [-1,1], if X(i) ≥ 0 then G(X(i+1)) = -2X(i) +1 ; else G(x(i+1)) = 2X(i)+1.The
rules X(i)≥0 and X(i)<0, are mutually exclusive and non-competitive; they generate
a chaotic dynamical system, unstable, having a dense orbit in [-1,1].

3. Stochastic Rule-Based Paradigm

The introduction of stochastic mechanism (randomness) in a rule-based system has
several advantages:
(i) It provides ergodicity of search orbits. This property ensures that searching is
done through all possible states of the solution space since there is a finite
probability that an individual can reach any point in problem space with one jump.
(ii) It provides solution discovery capabilities (as in genetic programming) and
enables us to seek a global optimum rather than a local optimum.
(iii) It cuts down the average running time of an otherwise worst–case running time-
algorithm. We achieve this gain by producing an output having an error with a small
probability.
(iv) Applicable to problems in many discipline; Genetics (genetic algorithms);
Thermodynamics (simulated annealing), Statistical Mechanics (Particle transport);
Complex Systems (Active -walker, Self-organization and percolation models).
 The unified multiset rule-based Simulation paradigm (UMSP) is obtained from the
rule-based system described in Section 2, by introducing probabilities for selection
to test whether one or more reaction conditions hold for several non-disjoint subsets
at the same time. In this case, the choice made among these subsets is determined by
a random number generator to randomly select the elements of the multiset with a
probability p, test for the reaction conditions, and then perform the required actions.
UMSP is defined by the function:
PG (R (p(i), A) (M) = if there exists elements a,b,c,. .. belonging to an object space
M (a multiset) such that R(a, b, c,...) then G(R,A)((M-{a, b, c,.. }) + A(a, b, c,..))
else M where each of the possible number of subsets i that satisfy the conditions R
is randomly chosen with an appropriate probability p(i) and the corresponding text

of action A is implemented and the components of the multiset are updated
appropriately. Further, if p(i) is not specified in a component program , the choice
can be deterministic or nondeterministic. Thus a composite program can contain
within itself the deterministic, nondeterministic and probabilistic components.
 The implementation of UMSP consists of the following four basic steps:
Step 0: Initialization: Initializing the multiset representing the problem domain.
Step 1: Search: Deterministic or random searching for the candidate elements that
satisfy a given rule (interaction condition) exactly or within a probabilistic bound..
Step 2: Rule Application: Carrying out the appropriate actions on these chosen the
elements as dictated by the given rule.
Step 3: Stopping: It is typical in probabilistic method, not to explicitly state a
stopping criterion. A key reason for this is that the convergence theory can provide
only asymptotic estimates, as the number of iterations goes to infinity. However, in
practice, we need to choose a suitable stopping criterion for the given problem -
otherwise, we may be wasting the resources .
 In step 3, we may use various acceptance criteria; these may be involve evaluating
an individual element or a selected subset or the whole object space; that is, the
evaluation of the object space can take place at different levels of granularity
depending upon the problem domain. Also, the acceptance criteria may be chosen
dependent or independent of the number of previous trials and the choice of
probabilities can remain static or can vary dynamically with each trial. Thus
depending upon the evaluation granularity, acceptance criteria and the manner in
which the probability assignments are made, we can devise various strategies by
suitably modifying the skeletal structure of UMSP. For example one may choose to
select a reaction rule from a rule-base probabilistically or vary the frequency of
application of competing rules. Also one may carry out any operation
probabilistically. UMSP is suitable to optimize the structure of the model used as in
Genetic Programming, or optimize its parameters as in Genetic algorithms.

4 Examples for Realisation of UMSP

Practical realisation of the UMSP and application to many different types of
algorithms can be achieved through a coordination programming language,
Multran, using Multiset and the concept of transactions [13]. Also UMSP can be
implemented in the grid and cluster-computing environment using MPI [7,17]. Due
to lack of space we can give only two examples.

(i) Swarm and Ant Colony Paradigm
A swarm (flock of birds, ants, cellular automata) is a population of interacting
elements that can optimize some global objective through cooperative search of
space [9]. Here, individual elements in the multiset are points in space, and change
over time is represented as movement of points, representing particles with
velocities and the system dynamics is formulated in UMSP using the rules:
1. Stepping rule: The state of each individual element is updated in many
dimensions, in parallel, so that the new state reflects each element’s previous best
success ; e.g., ,the position and momentum (velocity) of each particle.

2. Landscaping rule: Each element is assigned a new best value of its state that
depends on its past best value and a suitable function of the best values of its
interacting neighbours, with a suitably defined neighbourhood topology and
geometry.
Rule 1 reflects the betterment of the individual, while rule 2 reflects the betterment
of the collection of the individuals in the neighbourhood as a whole, by evaluating
the relevance of each individual and providing support for its activity. These two
rules permit us to model Markovian random walks which is independent of the past
history of the walk and non-Markovian random walks, dependent upon past history-
such as self-avoiding, self-repelling and active random-walker models. This can
result in a swarm (a self - organizing system) whose global nonlinear dynamics
emerges from local rules due to stochasticity or chaos introduced by the parameter
variation. Also, interesting new properties may show up- low dimensional attractors,
bifurcations and chaos and various kinds of attractors having fractal dimensions
presenting a swarm -like, flock-like appearances depending upon the Jacobian of
the mapping; Wolfram [18].

(ii) Discrete Adaptive Stochastic Optimization
Consider the following discrete stochastic optimization problem. Let

},...,2,1{ S=Θ denote a finite set and consider the following problem: Compute

)}({min* θθ θ nXEΘ∈=

where E denotes mathematical expectation and for any fixed Θ∈θ ,)}({ θnX
denotes a sequence of independent and identically distributed (iid) random variables
that can be generated for any choice of Θ∈θ . If the density function of)(θnX is
not known, it is not possible to analytically evaluate the above expectation and
hence *θ . In such a case, one needs to resort to simulation based stochastic
approximation to compute the optimal solution *θ .
 A brute force approach of computing the optimal solution to the problem involves
exhaustive enumeration over all Θ and proceeds as follows: For each Θ∈θ
generate a large number N of random samples)(),(),(21 θθθ NXXX K . Then
compute an estimate of)}({ θnXE using the sample average (arithmetic mean)

 ./)(...)()(()(21 NXXXG NN θθθθ +++=

By Kolmogorov’s strong law of large numbers (which is one of the most
fundamental consequences of the ergodic theorem for iid processes),

)}({)(θθ nN XEG → with probability one as .∞→N This and the finiteness of Θ
imply that

)}({maxarg)(maxarg θθ θθ nN XEG Θ∈Θ∈ → as .∞→N

However, the above brute force procedure is inefficient – evaluating)(θNG at

values Θ∈θ with *θθ ≠ is wasted effort since it contributes nothing towards
evaluating).(*θNG What is required is an intelligent dynamic scheduling (search)
scheme that decides at each time instant which value of θ to evaluate next, given
the current estimates, in order to converge to the maximum *θ with minimum effort.

 Here we present a globally convergent discrete stochastic approximation algorithm
based on the random search procedures [1,11,12,20]. The basic idea is to generate a
homogeneous Markov chain taking values inΘwhich spends more time at the
global optimum than at any other element of Θ . This consists of the following
skeletal structural steps of UMSP .
Step 0: Initialization: At time n=0, select starting point Θ∈0θ randomly with

uniform probability. Set ,
00 θeD = where ie denotes the S dimensional unit vector

with 1 in the i th position and zeros elsewhere. Set initial solution estimate .00

^
x=θ

Step 1: Search (Random Sampling): At time n, sample }{ nnu θ−Θ∈ with uniform
distribution.
Evaluate the random sample costs)(nnX θ and)(nn uX .

Step 2: Rule Application: If)()(nnnn uXX >θ then set ,1 nn θθ =+ else set .1 nn u=+θ

Update duration time vector at time n+1 as
n

eDD nn θ+=+1

Update estimate of maximum at time n as)(maxarg 1},...,2,1{

^
iDnSin +∈=θ

Step 3: Stopping: Choose stopping criteria appropriately; if not satisfied set
1+→ nn and go to Step 1.

 Then as proved in [1], under suitable conditions (e.g., if the density function with
respect to which the expected value is defined above is symmetric) the estimate

n

^
θ generated by the above random search stochastic approximation algorithm
converges with probability one to the global optimum .*θ It is also shown in [1],
that the algorithm is attracted to the global optimum, i.e., the algorithm spends more
time at the global optimum than any other candidate value. That is, for sufficiently
large n, the duration time vector nD has it maximum element at .*θ
 The above algorithm has several applications. It can be used to learn the behaviour
of an ion channel (large protein molecule) in a nerve cell membrane to estimate the
Nernst potential efficiently [11]. In [12,20] its recursive version optimizes the
spreading code of a CDMA spread spectrum transmitter over a fading wireless
channel.

5 Conclusion

The introduction of stochastic/chaotic mechanisms in a multiset chemical reaction
model provides a soft-computational model to study evolutionary biological,
chemical and physical systems interacting with the environment. The paradigm
described here provides a new environment using a distributed architecture for
swarm intelligence, membrane and bio-immunology computing, adaptive stochastic
optimisation and self organized criticality. This simulation paradigm is well-suited
for cluster and grid computing using MPI.

References

 1. S.Andradottir, Accelerating the convergence of random search methods for
 discrete stochastic optimization, ACM Transactions on Modelling and Computer
 Simulation, 9(4) (1999), 349-380.
 2. R.Backhouse and J.Gibbons, Generic Programming, Lecture Notes in Computer
 Science, Vol.2793,Springer Verlag , New York (2003)
 3. J.-P.Banatre, D.L. Me'tayer, Programming by Multiset transformation
 Comm. ACM, 36 , (1993) 98 -111.
 4. S.Boettcher and A. Percus, Nature’s way of Optimizing, Artificial Intelligence,
 119 (2000),275-286,.
 5. C.S.Calude et al., Multiset Processing, Lecture Notes in Computer Science,
 Vol.2235,Springer Verlag, New York (2001)
 6. A.Doucet,et al., Particle Filters for State Estimation of Jump Markov Linear
 Systems, IEEE Trans Signal Processing, 49, 613-624 (2001)
 7. W. Gropp, et al., Using MPI, M.I.T Press, Cambridge, Mass,(1992)
 8. D.-Q.Jiang,et al.,Mathematical Theory of Nonequilibrium Steady states,
 Lecture Notes In Mathematics, Vol 1833,Springer Verlag, New York (2004)
 9. J.Kennedy, and R.C.Eberhart, Swarm Intelligence,Morgan Kauffman,London (2001).
10. E.V.Krishnamurthy, Parallel Processing, Addison Wesley, Reading., Mass.,(1989)
11. V.Krishnamurthy and S.H.Chung, Adaptive Learning Algorithms for Nernst
 Potential and I-V curves in Nerve Cell Membrane Ion Channels modelled as Hidden
 Markov Models, IEEE Transactions NanoBioScience, 2 (4), 266-278 9(2003)
12. V.Krishnamurthy, et al., Adaptive Spreading Code Optimization in Multiantenna
 Multipath Fading Channels in CDMA, IEEE Conference on Communications,
 Anchorage, May 2003.
13. W.Ma et al,.,Multran - A coordination Programming Language Using Multiset and
 Transactions, Proc. Neural, Parallel and Scientific Computing, 1, 301-304, Dynamic
 Publishers, Inc.,U.S.A.,(1995).
14. Z. Michalewicz, D.B Fogel, How to solve it : Modern Heuristics , Springer Verlag,
 New York (2002).
15. V.K.Murthy and E.V. Krishnamurthy, Probabilistic Parallel Programming based on
 Multiset transformation, Future Generation Computer Systems.11(1995)283-293.
16. K.M.Pacino, Biomimicry of bacterial foraging for distributed optimisation and
 control , IEEE Control System Magazine, 22(3)(2002),52-68.
17. M.Snir et al.:MPI: The complete Reference, M.I.T.Press,Cambridge, Mass.(1995)
18. S.Wolfram: A New kind of Science, Wolfram Media Inc., Champaign, Ill (2002)
19. X.Yao, The evolution of Evolutionary computation, Lecture Notes in Artificial
 Intelligence, Vol.2773, 19-20 (2003).
20. G.Yin, et al. Regime Switching Stochastic Approximation Algorithms with
 application to adaptive discrete stochastic optimization, SIAM Journal of
 Optimization, to appear.

