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Abstract. Paxson and Floyd (IEEE/ACM T. Netw. 1995) remarked the limita-
tion of fractional Gaussian noise (FGN)) in accurately modeling LRD network 
traffic series. Beran (1994) suggested developing a sufficient class of paramet-
ric correlation form for modeling whole correlation structure of LRD series. M. 
Li (Electr. Letts., 2000) gave an empirical correlation form. This paper1 extends 
Li’s previous letter by analyzing it in Hilbert space and showing its flexibility 
in data modeling by comparing it with FGN (a commonly used traffic model). 
The verifications with real traffic suggest that the discussed correlation struc-
ture can be used to flexibly model LRD traffic series. 

1   Introduction 

Modeling long-range dependent (LRD) series has been widely studied, see e.g., [1] ~ 
[6], where exactly self-similar (ess) process (i.e., fractional Gaussian noise (FGN)) is a 
commonly used tool, e.g., [1] [2] [5] [7]. However, in communication networks, auto-
correlation function (ACF) form of ess processes is too narrow for accurately model-
ing actual series [8]. On the other hand, accurate models of actual series are at the 
heart of some applications. For instance, accurate models of actual traffic series are 
crucial to performance evaluation of communication networks [9]. In addition, ACF 
has impact on queuing systems [10]. Motivated by those, we extend Li’s early work 
[6] for an empirically derived 3-parameter ACF form in Section 2. Verifications of 
this ACF form are given in Section 3 and conclusions in Section 4.  
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2   Empirical 3-Parameter Correlation Form 

Let x be an LRD time series and r be its ACF. Then, r(τ) ~ cτ −β (τ → ∞), where c > 0 
is a constant, 0 < β < 1. Then, we aims at finding a function R(τ) to best fit r(τ). 

Generally, an ACF is nonlinear. Thus, modeling a measured ACF can be regarded 
as an issue of nonlinear least squares fitting. If a model is characterized by several 
parameters, nonlinear least squares in multi-dimensions may result in a set of nonlin-
ear equations. Since a set of nonlinear equations may have no (real) solutions [11], it 
is needed to prove the existence of solutions. As numerical solutions for the root find-
ing of a set of nonlinear equations are in the sense of approximation, a criterion is 
needed to evaluate the quality of curve fitting.  

Denote a measured traffic trace as x(ti), indicating the number of bytes in a packet 
at ti, i ∈ I0 (= 0, 1, 2, Λ). Let r be the measured ACF of x, R be the modeling of r and 
M2(R) = E[(R − r)2] be the mean square error. Then, M2(R) is used to evaluate the 
quality of curve fitting. In our scheme, M2(R) < 10−4 was required. Hence, our method 
to model r is to find R that fits r with the constrain of M2(R) < 10−4.  

Let the error e = R − r. Construct the functional below 

f(e) = [ ] .)()( 2∑ −
k

krkR  (1) 

Based on the experiments, we present the following normalized correlation form 

R(k) = (|k| + 1)−a + Lu(|k| − m), a ≥ 0, 1 ≥ L ≥ 0, m = 1, 2, Λ, k ∈ I, (2) 

where u is the unit step function. Consequently, f(e) stands for a 3-D cost function 

J(a, L, m) ≜ f(e). (3) 

Due to the evenness of ACF, we only consider k ≥ 0 in what follows. An approxi-
mated root (a0, L0, m0) of J = 0 can be determined by iteration based on nonlinear least 
squares fitting for a given r. The existence of solutions is explained below.  

In fact, a measured traffic trace is of finite length. Without losing the generality, the 
maximum possible length of x is assumed as p ∈ I0. Let N ∈ I0 and N >> p. Then, N 
may be regarded as an “infinite” in the engineering sense. Denote  

||r|| = >< rr  , = .
1

0
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−N

r  Then, { }∞<= rrlN  ;2  is a Hilbert space [5]. Denote 

 A1 = {R; R(k) = c[(k + 1)−a + Lu(k − m)]}. Then, A1 ⊂ .2
Nl  

Statement. Let r ∈ 2
Nl  be a measured autocorrelation sequence. There exists a unique 

element R ∈ A1 such that ,inf
1
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s
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 where ||r − R|| = f(e). 

Proof: 2
Nl  is an obvious convex set and f(e) is a convex functional defined on .2

Nl  

Therefore, the extremum of f(e) exists. Thus, Statement follows.  



According to Statement, for a given r ∈ ,2
Nl  if R = R(k; a0, L0, m0) is such that 

,inf
1

srRr
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 (a0, L0, m0) is called approximated root of J = 0 and (a0, L0, m0) = 

arg min J(a, L, m). Thus, if M2(R) < 10−4, R(k; a0, L0, m0) is acceptable in our scheme. 
In the paper, (a0, L0, m0) is obtained by Levenberg-Marquardt method [11].  

3   Verifications 

Four well known real-traffic traces (dec-pkt-1, dec-pkt-2, dec-pkt-3 and dec-pkt-4) are 
analyzed. Denote R(k) as R(k; a, L, m). Then, the cost function for dec-pkt-1 is given 
by J(a, L, m) = ||R(k; a, L, m) − rpkt1(k)||, where rpkt1(k) is the measured ACF of dec-
pkt-1. By Levenberg-Marquardt method, one obtains (a0, L0, m0) = (2.091, 0.377, 1). 
At this point, M2(R) = 1.952×10−5. Therefore, rpkt1(k) is modeled by  

R(k) = (k + 1)−2.091 + 0.377u(k − 1). (4) 

Fig. 1 indicates dec-pkt-1 and Fig.2 the fitting the data for modeling rpkt1(k).  
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Fig. 1. TCP trace of dec-pkt-1 
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Fig. 2. The result of fitting the data: …… measured ACF; ⎯ modeled ACF 
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Fig. 3. Fitting rpkt1(k) with ess model: …… measured ACF; ⎯ modeled ACF with FGN 

Similarly, we have (2.088, 0.402, 1), (3.14, 0.341, 1), and (3.14, 0.341, 1) for rpkt2(k), 
rpkt3(k) and rpkt4(k), respectively.  

To evaluate the benefit of model (2), we use FGN to fit rpkt1(k). The normalized 
ACF of FGN is given by Ress(k, H) =0.5[(k + 1)2H − 2k2H + (k − 1)2H]. By using least 
squares fitting, we have the result Ress(k; 0.93) with M2(Ress) = 0.003. As Ress(k; 0.93) is 
the best result in the ess sense, the benefit of our model is obvious, see Fig. 3. 

4   Conclusions 

A correlation form for modeling LRD traffic series has been given. The verifications 
show that it has a noteworthy flexibility to model LRD traffic and satisfactorily fits the 
real traffic investigated. This model has an advantage over models based on single 
parameter such as that of ess model. Because the modeled ACFs are non-summable, 
the long-range dependence of traffic has also been verified in this way. 
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