
Leader Election in Hyper-Butterfly Graphs

Wei Shi1 and Pradip K Srimani1

Department of Computer Science
Clemson University

Clemson, SC 29634 USA

Abstract. Leader election in a network is one of the most important problems
in the area of distributed algorithm design. Consider any network of N nodes; a
leader node is defined to be any node of the network unambiguously identified by
some characteristics (unique from all other nodes). A leader election process is
defined to be a uniform algorithm (code) executed at each node of the network; at
the end of the algorithm execution, exactly one node is elected the leader and all
other nodes are in the non-leader state [GHS83,LMW86,Tel93,Tel95a,SBTS01]
In this paper, our purpose is to propose an election algorithm for the oriented
hyper butterfly networks with O(N log N) messages.

1 Hyper Butterfly Graphs

1.1 Hypercube

A hypercube Hn, of order n, is defined to be regular symmetric graph G = (V, E)
where V is the set of 2n vertices, each representing a distinct n-bit binary number and
E is the set of symmetric edges such that two nodes are connected by an edge iff the
Hamming distance between the two nodes is 1 i.e., the number of positions where the
bits differ in the binary labels of the two nodes is 1. For example, in H 3, the node 010
is connected to three nodes 110, 000 and 011. It is known that the number of edges in
Hn is n × 2n−1 and the diameter of Hn is given by D(Hn) = n.

1.2 Butterfly Graph

A wrapped butterfly network, denoted by Bn, is defined [Lei92] as follows: a vertex is
represented as (zn−1 · · · z0, �), where zn−1 · · · z0 is a n-bit binary number and � is an
integer, 0 ≤ � ≤ n − 1.

The edges of Bn are defined by a set of four generators. Consider an arbitrary node
(zn−1 · · · z0, �) in Bn. We define α(�) = �+ 1(modn) and β(�) = �− 1(modn). The
four edges node (zn−1 · · · z0, �) has can be derived by the following four generators:

g(zn−1 · · · z0, �) = zn−1 · · · z0, α(�)
g−1(zn−1 · · · z0, �) = zn−1 · · · z0, β(�)

f(zn−1 · · · z0, �) = zn−1 · · · z�+1z̄�z�−1 · · · z0, α(�)
f−1(zn−1 · · · z0, �) = zn−1 · · · zβ(�)+1z̄β(�)zβ(�)−1 · · · z0, β(�)

Remark 1. We refer to the frist part in the butterfly label, i.e. zm−1 · · · z0 as comple-
mentation index; and the second part, i.e. �, as permutation index.

1.3 Hyper-Butterfly Graph HB(m,n)

Consider two undirected graphs G = (VG, EG) and H = (VH , EH); the product graph
G × H has node set VG × VH . Let u and v be any two nodes in G, and let x and y be
any two nodes in H ; then, (〈u, x〉, 〈v, y〉) is an edge of G×H iff either (1) (u, v) is an
edge of G and x = y, or (2) (x, y) is an edge of H and u = v.

Definition 1. A Hyper-Butterfly graph HB(m,n), of order (dimension) (m + n) is
defined as the product graph of a hypercube Hm of dimension m and a butterfly Bn of
dimension n.

In HB(m,n), each node is assigned a label (xm−1 . . . x0, zn−1 · · · z0, �) where each
xi and zj are binary bit, 0 ≤ i ≤ m−1 and 0 ≤ j ≤ n−1. � is an integer, 0 ≤ � ≤ n−1.
xm−1 · · ·x0 is the hypercube-part-label and (zn−1 · · · z0, �) is butterfly-part-label. The
edges of the HB(m,n) graph are defined by the following m + 4 generators:

hi(xm−1 · · ·x0, zn−1 · · · z0, �) =
(xm−1 · · ·xi+1x̄ixi−1 · · ·x0, zn−1 · · · z0, �) ∀i, 0 ≤ i ≤ m − 1

g(xm−1 · · ·x0, zn−1 · · · z0, �) = (xm−1 · · ·x0, zn−1 · · · z0, α(�)) α(�) =
� + 1(modn)

g−1(xm−1 · · ·x0, zn−1 · · · z0, �) = (xm−1 · · ·x0, zn−1 · · · z0, β(�)) β(�) =
� − 1(modn)

f(xm−1 · · ·x0, zn−1 · · · z0, �) =
(xm−1 · · ·x0, zn−1 · · · zα(�)+1z̄α(�)zα(�)−1 · · · z0, α(�))

f−1(xm−1 · · ·x0, zn−1 · · · z0, �) = (xm−1 · · ·x0, zn−1 · · · z�+1z̄�z�−1 · · · z0, β(�))

Remark 2.

– The set of m+4 generators of the graph HB(m,n), Ω = {hi, 0 ≤ i < m, f, g, f−1, g−1}
is closed under inverse; in particular hi for all i is its own inverse, g is inverse of
g−1 and f is inverse of f−1; thus the edges in HB(m,n) are bidirectional.

– For an arbitrary n, n > 2, for any arbitrary node v of the graph HB (m,n), δ(v) �= v
where δ ∈ Ω = {hi, 0 ≤ i < m, f, g, f−1, g−1}; also, for any two δ1, δ2 ∈ Ω,
δ1(v) �= δ2(v).

– Hyper butterfly graph HB(m,n) is a Cayley graph of degree m + 4.
– For any m and n, n ≥ 3, the graph HB(m,n) (1) is a symmetric (undirected) regular

graph of degree m+4; (2) has n×2m+n vertices; and (3) has (m+4)×n×2m+n−1

edges.

Definition 2.

– The m edges generated by the generators hi are called hypercube edges and the
4 edges generated by either of the generators g, f, g−1, f−1 are called butterfly
edges.

– Any arbitrary node v = (h, b) ∈ HB(m,n) has m hypercube neighbors {(h(i), b), 1 ≤
i ≤ m} (reached from v by the m hypercube edges) and has 4 butterfly neighbors
{(h, b(j)), 1 ≤ j ≤ 4} (reached from v by the 4 butterfly edges).

Remark 3. Along any hypercube edge, only the hypercube-part-labelof a node changes,
and along any butterfly edges, only the butterfly-part-label changes.

Remark 4. The labeling of a hyper-butterfly graph is not unique. There exist many pos-
sible different label assignments with the same graph using traditional labeling scheme.
We arbitrarily choose one such traditional labeling and refer to it as canonical labeling
and will refer to the nodes using its canonical label.

Definition 3.

– We use H
(∗,z,�)
m to denote an m-dimensional hypercube subgraph of HB (m,n)

where each node has the same butterfly-part-label (z, �).
– We use B

(h,∗,∗)
n to denote an n-dimensional butterfly subgraph of HB (m,n) where

each node has the same hypercube-part-label h.
– We use R

(h,z,∗)
n to denote a ring of n nodes where each node has the same hypercube-

part-label h and same complementation index z = z0 · · · zn.
– We use HR

(∗,z,∗)
m,n to denote the set of nodes that have the same complementation

index z. This set of node is actually the product of a H
(∗,z,�)
m and R

(h,z,∗)
n , with the

same z value.

2 Leader Election Algorithm in Hyper-butterfly Graph

Consider a hyper-butterfly graph HB(m,n); a leader node is defined to be any node
of the graph unambiguously identified by some characteristics (unique from all other
nodes). A leader election process is defined to be an uniform algorithm executed at each
node of the network; at the end of the algorithm execution, exactly one node is elected
the leader and all other nodes are in the non-leader state.

Remark 5. If each node knows its canonical label, this election process is trivial. Con-
sider the node having the smallest label, i.e. (0 · · · 0, 0 · · ·0, 0) in HB(m,n); we can say
that the node with this label will automatically become the leader and all other nodes
are non-leaders.

In this paper, as in [Tel95b], we assume that the nodes in the graph do not know
their canonical labels. We will still refer to the nodes by some canonical labels for
convenience, but these labels or names have no topological significance [Tel95b]. We
also assume in this paper that the network is oriented in the sense that each node can
differentiate the links incident to it by different generators. (in contrast, a node in an
un-oriented star graph distinguishes its adjacent links by different but uninterpreted
names). We define the direction of a link as the index of the generator that generates
the link. So, the link that is associated with generator h i has direction i, 0 ≤ i ≤ n− 1.
And the link that is associated with generator g, g−1, f, f−1 has direction g, g−1, f, f−1

respectively.
The whole elction algorithm in hyper-butterfly graph consists of three major steps.

At different step, the graph is divided into different regions, and the leader for each
region is elected. At first step, the hyper-butterfly graph H (m,n) is divided into n ×

2n hypercubes. Within each hypercube, the nodes run a formerly proposed election
algorithm for hypercubes. After this step, each hypercube will have a leader node. In
the second step, the nodes with the same complementation index are considered in
one region. For a certain complementation index z, the region is actually a ring of
hypercube, i.e. HR

(∗,z,∗)
(m,n) . The hypercube leaders elected in the first step will compete

with each other and elect one leader in HR
(∗,z,∗)
(m,n) for each different z value. The third

step is the final step, where the leaders elected in the second step compete with each
other and elect one final leader for HB(m,n). In the following sections, we discuss the
detail of election algorithm at each step.

Remark 6. It should be noted that in an oriented hyper-butterfly graph, each node can
identify the region with the knowledge of direction of edges, i.e. one node can send a
message to some other node in the same region by using a sequence of certain direc-
tions. the node does not have to know its canonical label in order to identify the region.

2.1 Election Algorithm in H (∗,z,�)
m

In HB(m,n), there are n × 2n different butterfly labels, which we denote as (z, �),
0 ≤ z < 2n, 0 ≤ � < n; and the nodes with the same butterfly part label form a
hypercube of dimension m, which we denote as H

(∗,z,�)
m .

In this step, each nodes first runs a leader elction algorithm for hypercube []. The
algorithm uses only hypercube edges, i.e. edges with direction 0 to n − 1. At the end
of this procedure, there will be one leader elected in H

(∗,z,�)
m for each different (z, �)

value pair. The details of the algorithm is listed as follows:
After the leader is set at H

(∗,z,�)
m . The leader will broadcast its id to all nodes in

H
(∗,z,�)
m . Each node receives this broadcast message will save the leader’s id into a

variable HL (abbreviation for hypercube leader).

Lemma 1. This step requires less than 7.24 × n × 2m+n messages [Tel95b].

2.2 Election in HR
(∗,z,∗)
(m,n)

After the first step, there will be a leader in each hypercube H
(∗,z,�)
m , (0 ≤ z < 2n, 0 ≤

� < n). We use (h(z, �), z, �) to denote the label of the leader in H
(∗,z,�)
m , where h(z, �)

specifies the hypercube part label of the leader.

Remark 7. h(z, �) does not denote a particular function to derive the hypercube part
label from z and �. h(z, �) only indicates that the hypercube part label of the leader

varies for different hypercubes. Since the leader in H
(∗,z,�)
m is determinate for any (z, �)

value pair, the hypercube part label of leader is also determinative and solely depends
on the value of z and �.

In the first step, the leader of each hypercube also broadcasts its id within the hyper-
cube when it becomes the leader. After the broadcast procedure, every node in H

(∗,z,�)
m

will be informed with the id of leader, i.e. (h(z, �), z, �), and has variable HL set to it.

Direction of RingTe
Message travels

Hypercube Edges

Butterfly Edges
(0,0,0)

(2,0,0)

(0,0,1) (0,0,2)

(3,0,1)

(1,0,0)
(1,0,1) (1,0,2)

(3,0,0)

(2,0,2)(2,0,1)

(3,0,2)

Fig. 1. Example of Leader Election in HR
(∗,0,∗)
(2,3)

(A subgraph of HB(2,3))

The objective in the second step is to elect leaders in larger regions. In this step,
the nodes in hyper-butterfly graph HB (m,n) is considered to be grouped into 2n new

regions: HR
(∗,z,∗)
(m,n) , 0 ≤ z < 2n, each consists of n hypercubes with the same com-

plementation index, H
(∗,z,�)
m , 0 ≤ � < n. Each hypercube has one leader elected

from the first step, and there are totally n × 2n such hypercube leader, with n in each
new region HR

(∗,z,∗)
(m,n) . In the second step, each hypercube leader (h(z, �), z, �) invokes

procedure HRElect to compete with other n − 1 hypercube leaders in the same re-
gion HR

(∗,z,∗)
(m,n) . Only one of them becomes the new leader. After every hypercube

leader finishes procedure HRElect, there will be only 2n leaders left, with one in each
HR

(∗,z,∗)
(m,n) , 0 ≤ z < 2n. The *** code of procedure HRElect is listed below.

Procedure HRElect(h(z, �), z, �)

Initial Conditions:
1. Node (h(z, �), z, �) is the leader of H

(∗,z,�)
m .

2. All nodes in HB(m,n) have viarable HL set to the label of the hypercube leader.

Invocation of the Procedure:
Node (h(z, �), z, �) sends message RingTest((h(z, �), z, �), 0, T rue) along direction g.

Upon receiving message RingTest(id, i, b) from direction g−1:
//id is the label of the node which invokes procedure HRElect.
//i is an integer from 0 to n − 1 and b is a boolean
//with the value of either True or False.
if (i < n − 1)

{
if (b == False||HL > id)

send message RingTest(id, i + 1, False) through direction g.

else
send message RingTest(id, i + 1, T rue) through direction g.

}
else

{
// This means the message gets back to the leader node (h(z, �), z, �)
if (b == True)

// This node passed all tests in the ring, becomes the new leader.

Current node (h(z, �), z, �) becomes the leader of HR
(∗,z,∗)
(m,n) .

else
// Failed the test, becomes non-leader.

Current node becomes non-leader in HR
(∗,z,∗)
(m,n) .

}

As we can see, the procedure can be invoked from any hypercube leader (h(z, �), z, �).
It consists of sending message RingTest(id, i, b) carrying three parameters. The first
parameter is the id of the hypercube leader that invokes the procedure. The second pa-
rameter i is an integer that counts the number of nodes message RingTest(id, i, b) has
passed except the origin node. b is a boolean to indicate if id is large enough to be the
leader of the part of HR

(∗,z,∗)
(m,n) that the message has passed so far.

Since every node increments i and relays the message through direction g, message
RingTest(id, i, b) will go through a ring of n nodes and get back to the origin node
(h(z, �), z, �) after that. At each intermediate node, the variable HL is compared to
id that comes from the message. If HL is larger than id, then b is set to False to
indicate that the node invoke the procedure is not large enough to be the leader of
HR

(∗,z,∗)
(m,n) . When message RingTest(id, i, b) gets back to the origin node that invokes

the procedure, the node checks the value of b and becomes the leader of HR
(∗,z,∗)
(m,n) or a

non-leader accordingly.

Lemma 2. For any arbitrary value of z, 0 ≤ z < 2n, after all n hypercube leaders in
HR

(∗,z,∗)
(m,n) execute procedure HBElect and get back the message RingTest, only one

of them will become the leader of HR
(∗,z,∗)
(m,n) and all others will become non-leader.

Proof. For any arbitrary value z, there are n hypercube leaders in HR
(∗,z,∗)
(m,n) . They

are (h(z, �), z, �), 0 ≤ � < n. Each of them invokes procedure HRElect and will
determine to becomes a leader or non-leader depending on the value of b returned from
message RingTest.

Consider an arbitrary leader (h(z, �), z, �) among them. This node starts procedure
HRElect by sending message RingTest ((h(z,�),z,�),0,True) through direction g. Be-
cause every node gets the message also relays it through direction g, the message will
traversal every node in R

(h(z,�),z,∗)
n which include n nodes: (h(z, �), z, j), 0 ≤ j < n.

And because node (h(z, �), z, j) has variable HL set to the id of leader of hypercube
H

(∗,z,j)
m , i.e. (h(z, j), z, j). The id (h(z, �), z, �) is compared with the id of leaders of

other hypercubes H
(∗,z,j)
m , i.e. (h(z, j), z, j), 0 ≤ j < n. If some node becomes the

leader after executing procedure HRElect, it is assured that its id is larger than all other
leaders in H

(∗,z,j)
m , 0 ≤ j < n. Therefore, from n hypercube leaders (h(z, �), z, �),

0 ≤ � < n, only one of them can claim as the leader of HR
(∗,z,∗)
(m,n) after executing

procedure HRElect; all other n − 1 nodes will become non-leaders.

Remark 8.

– After every hypercube leaders (elected from first step) complete procedure HRElect,
there will be 2n nodes remain as leader, with each from HR

(∗,z,∗)
(m,n) , 0 ≤ z < 2n.

– After a node becomes the leader in HR
(∗,z,∗)
(m,n) , it broadcast its id to all nodes in

HR
(∗,z,∗)
(m,n) . And the node receives the broadcast message will save the leader’s id

into variable HRL.

Lemma 3. There will be n × 2m+n + n2 × 2n number of messages generated in the
second step, including procedure HRElect and the broadcast process afterwards.

Proof. There are n × 2n hypercube leaders elected from the first step. Each leader
executing procedure HRElect generates n messages. And there will be 2n leaders
elected afterwards. Each leader in HR

(∗,z,∗)
(m,n) , 0 ≤ z < 2n will broadcast it id, which

takes n×2m message. So the total number of message needed in this step is n×2m+n+
n2 × 2n.

2.3 Leader Election in HB(m,n)

After the second step, there will be one leader left in each HR
(∗,z,∗)
(m,n) , 0 ≤ z < 2n. We

use (h(z), z, �(z)) to denote the label of the leader in HR
(∗,z,∗)
(m,n) .

Remark 9. Similar to the second step, h(z) or �(z) does not specify the function to
derive the hypercube part label or permutation index of the leader node. They only
indicates the dependency relationship with between those labels with z.

In the third step, which is the final step, the objective is to elect one leader for entire
hyper-butterfly graph HB(m,n). Since we already have 2n leaders in each HR

(∗,z,∗)
(m,n) ,

we use similar approach as in the second step to elect one node from the those leaders
to become the final leader.

In this step, each of the 2n leaders from the second step sends TreeT est mes-
sage through a tree structure in butterfly graph. We ensure that the message will get to
the nodes with different complementation index, so that the id of each leader will be
tested to see if it is larger than the ids of all other leaders. As in procedure HRElect,
only the node that passes all tests will become the leader which is the leader of entire
hyper-butterfly graph HB(m,n). The pseudocode listing of the details of the procedure

HBElect to be invoked by every leader of HR
(∗,z,∗)
(m,n) is omitted for lack of space.

There are two types of messages used in the procedure. The first type of message is
TreeT est which travels down a binary tree because each node distributes the message

through direction g and f . The parameter id and b have the same meaning as in the
second step, while i indicates the current level of the tree. The other type of message
is TreeReply which go through the reversal path of TreeT est. Only the leaf nodes
will compare the value of HRL with id that comes from the message. The intermediate
nodes only act as transmit message TreeT est to both children and collect TreeReply
from them. We state the following lemmas (the proofs are omitted for lack of space).

Lemma 4. Consider the execution of procedure HBElect from any node (h(z), z, �(z)),
there are 2i nodes that receive both message TreeT est(id, i, b) and TreeReply(id, i, b).
These 2i nodes have the same permutation index and hypercube label, but different com-
plementation index.

Lemma 5. After every leader from the second step completely execute procedure HBElect,
only one node will become leader of HB(m,n). All other leaders will become non-
leader.

Lemma 6. There are 22n+2 number of messages generated in the third step.

Theorem 1. The total number of message needed for a leader election algorithm in
HB(m,n) is 8.24 × n × 2m+n + (n2 + 2n+2) × 2n.

3 acknowledgement

The work of Pradip Srimani was partially supported by a National Science Foundation
award # ANI-0218495.

References

[GHS83] R. G. Gallagar, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum
weight spanning trees. ACM Transactions on Programming Languages and Systems,
5:67–77, 1983.

[Lei92] F. T. Leighton. Introductions to Parallel Algorithms and Architectures: Arrays, Trees
and Hypercubes. Morgan Kaufman, 1992.

[LMW86] M. C. Loui, T. A. Matsuhita, and D. B. West. Election in a complete network with a
sense of direction. Information Processing Letters, 22:185–187, 1986.

[SBTS01] W. Shi, A. Bouabdallah, D. Talia, and P. K. Srimani. Leader election in wrapped but-
terfly networks. In Proceedings of Parallel Computing 2001, pages 382–389, Naples,
Italy, September 2001.

[Tel93] G. Tel. Linear election in oriented hypercubes. Technical Report RUU-CS-93-39,
Computer Science, Utrecht University, 1993.

[Tel95a] G. Tel. Linear election in hypercubes. Parallel Processing Letters, 5:357–366, 1995.
[Tel95b] G. Tel. Linear election in hypercubes. Information Processing Letters, 5:357–366,

1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

