
Cache Design for Transcoding Proxy Caching

Keqiu Li, Hong Shen, and Keishi Tajima

Graduate School of Information Science
Japan Advanced Institute of Science and Technology

1-1 Tatsunokuchi, Ishikawa, 923-1292, Japan

Abstract. As audio and video applications have proliferated on the
Internet, transcoding proxy caching is attracting an increasing amount
of attention, especially in the environment of mobile appliances. Since
cache replacement and consistency algorithms are two factors that play
a central role in the functionality of transcoding proxy caching, it is
of particular practical necessity to involve them into transcoding cache
design. In this paper, we propose an original cache maintenance algo-
rithm, which integrates both cache replacement and consistence algo-
rithms. Our algorithm also explicitly reveals the new emerging factors
in the transcoding proxy. Specifically, we formulate a generalized cost
saving function to evaluate the profit of caching a multimedia object.
Our algorithm evicts the objects based on the generalized cost saving
to fetch each object into the cache. Consequently, the objects with less
generalized cost saving are to be removed from the cache. On the other
hand, our algorithm also considers the validation and write rates of the
objects, which is of considerable importance for a cache maintenance
algorithm. Finally, we evaluate our algorithm on different performance
metrics through extensive simulation experiments. The implementation
results show that our algorithm outperforms comparison algorithms in
terms of the performance metrics considered.

Key words: Transcoding proxy caching, cache maintenance, Cache replace-
ment, cache consistency, World Wide Web.

1 Introduction

With the explosive growth of the World Wide Web, proxy caching has become
an important technique to improve network performance [15, 16]. Due to the
limited cache space, it is impossible to store all the web objects in the cache. As a
result, cache replacement algorithms [10, 14, 16] are used to determine a suitable
subset of web objects to be removed from the cache to make room for a new
web object. However, the improvement of network performance, such as access
latency reduction achieved by caching web objects, does not come completely
for free. In particular, maintaining the content consistence with the primary
servers generates extra requests. Many proxy cache implementations depend on
a consistency algorithm to ensure a suitable form of consistency for the cached



documents. Cache consistency algorithms [1, 3, 11] are used to guarantee the
consistency of the cache web objects.

Transcoding is used to transform a multimedia object from one form to an-
other, frequently trading off object fidelity for size for prevailing the operating
environment. Since the transcoding proxy plays an important role in the func-
tionality of caching, transcoding proxy caching is attracting more and more
attention [4, 7, 9, 12]. However, due to the new emerging factors in the environ-
ment of transcoding proxies, existing cache replacement and consistency algo-
rithms cannot be simply applied to solve the same problems for transcoding
proxy caching. In [5], the authors presented several examples to explain the
influence of these factors and explored the aggregate effect for efficient cache
replacement in transcoding proxies. However, they considered only the problem
of cache replacement and have not involved any issues on cache consistence. We
argue that cache consistence has great influence on cache design. Consequently,
it is of particular practical necessity to address the problem of cache mainte-
nance by including both the cache replacement and consistence algorithms and
the new emerging factors in the transcoding proxy. In this paper, we propose
an original cache maintenance algorithm for transcoding proxy caching, which
integrates both the cache replacement and consistence algorithms. Specifically,
we formulate a generalized cost saving function to evaluate the profit of caching
a multimedia object. Our algorithm evicts the objects based on the generalized
cost saving to fetch each object into the cache. Consequently, the objects with
less generalized cost saving are to be removed from the cache. On the other hand,
our algorithm also considers the validation and write rates of the objects, which
is of considerable importance for a cache maintenance algorithm. We evaluate
our algorithm on different performance metrics through extensive simulation ex-
periments and compare our algorithm with other algorithms proposed in the
literature.

The remainder of this paper is structured as follow: We present a cache
maintenance algorithm in transcoding proxies in Section 2. The simulation and
performance evaluation are described in Section 3 and Section 4, respectively.
Section 5 summarizes our work and concludes the paper.

2 A Cache Maintenance Algorithm in Transcoding
Caching

The relationship among different versions of a multimedia objects can be ex-
pressed by a weighted transcoding graph [5]. Let oi,j denote version j of object
i. ω(i, j) is the transcoding cost from version i to version j. The reference rates
to different versions of objects, denoted by fi,j , are assumed to be statistically
independent, where fi,j is the mean reference rate to version j of object i. λi,j

is the read cost of version j of object i from the server, µi,j is the write cost of
version j of object i, ηi,j is the cost of validating the consistency of version j of
object i, and pi,j is the probability of invalidating version j of object i cached.



First we calculate the cost saving from caching only one version of an object
in the transcoding cache (no other versions are cached). From the standpoint of
clients, an optimal cache replacement algorithm should maximize the cost saving
from caching multiple copies of objects by considering both the read cost and
the write cost. Thus, the individual cost saving of caching only oi,j is defined as
follows.

Definition 1. CS(oi,j) is a function for calculating the individual cost saving
of caching oi,j, while no other versions of object i are cached.

CS(oi,j) =
∑

x∈D(j)

λi,x(di,x + ω(1, x)− ω(j, x)− ηi,j − pi,jdi,x)− µi,jdi,j (1)

where D(j) is the set of versions that can be transcoded from version j.
In Equation (1), di,x is the cost of reading or writing oi,x from the server and

ω(1, x) is the cost of transcoding from the original version to version x if oi,j is
not cached. On the other hand, ωj,x is the cost of transcoding from version j to
version x, λi,x is the read rate of oi,x from the client, and µi,j is the write rate
of oi,j from the server if oi,j is cached.

As a matter of fact, there may be many versions of an object that can be
cached at the same time if this is valuable. In the following we discuss the
aggregate cost saving of caching multiple versions of an object. The aggregate
cost saving of caching multiple versions of an object at the same time can be
defined as below.

Definition 2. CS(oi,j1 , oi,j2 , · · · , oi,jk
) is a function for calculating the aggre-

gate cost saving of caching oi,j1 , oi,j2 , · · ·, oi,jk
.

CS(oi,j1 , oi,j2 , · · · , oi,jk
) =

∑

y∈{j1,j2,···,jk}
(

∑

x∈D(y)

λi,x(di,x

+ω(1, x)− ω(y, x)− ηi,y − pi,ydi,x)− µi,ydi,y)
(2)

Now we define the marginal cost saving of caching a version of object i if
there is at least one version cached.

Definition 3. CS(oi.j |oi,j1,oi,j2 ,···,oi,jk
) is a function for calculating the marginal

cost saving of caching oi,j, given that oi,j1 , oi,j2 , · · ·, oi,jk
are already cached,

where j 6= j1, j2, · · · , jk.

CS(oi,j |oi,j1 , oi,j2 , · · · , oi,jk
) =

CS(oi,j , oi,j1 , oi,j2 , · · · , oi,jk
)− CS(oi,j1 , oi,j2 , · · · , oi,jk

) (3)

If we use si,j to denote the size of oi,j , then we formulate the generalized cost
saving function as follows:

CSG(oi,j) =

{
CS(oi,j)

si,j
if no other versions are cached

CS(oi,j |oi,j1 ,oi,j2 ,···,oi,jk
)

si,j
if oi,j1 , oi,j2 , · · ·, oi,jk

are cached
(4)



It is easy to see that the generalized cost saving function is further normalized
by the size of oi,j to reflect the object size factor. The rationale behind this
normalization is to order the objects by the ratio of cost saving to object size.
The generalized cost saving function defined in Equation (4) explicitly takes into
consideration the new emerging factors in transcoding caching and the aggregate
effect of cache multiple versions of an object. Importantly, it takes into account
not only the read cost but also the write cost.

Based on this function, we propose our cache replacement scheme as follows.
Suppose the size of a new object to be cached is s, then we should find a subset
of objects O∗ = {of1,g1 , of2,g2 , · · · , ofl,gl

} ⊆ O that satisfies the following condi-
tions. Here O = {o1,1, o1,2, · · · , o1,l1 , o2,1, o2,2, · · · , o2,l2 , · · · , om,1, om,2, · · · , om,lm}
is the set of objects cached.

(1)
∑

of,g∈O∗
of,g ≤ s

(2)
∑

of,g∈O∗
CSG(of,g) ≤

∑

of,g∈O′
CSG(of,g), ∀ O

′ ⊆ O that satisfies (1)

Obviously, (1) is to make enough room for the new object, and (2) is to evict
those objects whose total cost saving is minimized.

With the two conditions above, we can devise the pseudocode of our scheme
as follows.

Algorithm GCS (C,Sc, Su, oi,j)
1 add oi,j into C
2 recalulate the generalized cost saving of each version of object i
3 BuildHeap(C)
4 while Su − Sc < s do
5 Remove the first object from C
6 Su = Su − sf,g

7 recalulate the generalized cost saving of each version of object i
8 BuildHeap(C)

In Algorithm GCS, C is used to hold the cached objects, Sc is the cache
capacity, Su is the cache capacity used, and oi,j is the object to be cached. For
this algorithm, we can see that the most important thing is to find the objects
with minimal cost saving.

It can be shown that the time complexity of Algorithm GCS is O(S2log(S)),
where S is the number of different objects cached. However, from the algorithm
we know that we have to search the entire cache for the other versions of the
object and then recalculate the generalized cost saving for them whenever we
insert or evict an object into or from the cache. Such operations are, in general,
very costly. Here we apply the data structure proposed in [5] to facilitate such
operations.

In the actual implementation, the parameters for computing the generalized
cost saving are usually not constant. To realize our algorithm, these parameters
may have to be relaxed. Here, we adopt a “sliding window” technique [15] which



has been widely applied. It combines both the history data and the current value
to estimate the parameters. Specially, the parameters are estimated as follow.

di,j = α · dnew
i,j + (1− α) · dold

i,j

λi,j = K1

ti,j−t
K1
i,j

µi,j = K2

si,j−s
K2
i,j

.

where dnew
i,j is the newly measured cost of reading or writing oi,j from the client

or the server and dold
i,j is the measured cost of reading or writing oi,j from the

client or the server last time; ti,j is the time when the new request to oi,j is
received from the client and tK1

i,j is the time when the last K request is received
from the client; si,j is the time when the new update to oi,j is sent from the
server and sK2

i,j is the time when the last K update is sent from the server. ηi,j is
considered as a constant since it just sends an invalidation message to the server
for all the documents. We estimate pi,j by λi,j

λi,j+µi,j
.

3 Simulation Model

In the simulation, to generate the workload of clients’ requests, we model a
single server that maintains a collection of m multimedia objects1. The object
popularity followed a Zipf-like distribution [2]. Specifically, the popularity of the
ith video was proportional to 1/iα. The default values of m and α were set to
be 1000 and 0.75 respectively. The sizes of the videos followed a heavy tailed
distribution with the mean value of 12K Bytes [13]. The clients are divided five
classes. Without loss of generality, we assume that the sizes of the five versions of
each video to be 100 percent, 80 percent, 60 percent, 40 percent, and 20 percent
of the original video size. The access probabilities of the clients are described as
a vector of < 0.2, 0.15, 0.3, 0.2, 0.15 >. The transcoding relationship of the six
versions is shown in Figure 1.

Fig. 1. Transcoding Graph for Simulation

Regarding the transcoding rate, we set it to be 20K bytes per second. The
delays of fetching the videos from the server are given by an exponential distri-
bution. We assume that there is no correlation between the video size and the
delay of fetching it from the server. This is justified by Shim et al. in [15].
1 In the simulation, the multimedia objects are assumed to be videos.



The synthetic workloads are generated according to the recent results on the
web workload characterization [6, 8, 13]. Table 1 lists the parameters and their
values used in the simulation.

Table 1. Parameters Used in Our Simulation

Parameter Value

Number of Nodes 10000

Delay of Fetching Objects
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.45 Sec)

Number of Multimedia Objects 1000 objects

Web Object Size Distribution
Pareto Distribution

p(x) = aba

a−1
(a = 1.1, b = 8596)

Web Object Access Frequency
Zipf-Like Distribution

1
iα (i = 0.7)

Average Request Rate Per Node U(1, 9) requests per second

Transcoding Rate 20KB/Sec

We compare our scheme with the following algorithms. (1) Least Recently
Used (LRU) evicts the web object which was requested the least recently. The
requested object is stored at each node through which the object passes. The
cache purges one or more least recently requested objects to accommodate the
new object if there is not enough room for it. (2) Least Normalized Cost Re-
placement (LNC−R) [14] is an algorithm that approximates the optimal cache
replacement algorithm. (3) Aggregate Effect (AE) [5] is an algorithm that ex-
plores the aggregate effect of caching multiple versions of an object in the cache.

4 Performance Evaluation

The primary cache performance metric employed in the simulation is delay-
saving ratio (DSR), which is defined as the fraction of communication and server
delays which is saved by satisfying the references from the cache instead of
the server. We also use average access latency (AST ), object hit ratio (OHR)
as secondary performance metrics. Here OHR is defined as the ratio of the
number of requests satisfied by the caches as a whole to the total number of
requests. We use staleness ratio (SR) as the primary consistency metric. The
staleness ratio is defined as a fraction of cache hits which return stale objects.
Here “stale” means that the time that an object was brought to the cache is less
than the last-modified timestamp corresponding to the request. In the following
figures LRU , LNC−R, and AE denote the results for the three algorithms, and



CERWC shows the results for the model of coordinated en-route web caching
in transcoding proxies, as proposed in Section 2.

In the experiments, we compare the performance of different models across a
wide range of cache sizes, from 0.04 percent to 15.0 percent. The first experiment
investigates DSR as a function of the relative cache size at each node and Figure
2(A) shows the simulation results. MA gives on average 13.3% improvement over
LRU and and 5.3% over LNC − R. The maximal improvement over LRU and
LNC − R is 17.2% and 8.2% for cache size 0.5% and 2.0% respectively. On
average, The DSR of MA is only 1.0% below that of AE. In the worst case, the
DSR of MA is only 1.38% that of AE for cache size 10%.

Figure 2(B) shows the results of OHR as a function of the relative cache size
for different models. Although MA is not designed to maximize the object hot
ratio, it still provides an improvement over LRU and LNC − R. In particular,
the average improvement is 29.6% over LRU and 22.5% over LNC − R. The
object hit ratio provides even closer to the hit ratio of AE; on average, 1.1% and
no more than 2.39% below the object hit ratio of AE.

In addition to improving performance of the cache, the MA algorithm also
significantly improves irs consistence. On average, MA achieves a staleness ratio
which is by factor of 3.2 better than that of AE, in the worst case it improves
SR of AE by factor of 1.9 when the cache size is 0.5%. MA also improves SR
over LRU and LNC − R. On average, MA achieves a staleness ratio which is
50.8% better than that of LRU and 50.1% better than that of NC − R. In the
worst case, it improves SR of LRU by 10.2% when the cache size is 0.5% and
improves SR of LNC−R by 8% when the cache size is 2.0%. The staleness ratio
comparison of the four algorithms can be found in Figure 2(C).

0.2 0.5 2.0 4.0 6.0 8.0 10.0 12.0 15.0
0

10

20

30

40

50

60
(A)

Cache Size (%)

D
S

R
 (

%
)

MA
AE
LNC−R
LRU

,
0.2 0.5 2 4 6 8 10 12 15

0

10

20

30

40

50

60

70

80

90

100

Cache Size (%)

O
H

R
 (

%
)

(B)

MA
AE
LNC−R
LRU

,
1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

3.5

Cache Size (%)

S
R

 (
%

)

(C)

MA
AE
LNC−R
LRU

Fig. 2. Experiments for DSR, OSR, andSR

5 Conclusions

In this paper, we proposed a maintenance algorithm for transcoding proxy
caching, which combined both cache replacement and cache consistence. The



simulation indicated that our algorithm could significantly improve the stale-
ness ratio, while keeping the cache performance within acceptable loss. This
greatly benefit the cache design for transcoding proxy caching.

References

1. M. Bhide, P. Deolasee, A. Katkar, and A. Panchbudhe. Adaptive Push-Pull: Dis-
seminating Dynamic Web data. IEEE Transactions on Computers, Vol. 51, No. 6,
pp. 652-667, June, 2002.

2. L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zip-like
Distributions: Evidence and Implications. Proc. IEEE INFOCOM’99, pp. 126-134,
1999.

3. P. Cao and C. Liu. Maintaining String Cache Consistency in the World Wide
Web. IEEE Transactions on Computers, Vol. 47, No. 4, pp. 445-457, April, 1998.

4. C. Chandra and C. S. Ellis. JPEG Compression Metric as a Quality-Aware Image
Transcoding. Proc. USENIX Second Symposium Intenet Technology and Systems,
pp. 81-92, 1999.

5. C. Chang and M. Chen. On Exploring Aggregate Effect for Efficient Cache Re-
placement in Transcoding Proxies. IEEE Transactions on Parallel and Distributed
Systems, Vol. 14, No. 6, pp. 611-624, June, 2003.

6. C. Cunha, A. Bestavros, and M. Crovella. Characteriatics of WWWW Client-
Based Traces. Technical Report TR-95-010, Boston University, April, 1995.

7. R. Floyd and B. Housel. Mobile Web Access Using Network Web Express. IEEE
Personal Comm., Vol. 5, No. 5, pp. 47-52, Dec., 1998.

8. S. Glassman. A Caching Relay for the World Wide Web. Computer Network and
ISDN Systems, Vol 27, No. 2, pp, 165-173, 1994.

9. R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J. Rubas. Dynamic
Adaption in an Image Transcoding Proxy for Mobile Web Browsing. IEEE Personal
Comm., Vol. 5, No. 6, pp. 8-17, Dec., 1998.

10. S. Jin and A. Bestavros. Greeddual* Web Caching Algorithm Exploiting the Two
Sources of Temporal Locality in Web Request Streams. Computer Comm., Vol. 4,
No. 2, pp. 174-183, 2001.

11. R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing Availability Using
Lazy Replication. ACM Transactions on Conputer Systems, Vol. 10, No. 4, pp.
360-391, 1992.

12. R. Mohan, J. R. Smith and C. Li. Adapting Multimedia Internet Content for
Univeral Access. IEEE Transactions on Multimedia, Vol. 1, No. 1, pp. 104-114,
March 1999.

13. J. Pitkow. Summary of WWW Characteristics. World Wide Web, Vol. 2, No. 1-2,
pp. 3-13, 1999.

14. P. Scheuermann, J. Shim, and R. Vingralek. A Case for Delay-Conscious Caching
of Web Documents. Computer Network and ISDN Systems, Vol 29, No. 8-13, pp.
997-1005, 1997.

15. J. Shim, P. Scheuermann, and R. Vingralek. Proxy Cache Algorithms: Design,
Implementation, and Performance. IEEE Transactions on Knowledge and Data
Engineering, Vol 11, No. 4, pp. 549-562, 1999.

16. R. P. Wooster and M. Abrams. Proxy Caching that Estimates Page Load Delays.
Computer Networks and ISDN Systems, Vol 29, Nos. 8-13, pp. 977-986, 1997.


