An Implementation of Storage-Based
Synchronous Remote Mirroring for SANs

SHU Ji-wu, YAN Rui, WEN Dongchan, ZHENG Weimin

Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

Abstract. Remote mirroring ensures that all data written to a primary
storage device are also written to a remote secondary storage device to
support disaster recoverability. In this study, we designed and imple-
mented a storage-based synchronous remote mirroring for SAN-attached
storage nodes. Taking advantage of the high bandwidth and long-distance
linking ability of dedicated fiber connections, this approach provides a
consistent and up-to-date copy in a remote location to meet the demand
for disaster recovery. This system has no host or application overhead,
and it is also independent of the actual storage unit. In addition, we
present a disk failover solution. The performance results indicate that
the bandwidth of the storage node with mirroring under a heavy load
was 98.67% of the bandwidth without mirroring, which was only a slight
performance loss. This means that our synchronous remote mirroring has
little impact on the host’s average response time and the actual band-
width of the storage node.

1 Introduction

Remote mirroring ensures that all data written to a primary storage are also
written to a remote secondary storage to support disaster recoverability. It can
be implemented at various levels, including the file system, the volume manager,
the driver, the host bus adapter (HBA) and the storage control unit[1] [14].
In general, there are two locations at which mirroring are implemented: the
storage control unit and the host. Each location has its own advantages and
disadvantages.

IBM’s Peer-to-Peer Remote Copy (PPRC)[1] and EMC’s Symmetrix Remote
Data FacilitySRDF[2] use a synchronous protocol at the level of the storage
control unit. Today’s storage control units contain general-purpose processors,
in addition to special-purpose elements for moving and computing blocks of data.
Therefore, remote mirroring is provided by storage subsystems as advanced copy
functions. But it costs a lot and depends on the actual disk’s storage subsystem.
Veritas’s Volume Replicator [3] is a remote mirroring solution at the level of the
host’s device driver. It intercepts write operations at the host device driver level
and sends the changes to a remote device. So it is kept independent of the actual
storage unit. However, it takes a toll on the host CPU cycles and communication
bandwidth, and it is difficult to manage because it needs to interact with all the

hosts where replication software is installed. NetApp’s SnapMirror[4] is a remote
mirroring solution using an asynchronous protocol at the level of the host’s file
system, but it is not suitable for block-level I/O access in the SAN environment.

In this study, we designed and implemented synchronous remote mirroring
at the level of the storage control unit for Tsinghua Mass Storage Network
System (TH-MSNS) [5][6], an implementation of the FC-SAN. Based on the high
bandwidth and long-distance linking ability of dedicated fiber connections, this
approach provides a consistent and up-to-date data copy in a remote location to
meet the demand for disaster recovery. This implementation of remote mirroring
has no host or application overhead, and it is also independent of the actual
storage unit. In addition, we present a failover solution for disk failure. The
performance results indicate that our synchronous remote mirroring does not
have a significant effect on the average command response time or on the actual
bandwidth of the storage node.

2 Introduction of the TH-MSNS

The TH-MSNS[5][6] is an implementation of an FC-SAN. In the TH-MSNS,
the storage nodes provide storage services. A storage node is composed of a
general-purpose server, SCSI disk arrays, and fibre channel adapters, and it has
a software module named the SCSI target simulator [7][8] running on it. By
using the SCSI target simulator to control the I/O process to access disk arrays,
the TH-MSNS can implement basic functions of FC disk arrays while only using
general SCSI disk arrays. Because of this, it is low cost, highly flexible and can
achieve considerable performance [5]. Figure 1 shows the I/O path of the TH-
MSNS. The file system and SCSI driver in the host converts the application’s I/O

Application

Software

Hardware |

SCSI HBA

SCSI Disks Array
Fiber : or JBOD

Host (Initiator
() Storage Node (Software-Based Target)

Fig. 1. The I/O path of the TH-MSNS
requests to SCSI commands and data, and then the FC HBA driver encapsulates
them into FC frames using Fibre Channel Protocol (FCP)[9] and sends them to
the SAN. When the FC HBA on the storage node receives the frames, the FC

target driver transforms them back into SCSI commands and data. Then the
SCSI target simulator, a kernel module running on the storage node, queues
and fills up the SCSI requests’ structures, and finally prompts the API of the
SCSI driver layer to commit the SCSI requests to the SCSI subsystem. After the
SCSI subsystem has completed the SCSI commands, the SCSI target simulator
returns the command status or data to the host. Therefore, by the coordination
of the SCSI target simulator and the FC target driver, the SCSI disk arrays of
the storage node can be directly mapped to the host as its own local disks. So
the storage node is equal to the storage control unit in the SAN environment at
the basic function of storage service.

3 Design and implementation of remote mirroring for the
TH-MSNS

3.1 The Architecture of Remote Mirroring

Figure 2 shows the architecture of remote mirroring for the TH-MSNS. We

;" SCSI Target " SCSLTarget
[" Simulator f . Simulator
point-to-point fiber
connection (up to 10km)

SCST Disk Array |

or JBOD W >
"""""""" “Mirrored disks(Virtual disks)
Host Local Storage Node Remote Storage Node

Fig. 2. The architecture of remote mirroring for TH-MSNS
added a remote storage node with the same structure and configuration as the
local storage node. By adding an FC HBA in the local storage node to connect
point-to-point with the remote storage node, the remote storage node’s disks
are regarded as the local storage node’s own disks. Therefore, the storage node
and remote storage node can constitute a mirrored pair. The write commands
from the host can be mirrored to the remote storage node by the SCSI target
simulator on the local storage node. So the data on the storage node can be
mirrored to the remote storage node. The remote storage node can be located
up to 10km away from the local storage node using fibre channel technology, and
this distance can also been extended by using extenders.
The advantages of this approach of remote mirroring are as follows.

e It has low cost and high flexibility because the remote mirroring is imple-
mented by software modules, not by special hardware.

e The actual storage unit is independent because the host’s SCSI commands
are redirected to the storage node’s SCSI driver layer, which provides a
common API for I/O access and hides the detail of the low-level storage
subsystem.

e The mirroring process is transparent to the host, and does not consume any
of the host’s resource. Moreover, the remote storage node is also transparent
to the host, because the SCSI target simulator can prevent the remote disks
being mapped by the host.

3.2 Synchronous Mirroring

Synchronous remote mirroring writes data not only to a local disk but also to a
remote mirror disk at the same time. The acknowledgement is not be sent back
until all the data is written to both disks. In many cases, both copies of the data
are also locally protected by RAID[10]. This approach provides a consistent and
up-to-date copy in a remote location to meet the demand for disaster recovery.

In the mirroring architecture we presented, the SCSI target simulator on
the local storage node receives SCSI commands and data from the FC target
driver. Then it converts each write command into a pair of write commands to
mirrored disks, queues them into different request queues, and finally prompts
the SCSI driver to process them. Actually, the local write command is sent
to the local disk, and the remote write command is sent to the 'network’ disk
mapped by the remote storage node. The remote write command is received
by the SCSI target simulator on the remote storage node through the point-
to-point fiber connection. The acknowledgement is not sent back to the host
until both the local and remote write commands have been completed. Figure
3 shows the local and remote I/O path of synchronous mirroring. The dashed
line represents the I/O path of the remote write commands, and the solid line
represents the I/O path of the local read/write commands. In order to reduce

| 4“' 1

: i N . !

. - ‘ ;

i | SCSITageet Simulaor |

14 SCSIDriver |4

Lo I ‘
15 o

{01 | FCTarget Driver :

&t

i

T

]

:

=

Software

Hardware ;

Host(Initiator) Local Storage Node Remote Storage Node
— = Local Read'Write 'O Path)

,,,,,,,,, > Remote Write 0 Pith

Fig. 3. The I/O path of remote mirroring for the TH-MSNS

the command processing time, local and remote write commands can share the
same data buffer. It is not necessary to apply the data buffer for the remote
write command; the data pointer only has to be pointed to the data buffer of
the local write command. Local write and remote commands can be committed
to the SCSI driver at almost the same time, and can be executed by different
HBAs concurrently. In this way, commands can be executed more efficiently.
There are two device chain structures in the SCSI target simulator: the local
disk chain and the remote disk chain. Figure 4 shows the local and remote disk
chains. The structure of the local disk in the local disk chain contains a pointer

Local Disk Chain
—>> disk0 > diskl = disk2 = dsk3 ——>

mirror pair | mirror pair M pair
Remote Disk Chain

—= disk0 =y diskl = dsk2 —= dsk3 ——=

Fig. 4. The local and remote disk chains

which points to the structure of its mirrored disk. The relationship of mirrored
disks can also be created between two local disks, just like the software RAID
1. When a SCSI command arrives, the SCSI target simulator analyzes the SCSI
command’s target disk and finds the remote mirrored disk through the pointer
mentioned above. Then the SCSI target simulator fills the mirrored write request
using the information of the mirrored disk such as the number of the SCSI host
bus, target, or LUN and so on. Furthermore, the SCSI target simulator only
maps the local disk to the host, so the remote disk is invisible to host.

3.3 Disk fail over

Although both the local and remote disks are also locally protected by RAID,
many circumstances could cause a SCSI command’s failure. Some examples in-
clude the power failure of the disk array, an unplugged SCSI cable, a break in
the fiber connection or the failure of the RAID. Because of this, it is necessary to
monitor all write commands locally and remotely. When a command is returned
with an abnormal status, some actions must be taken immediately to ensure the
services’ continuity.

For the accidents mentioned above, SCSI commands will timeout. The SCSI
driver layer will try to recover it or retry command. If these actions fail, the
SCSI driver will return the SCSI command with the timeout status to the SCSI
target simulator. The SCSI target simulator analyzes the status of the local and
remote command, and adopts different measures to meet different instances.

e The remote write command fails, but the local command is ok. In this case,
the remote disk is assumed to be defunct. The mirror relationship needs
to be broken; the corresponding information should be recorded for later
resynchronization.

e The local write command fails, but the remote command is ok. In this case,
the local disk is assumed to be defunct and the mirror relationship must be
severed. The corresponding information must been recorded for later resyn-
chronization. The most important action is to redirect the read and write
commands on the local disk to the remote mirrored disk.

e The local read command fails. In this case, the local disk is assumed to be de-
funct. The mirror relationship is broken, and the corresponding information
is recorded for later resynchronize. The most important action is to redirect
the read and write commands on local disk to the remote mirrored disk.

In order to perform the disk failover, the local disk’s structure contains a status
identifier to record the status of the local disk. Table 1 shows the possible status
of the local disks. In addition, some key remote mirroring implementation tech-

Device’s state Description

DEVICE_OK Disk is ok.

DEVICE_DEFUNCT Disk is defunct. If disk has mirrored, it
means that both local and remote disks are
defunct.

DEVICE_MIRRORED Disk has mirrored, both local and remote

disks are ok.
DEVICE_LOCAL_DEFUNCT |Disk has mirrored. Remote disk is ok, but
local disk is defunct.
DEVICE_.MIRROR_DEFUNCT|Disk has mirrored. Local disk is ok, but
remote disk is defunct.
DEVICE_SYNCING Disk is synchronizing.

Table 1. The status of the local disk

niques, such as software LUN masking, online resynchronization and disaster
tolerance, have been introduced in another paper [11].

4 Performance evaluation

The synchronous remote mirroring system was tested, and its performance was
evaluated and analyzed. Because the read command is executed locally in the
process of mirroring, our testing only used the write command. Table 2 shows
the test configuration of the host and storage nodes.

Host A Host B

CPU |Intel Xeon 700MHz x 4 CPU |Intel Itanium 2 1GHz x 2
Memory 1G Memory 2G

0OS Linux (kernel: 2.4.18) OS | Linux (kernel:2.4.18-e12)
FC HBA| Emulex LP9822Gb/s FC HBA| Emulex LP982(2Gb/s)

Storage node and its storage subsystem

CPU Intel Xeon 2.4GHz x 1
Memory 1G
(O Linux (kernel: 2.4.18)
FC HBA Emulex LP982 (Initiator mode2Gb/s)
Qlogic ISP 2300 (Target mode2Gb/s)
RAID Controller Adaptec Ultral60 RAID Controller 2110S
SCSI Disks |Seagate Cheetah (73GB 10KRPM) x 7 configured as JBOD

Table 2. Test configuration of hosts and storage node

4.1 Comparison of average command response times

The average response time of the command is a very important factor to evaluate
the performance and quality of services. In this test, a host issues commands with
different data block sizes to its one 'network’ disk, which is provided by the local
storage node. The goal is to compare the average response time of each command
both with mirroring and without. The Tometer[12] benchmarking kit was used.
The host issues sequential write commands with different block size ranging from
64KB to 2048 KB. This test adopts a host configured as host A (given above)
and two storage nodes: a local storage node and a remote storage node. Table
3 shows the test results. The results show that synchronous mirroring has little

Block Size|Command Average Response Time
No mirror(ms) Mirror(ms)
64KB 1.718 1.795
128KB 3.482 3.573
192KB 5.335 5.357
256KB 7.083 7.202
512KB 13.573 14.469
768KB 21.214 21.561
1024KB 24.797 28.610
1536KB 42.245 44.048
2048KB 58.141 58.323

Table 3. Comparison of average command response time on different block sizes

impact on the average command response time for different block sizes.

4.2 The total execution time for replication in a large amount of
data

In this test, we used command dd on the host to replicate a large amount of data
(10GB-50GB) to the network disk. By comparing the total execution time with
and without mirroring, we evaluated the performance of synchronous mirroring.
Command dd is able to directly generate read/write block-level requests. This
test adopts a host configured as host A and two storage nodes. Figure 5 shows
the test results. The results show that synchronous mirroring has little impact
on the total execution time for replicating a large amount of data.

1200

L e
1000 2
=l
with mirrar P
L
800 sl
—

P = -
< #
E 600 7 no mirror
= 7
E r

400 - 03

Fors
=
/
e
200
O L L 1 1 L L 1
10 15 20 25 30 35 40 45 50

Replicate data size{GB)

Fig. 5. The total execution time for replication of a large amount of data

4.3 The storage node bandwidth with heavy loads

In this test, we adopted seven hosts, local and remote storage nodes which both
have 7 SCSI disks and are mapped to the hosts. Each host accesses its one
network disk respectively. We ran I0zone [13]benchmarking kit on each host to
offer the local storage node a heavy load. The test used sequential 100% write
requests with different record sizes ranging from 4 KB to 4096 KB. The hosts file
system were ext2, and the test files size was 15 GB. We compared the bandwidth
of local storage node with mirroring and without mirroring. The seven hosts were
configured as host B. Figure 6 shows the results. The results show the bandwidth
of storage node with different record sizes. With the host cache, the results
appear higher than actual bandwidth of the storage node. In the figure, the
black bars represent the results without mirroring, with an average bandwidth
of 144.314MB/s, while the white bars represent the results with mirroring, with
an average bandwidth of 142.399MB/s. The bandwidth of storage node with
mirroring is 98.67% of that without mirroring. The performance loss is very
little.

In addition, the SCSI HBA we adopted in the test was an Ultra 160 card, so
the max throughput in theory was only 160Mbyte/s. Furthermore, the storage
node is a server which is only responsible for I/O operations without caring other
services, so its CPU has not heavily load. Actually, its CPU utilization is less
than 20% at most time.

160 !D\\'ith mirroring Mno mirroring

120

(MB/s)

130 [

Throughput

120 H

100 =

4 8 16 32 64 128 256 512 1024 2048 4096
Record Size (KB)

Fig. 6. A comparison of storage node bandwidth with heavy loads

5 Conclusion

In this study, we designed and implemented a storage-based synchronous remote
mirroring system for the TH-MSNS. Based on the high bandwidth and long-
distance linking ability of dedicated fiber connections, this approach provides a
consistent and up-to-date data copy in a remote location to meet the demands
of disaster recovery. This system is independent of the actual storage unit, and
the process of mirroring is transparent to the hosts. In addition, we present a
disk failover solution. In the performance evaluation, we compared the average
command response time with different block sizes, the total execute time in
replicating a large amount of data, and the bandwidth of storage node under
heavy loads, both with and without synchronous mirroring. The performance
results indicate that the bandwidth of storage node with mirroring under heavy
loads is 98.67% of the bandwidth of storage node without performing mirroring,
a result showing only slight performance loss. This means that our synchronous
remote mirroring has little impact on the host’s average response time and the
actual bandwidth of the storage node.

Acknowledgements

The work described in this paper was supported by the National High-Tech
Research and Development Plan of China under Grant No. 2001AA111110.
References

1. A.C.Azagury,M.E.Factor,W.F.Micka. Advanced Functions for Storage Subsystems:
Supporting Continuous Availability, IBM SYSTEM Journal VOL 42 ,NO 2,2003.

11.

12.

13.

14.

15.

Using EMC SnapView and MirrorView for Remote Backup, Engineering White
Paper, EMC Corporation(April 2002).

VERITAS Volume Replicator Successful Replication and
Disaster Recovery, Veritas Software. Corporation See
http://eval.vertias.com/downloads/pro/volume_replicator _whitepaper.pdf
Patterson, R.H., et al. SnapMirror: File-System-Based Asynchronous Mirroring for
Disaster Recovery. In First USENIX conference on File and Storage Technologies.
2002. Monterey, CA, USA

Shu Ji-wu, et al. A Highly Efficient FC-SAN Based On Load Stream. Xingming
Zhou, Stefan Jahnichen, Ming Xu, and Jiannong Cao eds., The Fifth International
Workshop on Advanced Parallel Processing Technologies, LECTURE NOTES IN
COMPUTER SCIENCE 2834, pp.31-40,2003,

Technical Report: Design and Implementation of the TH-MSNS (In Chi-
nese), Computer Science Department, Tsinghua University, P.R. China, 2003,
http://storage.cs.tsinghua.edu.cn/

Ashish Palekar, Narendran Ganapathy. Design and Implement of A LINUX SCSI
Target for Storage Area Networks. Proceedings of the 5th Annual Linux Showcase
& Conference, 2001.0akland ,USA.

Jae-Chang Namgoong ,Chan-Ik Park . Design and Implement of a Fibre Chan-
nel Network Driver for SAN-Attached RAID Controllers. IEEE Parallel and Dis-
tributed Systems, 2001.

Fibre Channel Protocol for SCSI (FCP) , ANSI X.272, rev4.5, 1995

. D.Patterson, G.Gibson, and R.Katz, ” A Case for Redundant Arrays of Inexpensive

Disks (RAID)”, ACM SIGMOD, June 1998.

YAO Jun, SHU Ji-wu, ZHENG Wei-minA Distributed Storage Cluster Design for
Remote Mirroring based on Storage Area NetworklEEE Transactions on comput-
ers(Submitted), also in http://storage.cs.tsinghua.edu.cn

Jerry Sievert. Iometer: The I/O Performance Analysis Tool for Servers.
http://www.intel.com/design /servers/devtools/iometer/index.htm

I0zone Filesystem Benchmark. http://www.iozone.org/

Richard Barker, Paul Massiglia ,Storage Area Network Essentials: a complete guide
to understanding and implementing SANS. Publish by John Wiley&Sons, Inc.,New
York, 2001.

Draft, T10 Project 1561-D, SCSI Architecture Model - 3 (SAM-3), Revision 3 16
September 2002, http://www.t10.org/scsi-3.html

