
Lookup-ring: Building Efficient Lookups for High
Dynamic Peer-to-peer Overlays1

Xuezheng Liu, Guangwen Yang, Jinfeng Hu, Ming Chen, Yongwei Wu

Department of Computer Science and Techonology
Tsinghua University, Beijing P.R.China

{liuxuezheng00,hujinfeng00,cm01}@mails.tsinghua.edu.cn, {ygw,wuyw}@tsinghua.edu.cn

Abstract. This paper is motivated by the problem of poor searching efficiency
in decentralized peer-to-peer file-sharing systems. We solve the searching
problem by considering and modeling the basic trade-off between forwarding
queries among peers and maintaining lookup tables in peers, so that we can
utilize optimized lookup table scale to minimize bandwidth consumption, and
to greatly improve the searching performance under arbitrary system
parameters and resource constraints (mainly the available bandwidth). Based on
the model, we design a decentralized peer-to-peer searching strategy, namely
the Lookup-ring, which provides very efficient keyword searching in high
dynamic peer-to-peer environments. The simulation results show that Lookup-
ring can easily support a large-scale system with more than 106 participating
peers at a very small cost in each peer.

1. Introduction

The searching efficiency is a crucial factor for peer-to-peer (P2P) file-sharing systems
(Napster [1], Gnutella [2], Kazaa [3]). Although centralized indexing is efficient (e.g.
Napster, [1]), it has inherent defects [6] that research communities and internet users
turn to decentralized systems, in which searching is performed cooperatively by
forwarding queries among peers and use peers’ lookup tables (containing replication
of items’ metadata) to find results (e.g. Gnutella [2], KaZaa [3]). Notable
advancements [3, 4, 5, 6, 11, 13] have been made on decentralized searching to
improve the performance, however, searching (especially searching by keywords) in
decentralized P2P system still remains challenging.

Different from existing approaches which take into account either metadata
replication [5, 6, 11, 13] or enhanced queries forwarding [4], in this paper we solve
the problem of decentralized searching by simultaneously considering metadata
replication and queries, and utilizing optimized lookup tables to minimize bandwidth
consumption and greatly improve searching performance. Our concept is as follows:
putting more metadata (e.g. file indices) in peers’ lookup tables makes queries be
resolved more quickly and reduces bandwidth costs on query forwarding; however,
more indices imply that system variations (peers’ joining or departure) will cause
more corresponding updates for expired metadata and increase bandwidth costs on

1 Supported by NSFC under Grant No. 60373004, No. 60373005, and 973 project numbered 2003CB3169007

2 Xuezheng Liu, Guangwen Yang, Jinfeng Hu, Ming Chen, Yongwei Wu

metadata maintenance. So, there is a basic trade-off between queries and metadata
maintenance, and we model this trade-off to find the optimized scales of peers’
lookup tables, so as to minimize total bandwidth consumption or maximize searching
performance under given environment parameters. In Section II, we propose the
model to estimate optimized lookup table scales, and find that both bandwidth
consumption and average searching hops can be reduced to O(N1/2) (N is the number
of peers) in comparison with the O(N) complexity in conventional random walk
strategy [5]. Based on the model, we propose a decentralized P2P file-sharing system,
the Lookup-ring, which implements a general searching strategy with nearly optimal
performance under arbitrary system parameters (system scale, magnitude of shared
files and frequency for users issuing queries, etc) and resource constraints (mainly the
bandwidth constraint in peers). In current Internet environment, Lookup-ring can
easily afford a system with more than 106 peers where most searching queries are
resolved within a few hops.

The rest of paper is organized as follows. Section II gives the model. Section III
presents details of Lookup-ring design. Section IV presents performance evaluation.
Section V discusses related works and Section VI concludes the paper.

2. Model for bandwidth and trade-off

In this section, we propose an analytic model to estimate bandwidth consumption and
describe the trade-off between querying and metadata maintenance. We first define
notations in the model (see Table.1). We consider a system consisting of N peers (N is
around 106) and sharing U unique files (we don’t count file replicas in U), denoted by
f1, f2, …fU. Each unique file may have some replicas shared by users who download
the file. We use ri to denote the number of fi’s replicas, and TR to denotes the total
replica number (TR = r1+r2+…+rU). For system variations, the peers’ average session
time is denoted by Tsession. Based on measurement works [7, 8] we have referenced
values of these system parameters, as listed in the Table.1 (these values are only used
for reference in the model, not necessary).

Considering that there are totally ki indices of file fi in all peers’ lookup tables (for
i=1…U), we call ki as fi’s “indexing factor”. The search process is a sequence of
probes: when a peer is probed, it attempts to match the query on its local file indices;
we assume the searching is perfect and strict, i.e. a query for file fi can always and
only be resolved by a probe to peer containing an index to fi. For random search
process, the search size (number of probed peers) for resolving a query of fi is a
random variable, with the expectation equal to N / ki [13, 4].

Now we present the model. First we estimate bandwidth costs for querying. Unique
files have their respective popularities modeled by query distribution. Let q = < q1,
q2, …qU > be a vector of probability that sum to 1, where qi is the probability that a
query is for file fi. Therefore, q is the query distribution [13, 4]. Considering there are
totally Q queries submitted per second, the totally bandwidth for querying is:

∑
=

⋅−⋅⋅=
U

i
q

i
i m

k
NqQBW

1
query)1((1)

where mq is the average size of querying message (bits), and (N / ki-1) is the
expectation of hops to resolve a query for fi.

Lookup-ring: Building Efficient Lookups for High Dynamic Peer-to-peer Overlays 3

Table 1. Notation and Model Parameters.

Second, we estimate the maintenance costs. When replica variation occurs, we
need to update the affected indices in lookup tables. So, the bandwidth costs is made
up of the following parts: BWpeer_depart for updating expired indices pointing to a
leaving peer; BWpeer_join for a joining peer downloading its lookup tables from others;
and BWfile for updating lookup tables due to file variations (both sharing new files and
removing shared files). We use Vpeer and Vfile to denote the variation frequency (time
per second) for peer and file respectively. Peer variation are usually modeled with
Poisson distribution with parameter λpeer =1/Tsession [14, 19], and we have Vpeer =λpeer ·N
for both joins and departures. For Vfile, in [7] we know the largest number of
successful downloaded files per peer per day is no more than 75 files (a very large
number), and thus Vfile ≈ 2·75/(24 × 3600)·N for both new downloaded files and
removed files. (The model describes stationary system behavior, so we assume
number of new files to be approximate equal to deleted files in certain duration.)

Now we calculate maintenance costs. A failure of file replica invalidates all indices
pointing to it. These “expired” indices should be updated sooner or later; otherwise
the total number of valid indices will decrease. We suppose the indexing assignment
has no preference for replicas with higher availability. Thus, for a unique file fi with ri
replicas and totally ki indices, one replica failure will averagely cause ki/ri expired
indices. For BWpeer_depart, seeing that departure of a peer P causes failures of all its
replicas, for file fi with ri replicas the probability that a departing peer P contains fi is
ri/N. So the expectation of expired indices caused by a peer departure is:

∑ ∑
= =

=⋅=
U

i

U

i

i

i

ii

N
k

r
k

N
r

1 1

 number expired (2)

Parameter Meanings Referenced value

N Number of peers in the system 106

U Number of unique files 10·N = 107

f1,f2,…fU Unique files shared in the system

ri Number of fi’s replicas Zipf

TR ∑ =
= U

i irTR 1 number. replica Total 200·N=2·108

Q Number of queries per second 1/60·N

Tsession Average peers’ session time (on-line time) 1 hour

peerλ Poisson parameter for peer variations 1/3600

Vpeer Number of peer variatons per second for both join and departure Npeer ⋅λ

Vfile
Number of file varations per second for both adding and
removing files 1.74× 10-3N

ki Number of indices of fi

q=<q1,…qU> 1 on.distributi rateQuery 1 =∑ =
U
i iq

ii rq ∝

mq, mp Average message size for querying and updating expired index 0.5KByte

Rmsg
For redundant messging: peer receives one updating message
for Rmsg times.

4 Xuezheng Liu, Guangwen Yang, Jinfeng Hu, Ming Chen, Yongwei Wu

So, bandwidth consumption for maintaining them is:

∑
=

⋅⋅⋅=
U

i
pmsgpeer

i mRV
N
kBW

1
tpeer_depar

 (3)

where mp is the average size of updating message. In (3) we use Rmsg to denote the
redundancy factor of messages, which indicates that in order to updating a single
index, a peer will averagely receive Rmsg times of the corresponding updating
message, each of which has complete updating information (this is defined for non-
acknowledged messages. For acknowledged message transmission, Rmsg is defined as
the double value of non-acknowledged case). The Rmsg is a system parameter to
characterize updating algorithm in specific system. To make update tolerant to
message lost, some algorithms utilize redundant messaging where peers may receive
the same message more than once. In the model we use Rmsg to reflect this manner.

A peer loses its lookup table after departure, and should download entire table in

join time. The average number of indices in lookup table is NkU
i i∑ =1 , So:

ppeer

U

i

i mV
N
kBW ⋅⋅= ∑

=1
peer_join

 (4)

For file variations, from above analysis a variation of fi may generate ki/ri·Rmsg·mp
bandwidth cost for updating indices, so totally bandwidth is:

∑
=

⋅⋅⋅⋅=
U

i

i

i

i
pmsgfile TR

r
r
k

mRVBW
1

file
 (5)

where TR is total replica number (see Table.1), and the number of variations for fi is
assumed to be proportional to fi’s replicas’ number ri (i.e. number of peers containing
fi). Thus, summate all these cost and we will have the estimation of total bandwidth
consumption, as follows:

filepeer_jointpeer_deparquerytotal BWBWBWBWBW +++= (6)

Notice that {ki} are independent, and we can minimize each term of the summation
in (6) by choosing the best ki. The optimized choices of ki for minimum BWtotal is:

ii
p

q

filepeermsgpeer
i qNq

m
m

VTRNVRV
QNk θ⋅=⋅⋅

⋅+⋅+
⋅=

)(
* (7)

subject to ki
* ≤ N (recall that ki is the indexing factor of file fi), where θ is a system

parameter independent to i. The minimum BWtotal is:

U
Qm

q
Qm

BW qU

i
i

q
Uikk ii θθ

22
BW

1
1,total

*
total * ≤== ∑

=
== L

 (8)

where we used Cauchy inequality to the summation. So, the average bandwidth cost
in each peer based on ki

* is:

N
N
U

N
Qm

N
BW

w q ⋅≤=
θ

2
b

*
total

peerper
 (9)

From (7) the optimized ki is proportional to the querying rate qi
1/2 for each file fi. It is

clear that ki is a trade-off between querying and maintaining the system, since the

Lookup-ring: Building Efficient Lookups for High Dynamic Peer-to-peer Overlays 5

numerator Q·mq·qi and denominator (Vpeer+Rmsg·(Vpeer+N/TR·Vfile))·mp represent cost for
queries and maintenance respectively. In (9) we have average bandwidth cost per peer.
The Q/N is the number of queries each peer submits to system per second (e.g. 1/60). U/N
is also a stationary environment parameter (e.g. 10~20 based on [8]). So, the bandwidth
cost per peer is O(N1/2) in optimization. Because of the square root, the scalability of
system with optimized indexing factor is fairly good. Using practical parameter values in
(9), we find the random searching strategy becomes surprisingly powerful under
optimized indexing factors (i.e. optimized lookup table scale). For example, for N=106
peers with only 1 hour session time, using Rmsg=5 (very redundant messaging) and other
reference values in Table.1, the optimized strategy can support the heavy queries where
each peer submit a query per minute, within only 15Kbps bandwidth per peer (both
upstream and downstream). This is a very low bandwidth cost that modem connections
can easily afford, and we can even reduce it with more efficient messaging (lower Rmsg).
For comparison, based on report in year 2001 [18], in Gnutella each peer consumes more
than 150 Kbps bandwidth both upstream and downstream.

The model illustrates theoretical lower bound of peer consumptions for
constructing a lookup system based on random searching process. It shows that with
appropriate lookup scales and updating mechanism, a uniform system (i.e. no
supernodes) with simple unbiased search is capable to support very large systems. In
the following sections we give practical design derived from the model.

3. Design of Lookup-ring

This section presents design of Lookup-ring Lookup-ring is derived from the model to
achieve optimized performance, in which indexing factors is calculated based on
equation (7). Lookup-ring is built on top of most structured P2P infrastructures, e.g.
Chord, Pastry [9] and SkipNet [20]. In this paper we illustrate how it works on top of
Pastry and SkipNet as example. For details of their structures, please refer to [9, 20].

3.1 Indexing factor and file levels

Assuming we know the query rate distribution <q1,q2,…qU> (due to limited space, we
do not provide estimation of qi, but only point out it is reasonable to assume qi to be
proportional to replica number ri), we can obtain best indexing factor ki

* with (7). We
first quantify ki

* into discrete levels, and files whose ki
* belong to the same level have

the same actual (quantified) indexing factor ki. The indexing factor is quantified into
m levels with radix 2, i.e. we use a set of m kinds of indexing factor values M={N, 2-

1 ·N, 2-2 ·N, …,2-(m-1) ·N} for all indices. For fi with ki
*, the actual indexing factor ki

should be the closest 2-j ·N in M to ki
*, and we call fi as a “j-level” file.

3.2 PeerId, fileId and peer groups

In Lookup-ring, each peer is assigned with a unique and uniformly distributed peerId. We
also generate a uniformly distributed fileId for each unique file by hash functions. We use
peerId to partition peers into groups, and fileId to match unique files with groups.

Peers are partitioned into hierarchical groups as follows. All peers with the same j-
bit prefixes in peerIds are united into a j-level group, for j=0,1,…(m-1). A j-level

6 Xuezheng Liu, Guangwen Yang, Jinfeng Hu, Ming Chen, Yongwei Wu

group is denoted by the j-bit common prefix of containing peers. The prefix of a
group is also called the group’s groupId. For example, 010-group is a 3-level group
with groupId “010”, which consists of all peers with the same 3-bit prefix “010”. Due
to uniformity of peerIds, a j-level group has approximately 2-j·N peers.

Each j-level unique file is matched to one j-level group whose groupId equals to j-
bit prefix of the file’s fileId. If a file is matched to a group, all peers belong to the
group should contain the file’s index in their lookup tables. Thus, a peer P with peerId
idP contains indices of all j-level files with fileIds sharing idP’s j-bit prefix, for j=0,
1, …, m, and a j-level file is indexed by approximately 2-j·N peers, as our original
purpose. Consequently, any query for a j-level file can be resolved by traversing all j-
level groups, i.e. forwarding query to 2j peers with different j-bit peerId prefixes. If
doing so, we also obtain all unique files with file level less than j. Therefore, we can
resolve any query by traveling 2-(m-1)·N peers with different (m-1)-bit prefixes.

Since Lookup-ring is built on top of structured P2P infrastructure, the peer
partitioning ought to be consonant with underlying peer organization, and peerId
should have ability to partition peer into groups in DHT organization. If Lookup-ring
is built on Pastry, we use Pastry’s nodeId as peerId in Lookup-ring, because in
Pastry’s organization the nodeIds plays the role of partitioning nodes into prefex-
based groups.2 The peer groups and file levels are shown in Fig.1.

Fig. 1. Partition on top of Pastry and SkipNet.

3.3 Searching in Lookup-ring

Lookup-ring provides searching by keywords and substrings. Each unique file is
associated with a “label” for searching, e.g. the filename. Each file index defines a
match between a unique file’s label and location of one of the file’s replicas. Thus, a
file index contains the file label, IP of location. We also store the file’s fileId and
location’s peerId in the index. For 20~30-byte file label, we need only about 64-byte
file index. Based on the model, each peer of a 106-peered system needs to contain
about 104 indices, and the lookup table size is no more than 1Mbyte.

Lookup-ring has a “prefix-traversing” searching strategy. Consider a query q
submitted in peer P0. We first check P0’s lookup table to see whether q could be

2 Other P2P infrastructures (e.g. chord) also have similar nodeId playing the partitioning role. For SkipNet,

note that it is a “bi-id” system whose NameId indicates proximity between nodes while NumericId
partition nodes into hierarchical rings. So, we use SkipNet’s NumericId as the peerId in Lookup-ring.

xxxx

0-xx 1-xx

00-xx 01-xx 10-xx 11-xx

0

1

2

m-1

levelGroups on top of
Pastry

Groups on top of
SkipNet

0

00 01 10 11

1

?-xx Peers in a group in Pastry Peers in a group in SkipNet ??

Lookup-ring: Building Efficient Lookups for High Dynamic Peer-to-peer Overlays 7

resolved locally. Here we obtain all 0-level results of q. If q is satisfied (i.e. get
enough results) we stop searching, otherwise q is forwarded to a peer P1 which has a
different 1-bit prefix with P0. From both P0 and P1 we can find all 1-level results of q,
because P0 and P1 represent all 1-level groups. If still unresolved, we keep up this
prefix-traversing. In general, before the j-th step q has been forwarded to 2(j-1) peers
{P0, P1, …P2^(j-1)-1} with the peerIds covering all (j-1)-bit prefixes. In the j-th step we
forward q to another 2(j-1) peers namely P2^(j-1),…P2^j-1, so that j-bit peerId prefixes of
all searched peers {P0, P1, …P2^j-1} have covered all the j-bit prefixes. After that, we
have traversed all groups with no more than j levels and found all results whose levels
are no more than j. The searching process stops either query is resolved or we reach
the last level ((m-1)-level) when all unique files’ indices has been searched.

Due to the consistency of Lookup-ring’ peerId with underlying DHT, it is very
easy to perform prefix-traversing searching, because it is a natural property of most
DHTs to perform such prefix-traversing [16]. Therefore, searching in Lookup-ring is
very efficient without redundant query forwarding.

3.4 “Principle of logical locality” for location choices

Because a unique file usually has more than one replica, there is a problem for
choosing location for file’s indices. For each of the file’s index we choose only one
replica as the location. We propose our “principle of logical locality” for choosing
locations of indices and for easy maintenance.

For a j-level unique file fi, all fi’s indices are stored in a matched j-level group g. If
one of fi’s replicas P fails, we need to efficiently update all affected indices in g, i.e.
indices picking P as fi ’s location. To make maintenance easy and save bandwidth, peers
in g whose indices of f pick the same location should to be situated in a logical locality
in g (i.e. a continuous region is id-space), so that we can perform locality-based update
in which messages are precisely spread to all peers in the affected region that exactly
“need” the update, while other peers will not receive the message. For this purpose, we
use “principle of logical locality” to choose location for each index, i.e., when chooses
the location for an index of a unique file, a peer should always pick the logically
“closest” replica of that file. In other words, location in peer’s index should always be
the living replica which is current the closest one to the peer in logical distance. The
goal of maintenance is to keep this invariance after system variations.

Similar to the peerId, here the “locality” should also be consonant with underlying
peer organization to facilitate updating algorithm. In Pastry, both locality and peer
portioning is based on Pastry’s nodeId. Thus, we ask each Lookup-ring peer to choose
the replica whose peerId is currently the closest one. Obviously this design fits all
fundamental considerations of our design, e.g., locality-based updating, since peers
choosing the same location of a file are logically adjacent in DHT’s id-space.
However, from Fig.1 and Fig.2 the replica locations being chosen in a certain group
are not uniformly distributed, since peerIds in a group have a common prefix and do
not fill in peerId-space where replicas’ peerIds scatter themselves. So, we can extend
this approach to get better uniformity of choosing locations (this extension is not
necessary to Lookup-rings). We first map peerIds of replicas into the group with
linear transformation before using principle of locality. For a j-level file f matched to
a j-level group g with j-bit groupId idg, we map all peerIds of f’s replicas into g by

8 Xuezheng Liu, Guangwen Yang, Jinfeng Hu, Ming Chen, Yongwei Wu

right-shifting them by j-bits and add j-bit prefix idg. After this linear transformation,
replicas’ mapped peerIds are uniformly distributed in g while also keep their primary
order. Then, peer in g picks the replica of f whose mapped peerId is the closest one.
Fig.2 shows this mapping, and in Fig.2 the I, II, and III are the three sections in the
group (i.e. locality) which consist of peers choosing replica a, b, and c as the location
of index, respectively. When variation occurs (e.g. b suddenly fails), peers in section
II should be updated with new replica locations. Based on the principle, section II is
then divided into I’ and III’ which should update their locations with a and c, and be
merged into I and III, respectively. The boundaries of I’ and III’ can be determined
only with peerId of a, b and c (the boundary between I’ and III’ has the equivalent
distance to peerId(a) and peerId(c)). So, after b’s failure we have the following update
strategy: b’s neighbor replica a and c find b’s failure (how they find the failure is
explained in Section 3.5), send their locations and boundaries of I’ and III’ to two
certain peers in I’ and III’ correspondingly (the dashed lines in Fig.2), and these peers
spread received messages in I’ and III’ for updating all other peers in the either
locality. When b joins there’s a similar process: b calculates section II’s boundaries
from a’s and c’s locality and spread updating message in II.3

Fig. 2. Principle of locality in Lookup-ring, and the updates of indices after variation

3.5 Maintaining Lookup-ring

For maintenance, we should actively detect variations and update affected indices. We
construct file-ring in Lookup-ring, where all replicas of a unique file connect to form a
ring structure and keep connections with heart-beating messages, so that variations can
be soon detected. After that, the detector generates an appropriate update immediately.

3.5.1 File-rings
A file-ring is shown in Fig.3. Consider a certain unique file fi with r replicas stored in
r peers. These peers are connected into a ring structure (file-ring), ordered with
logical locality in DHT, namely P1,P2,…Pr (logical locality is defined in last Section).
Peers participating in a file-ring should hold the links to its two neighbors
(predecessor and successor in ring) and send “heart-beating” messages to them every
Tprobe of time to maintain connectivity. A peer may participate in many file-rings
according to its shared unique files.

3 In SkipNet the logical locality is defined by NameId rather than NumericId, because in each SkinNet-ring

the sequence and neighborhood of peers are indicated by NameId. So, on top of SkipNet we use
NameIds of replicas to determine the sections and guide location choosing. Fig.2 shows one group (i.e. a
SkipNet-ring) and its sections based on replicas’ NameIds.

III
II

I
a

b

c

NameID-ring in SkipNet

III’

I’group
with b

w/o b

a b c

IIIII I

III’ I’

Mapping

NameID space in Pastry

Lookup-ring: Building Efficient Lookups for High Dynamic Peer-to-peer Overlays 9

Fig. 3. Maintaining file-ring connectivity

3.5.2 Active variation detection and file-ring recovery
Peers periodically probe their file-ring neighbors. To reconnect broken file-ring, peers
should be aware of not only its direct neighbor but also some nearby peers, namely
“adjacent-set”, similar to Pastry’s leaf set [9]. When neighbor fails, a peer can
reconnect file-ring with adjacent set. Then, it keeps heart-beating with its new
neighbors, and also notify nearby peers for updating their adjacent-sets. Fig.3 shows a
file-ring with 8 peers and adjacent-sets. When replica c fails (either peer failure or
dropping replica), b and d will detect the failure after (Tprobe+Tout) and begin to repair
file-ring. Peer b and d first find each other from adjacent-sets and reconnect file-ring
(b and d exchange adjacent-sets for verification and updating). Then, b sends its new
adjacent-set to a and h for updating expired adjacent-sets in them, and d also updates
e’s and f’s adjacent-sets. For replica c joining file-ring, a similar procedure is
performed that b and d receive the joining request, break their interconnection and
turn to keep the connection with c, and notify a, h and e, f for updating adjacent-sets.

We set the Tprobe as 60 seconds and keep 16 peers in the adjacent-set. For variation,
each detector notifies 7 peers in its side, with an acknowledged messaging.

3.5.3 Updating lookup tables after system variations
Replicas in file-ring are ranged by logical locality; therefore the two detectors of
replica failure are exactly the two replicas whose locations should be used to update
expired indices. Thus, in Fig.2 peer a and c will detect b’s failure within (Tprobe+Tout)
due to file-ring heartbeat messaging. After that, a and c calculate their respective
updating sections (i.e. I’ and III’), and each of them immediately sends an update
message to one peer in corresponding section for maintaining lookup tables, via
underlying P2P routing. The update message contains the new location of replica (a
or c), the fileId of the unique file, and boundaries of section inside of which the
message should be spread. The peer receiving the updating message then spreads it to
entire updating section in the file’s group, by way of message broadcasting algorithm
in the underlying structured peer organization.

In detail, most DHTs can perform locality-based message broadcasting as a basic
service, i.e. broadcasting messages to all peers in a consecutive section based on its
logical locality in a partitioned group [16]. Lookup-ring utilizes DHT-based
broadcasting for spreading its update messages, following the algorithm proposed in
[16]. On top of Pastry (and Chord, etc), we can derive from the routing tables a
spanning tree for an arbitrary nodeId section (rooted by any peer in the section). Via

a
b

c

de

h

g

f

(f,g,h,b,c,d)

(g,h,a,c,d,e)

(h,a,b,d,e,f)

(a,b,c,e,f,g)

(b,c,d,f,g,h)

(e,f,g,a,b,c)

(c,d,e,g,h,a)

peer in file-ring

adjacent-set

failure in file-ring

re-connection

notify and update
affected adjacent-
set

10 Xuezheng Liu, Guangwen Yang, Jinfeng Hu, Ming Chen, Yongwei Wu

broadcasting the first peer can spread the update information to all other M peers in
the section through exactly (M-1) messages [16]. This broadcast has no message
redundancy that each peer receives the needed message exactly once. So, the Rmsg in
the model (see Section.2) should be 1. To further guarantee the update, we use
confirmed messaging that all updating messages should be acknowledged. If an
acknowledgement is not received within a timeout period the message is
retransmitted. Therefore, considering both acknowledgement and redundancy during
broadcast, the message redundancy factor Rmsg in our model should be 2 for Pastry.4

4. Performance evaluation
We perform our evaluation of Lookup-ring with simulations. We run our simulator on
Linux running on Pentium IV CPU with 2G memory, which can support more 104
simulated peers. We construct and evaluate Lookup-ring on top of SkipNet. We
implement SkipNet based on [20], using basic type of SkipNet with only R-table and
density parameter k equal to 2. For shared files, the unique file number is 10 times of
the peer number and the total file number is 200 times of peer number, derived from
[8, 7]. The simulation has two aspects. First we examined feasibility and efficiency of
Lookup-ring by simulating environments with different peer numbers and peer
availabilities, in order to see bandwidth cost in each peer to support a heavy query
load (one query per peer per minute). Second, we compared Lookup-ring with
random walks searching [5] in order to see how much improvement we have gained.
We are mostly concerned about the following two metrics: the average search size (in
hop number), and the maximum query workload under a fixed bandwidth. The former
indicates how quickly a query is resolved, and the latter shows system scalability.

Fig.4.a shows the messages and bandwidth consumptions for each peer in
supporting one query per peer per minute, under different peer availability (Tsession)
and system scale (number of total peers). If mq and mq is both 1Kbit message on
average, the values in y-axis of Fig.4.a is also the needed bandwidth for each peer.
We can see the trend of bandwidth consumptions when enlarge system scale, which is
roughly in proportion with the square root of peer number, e.g. when expand peer
number for 10 times from 103 to 104, the bandwidth increase from 0.36 to 1.42 Kbps
(i.e. 3.9 times, nearly 101/2) for 1.5 hours online time (Tsession=5400s). From this trend,
we can deduce that for 106 peers, the bandwidth is nearly 10 times of the case with
104 peers, i.e. nearly 16Kbps for Tsession=3600s and 12Kbps for Tsession=7200s, in both
upstream and downstream. This result shows very good scalability for large systems.

Fig.4.b is the average search size of Lookup-ring and random walk. The results
demonstrate the improvement of search size in our strategy. In 104 peers, the search size
is only 1/40 of random walk. This outperforming becomes more remarkable when peer
number N grows, since we have O(N1/2) search size while random walk is nearly O(N).

Fig.4.c is the comparison of maximum supported query workload under different
bandwidth. We compare Lookup-ring with random walk in system of 5000 and 10000
peers (Tsesson=3600s), with 1Kbit querying messages. From the results we also see that
Lookup-ring greatly overcome the Gnutella-like system, esp. when system scale

4 On top of SkipNet there’s a slight difference that the derived spanning tree has some redundancy, where

each peer will averagely receive an updating message for 1.5 times, and Rmsg should be 3 for confirmed
messaging. Here we omit the discussions and readers can refer to [12] for details.

Lookup-ring: Building Efficient Lookups for High Dynamic Peer-to-peer Overlays 11

grows. The reason is because by using adaptive indices, we significantly save query
hops and simultaneously constrain the maintenance cost to a low level.

Fig. 4. Performance evaluation. a) up-left. b) up-right. c). bottom.

5. Related works
To improve searching efficiency, researches try to exploit all aspects of typical query-
based decentralized searching. In strategy of forwarding queries, [5] propose to
replace flooding-based query-forwarding with random walks, so that network traffic
is reduced. [4] further exploit data correlations and user interests to guide forwarding
directions and improve searching performance. Instead of [4], Lookup-ring doesn’t
need specific data correlations, and thus is suitable for more applications. In the
aspect of local lookup tables, results caching [11] and supernode [3] are employed.
[13] suggests replicating files in accordance with their query rates, so that the
expectation of searching size is optimized. In comparison, Lookup-ring has fully
controlled and optimized caching (the indices), and doesn’t need supernode. Recently,
researchers present to employ biased overlay topology towards peers with larger
lookup tables, and Gia in [6] is an integrative design combining many above features.
For DHT-based approaches, most DHTs support only precise search with precise
resource ID, while the others have very limited capability in keyword search [6, 17].
Lookup-ring uses DHT as underlying organization for system maintenance, and the
efficient keyword search is built on a higher level.

12 Xuezheng Liu, Guangwen Yang, Jinfeng Hu, Ming Chen, Yongwei Wu

6. Conclusions
Our contribution is in the following aspects. First, we propose an analytic model to
describe trade-off between query and maintenance, based on which the optimized
lookup table scales can be estimated. Second, we design a efficient decentralized P2P
searching strategy, where there are no supernodes and all peers are utilized uniformly.
Third, we demonstrate the maximum query load and system scale that an unbiased
decentralized P2P system can support. We show that unbiased decentralized P2P
system can achieve a heave query load in a large-scale system, with low peer costs.

Reference
[1] Napster, the napster homepage. In http://www.napster.com/
[2] Gnutella, In http://www.gnutella.com
[3] KaZaA, file sharing network. In http://www.kazaa.com
[4] E. Cohen, A. Fiat, and H. Kaplan. Associative Search in Peer to Peer Networks:

Harnessing Latent Semantics. In Proceedings of the IEEE INFOCOM'03 Conference.
2003

[5] Q, Lv, P. Cao, E. Cohen, K. Li, S. Shenker. Search and Replication in Unstructured Peer-
to-Peer Networks . In Proceedings of 16th ACM International Conference on
Supercomputing (ICS’02), 2002.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N Lanham, S. Shenker. Making Gnutella-like
P2P Systems Scalable, In Proceeding of ACM Sigcomm’03

[7] S. Saroiu, P. K. Gummadi, S. D. Gribble. A Measurement Study of Peer-to-Peer File
Sharing Systems. In Proceedings of Multimedia Computing and Networking 2002
(MMCN’02), CA, Jan. 2002.

[8] J. Chu, K. Labonte, and B. Levine. Availability and locality measurements of peer-to-peer
file systems. In Proceedings of ITCom: Scalability and Traffic Control in IP Networks,
July 2002.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In IFIP/ACM Middleware, Nov. 2001.

[10] J. Wang. Gnutella bandwidth usage. Nov. 2001. https://resnet.utexas.edu/trouble/p2p-
gnutella.html.

[11] B. Bhattacharjee, et al. Efficient Peer-To-Peer Searches Using Result-Caching, In
IPTPS’03

[12] X. Z Liu, J. F. Hu, D. X. Wang. Lookup-Rings: Building Efficient Lookups for High
Dynamic Peer-to-peer Overlays. In http://166.111.68.162/granary/index.htm

[13] E. Cohen and S. Shenker. Replication strategies in unstructured Peer-to-Peer networks. In
Proceedings of the ACM SIGCOMM'02 Conference. 2002

[14] A. Gupta, B. Liskov, R. Rodrigues. One Hop Lookups for Peer-to-Peer Overlays. In
HotOS IX, 2003

[15] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van R. Kelips: Building an efficient and
stable P2P DHT through increased memory and background overhead. In IPTPS, 2003.

[16] S El-Ansary, L Alima, P. Brand, S. Haridi: Efficient broadcast in structured P2P networks. In
IPTPS’03.

[17] M. Harren, J. M. Hellerstein, R. Huebsch. Complex queries in DHT-based P2P Networks. In
IPTPS’01.

[18] J. Wang. Gnutella bandwidth usage. Nov. 2001. https://resnet.utexas.edu/trouble/p2p-
gnutella.html.

[19] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, D. Towsley. Modeling Peer-Peer File
Sharing Systems. In Proceedings of IEEE INFOCOM’03, 2003

[20] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A
Scalable Overlay Network with Practical Locality Properties. In Proceedings of 4th USITS,
Mar. 2003.

