
Sensors Network Optimization by a Novel Genetic
Algorithm

Hui Wanga, Anna L. Buczakb1, Hong Jina, Hongan Wanga, Baosen Lic

a Institute of Software, Chinese Academy of Sciences. wanghui@ios.cn
b Lockheed Martin Advanced Technology Laboratories, Cherry Hill, NJ 08002

c Zibo Electric Power Compnay, 61 Xin Cun Xi Lu, Zibo.Shandong, 255032

Abstract. This paper describes the optimization of a sensor network by a
novel Genetic Algorithm (GA) that we call King Mutation C2. For a given
distribution of sensors, the goal of the system is to determine the optimal
combination of sensors that can detect and/or locate the objects. An optimal
combination is the one that minimizes the power consumption of the entire
sensor network and gives the best accuracy of location of desired objects. The
system constructs a GA with the appropriate internal structure for the
optimization problem at hand, and King Mutation C2 finds the quasi-optimal
combination of sensors that can detect and/or locate the objects. The study is
performed for the sensor network optimization problem with five objects to
detect/track and the results obtained by a canonical GA and King Mutation
C2 are compared.

1 Introduction

During the last four decades there has been a growing interest in algorithms that
rely on analogies to natural phenomena. One type of such algorithms is the
Genetic Algorithms (GAs) that imitate the principles of natural evolution [9, 7].
GA has been widely used for combinatorial optimization, structural design,
scheduling and other engineering problems [8, 13].

In this paper we are approaching the problem of optimization of a sensor
network by Genetic Algorithms from a practical standpoint: we are interested in
obtaining the quasi-optimal solutions fast. The sensor network is comprised of
randomly distributed unattended ground sensors that are remotely deployed and
after deployment their location is known. Objects in a space are monitored by
limited numbers of those low cost - low power sensors. The advantages of using
several of those sensors outweigh the expected performance degradation since a
system of several inexpensive sensors in the same area offers a redundancy that
provides acceptable performance. The complete system consists of modules that
perform self-organization, object tracking, track fusion, ID fusion, communication,

1 This work was performed by Anna L. Buczak when she was with Honeywell Laboratories.

etc. [4]. This paper focuses on the optimization of sensor selection performed by
genetic algorithms in the Self-Organization module.

2 Optimization of a Sensor Network

We are performing optimization of a sensor network. The network is comprised of
remotely deployed unattended ground sensors that can be used for object
detection, tracking and identification. A sensor can be used for tracking an object,
if this object resides in the sensor’s field-of-view (FOV) and if the sensor is
turned on. The sensor network adapts its structure in order to achieve the goals
specified by a human. Sensor selection is often performed in order to minimize
the power consumption of the sensor network, by choosing the sensors that need
to be turned on or off at a given moment in time.

The goal of optimization is to find sensors for tracking all the objects identified
in network objective (that can be seen as the optimization goal) in a way that
optimizes certain metrics. In case of object tracking two metrics should be
optimized: the accuracy of object tracking and the power utilization of the sensor
network. This multi-objective optimization is performed by Genetic Algorithms.
For each object identified in network objective, optimization has to find m sensors
needed for accurate tracking of objects. The value of m depends on the physical
characteristics of the sensors used.

Our problem falls in the category of combinatorial optimization problems: the
system has to choose tuples of sensors that need to be on. There is a need of one
tuple per object and the same sensor can be used for multiple objects as long as
these objects are within its FOV. If we have k objects and we need m sensors per
object, 1 to k m-tuples are needed. The size of the search space is described by:

1 1 1

!()
()! !

k k k
i

i i i i

n nSearchSpace NumberOfMTuplesForIthObject
m n m m= = =

= = = − ⋅
∏ ∏ ∏ (1)

where ni is number of sensors that can detect object i. The search space is
exponentially increasing with the number of sensors and objects, discontinuous,
with non-ordered (feature type) parameters.

3 Internal GA Structure for Sensor Network Optimization

In our design each individual of the Genetic Algorithm population is comprised of
several genes. Each of the genes contains on sensor’s identification. All the
sensors, which are chosen by GA to be active at a given moment, have their
identification coded in the genes. There is a unique identification associated with
each sensor and the genes use a binary encoding for identification.

The GA’s internal structure (i.e. number of genes) depends on Network
Objective. Whenever this objective changes, the number of genes of the GA also
changes. Network Objective includes a list of suspected objects and required
operations associated with them. If the operation is to locate the object, there are
as many genes as necessary for location, for example in case of acoustic bearing
sensors this number is three (Fig1).

Fig. 1. Internal structure of GA for location

When performing object tracking we encounter a multi-objective optimization
problem. The fitness function of GA takes into account both objectives:
maximization of the location accuracy (i.e. minimization of the position tracking
error) and minimization of the network power consumption. The fitness function
has the following form:

∑ ∑∑
= ==

+⋅+⋅−=
l

j
i

k

i
j

k

i
i hresholdExceedingTEachEPenaltyForPwEwFitness

1 1
2

1
1)((2)

where Ei (i=1,2,…, n) are the estimated position errors for i-th object and Pj
(j=1,2,…, m) are the power consumption of j-th sensor, k is the number of objects,
l is the total number of selected sensors and w1 and w2 are weights. The last term
is a penalty added for each of position errors exceeding a predefined threshold.
This penalty increases significantly the range of population fitness and thus
improves GA convergence but solutions that exceed the penalty are still valid. For
estimating the position errors (Ei), we are using the GDOP error [6]. The smaller
the GDOP error of a sensor triplet, the better the position accuracy of the object
will be achieved.

4 Genetic Algorithm with Special Reproduction Operators

The difficulties inherent in GA design are to determine the stopping criterion, the
proper GA population size, probabilities of crossover and mutation. The difficulty

in determining the stopping criterion comes from the fact, that GA convergence is
problem dependent [6,8,15,17]. Wolpert et al. [15] presented a number of "no free
lunch" (NFL) theorems and established that for any algorithm, any elevated
performance over one class of problems is exactly paid for in performance over
another class. Our goal is to obtain a quasi-optimal solution in the shortest
possible time for the sensor network optimization problem. We make no claims
in this paper to the generality of the GA developed and its speed of convergence
for other problems.

4.1 Genetic Algorithm with King Strategy

The King Genetic Algorithm that we developed has been inspired by the
reproduction process of the bees. There are three kinds of bees: the queen, worker
bees, and drones. If mated with drones, the queen’s eggs will become worker bees,
otherwise they will become drones. In bees’ colonies the queen plays the most
important role in generating the offspring: only she can lay eggs. Inspired by this
phenomenon, a novel GA that we call King GA, was proposed [14]. In King GA,
a special individual, the best individual in the population, is always selected in the
reproduction process to be one of the parents. This reproduction process is shown
in Fig. 2a.

a b

Mate1 Mate2

Crossover & Mutation

Population

King

Population

Selection King

Next generation

 Mutation

Next generation

Fig. 2. : The reproduction in a) King GA; b) King Mutation.

4.2 Special Mutation Operator

In Genetic Algorithms, mutation was first introduced as an auxiliary operator to
ensure population diversity. Many papers [1,6] pointed out the importance of

mutation, but the mutation methods proposed were very similar, the difference
merely being the value of the mutation rate, or whether the rate was constant or
adaptive. Our previous experiments with GAs [5] showed that when mutation
performs a strong enough search, crossover is not necessary for finding the
optimum of multi-modal functions with non-ordered parameters. Therefore we
proposed King Mutation, a version of King GA in which only mutation takes
place. The reproduction process of King Mutation is shown in Figure 2b.

Mutation in GAs is the process by which one or more genes in an individual
are modified. Generally, each gene is chosen for mutation with a probability of
mutation Pm that is determined in the initialization step of the genetic algorithm.
In the new mutation operator that we are proposing, called Mutation C2, exactly
two chromosomes of an individual are randomly selected to be mutated. Any
number of genes in a chromosome may undergo mutation. Each gene in a
chromosome to be mutated is mutated with probability Pm. King Mutation
algorithm with only the mutation of type Mutation C2 is called King MutationC2.

King GA with Mutation C2 is similar to Evolutionary Strategies [16], ES(1+λ).
In ES(1+λ) algorithm, there is only one parent which is the best individual in the
population; the parent generates λ children; in the next reproduction process, the
best individual from the parent and its λ children is selected as the new parent to
generate children. So King GA with Mutation C2 is very similar to ES(1+λ), but
the mutation method is quite different. In ES(1+λ), the main reproduction
operator is Gaussian mutation, in which a random value from a Gaussian
distribution is added to each element of an individual’s vector to create a new
offspring.

There are some GA studies [2,10,12] which are similar to the GA we proposed
here. Jones’ Crossover Hill-climbing algorithm proposed in [10] is similar to King
GA. He compared several algorithms such as Standard GA, Bit-flipping Hill-
climbing, and Crossover Hill-climbing. Crossover Hill-climbing algorithm with
only one step (CH-1S) obtained the best result. Both CH-1S and King Mutation
C2 have no crossover; they both employ only mutation operators and their
mutations are quite different from the traditional mutation method. Another
similarity is that in both algorithms, the best individual in the population is used
for generating offspring. However the mutations performed in King GA with
Mutation C2 and in CH-1S are dissimilar; another difference is the population size:
CH-1S has a population of 2 individuals only and King GA has a larger
population.

5 Experiment Descriptions

In an attempt to examine the quality of the GA proposed, we performed a set of
experiments that compared the performance of King Mutation C2 and canonical
GA on optimization of a sensor network for five objects. In the experiments
performed we used an area of 25 by 25 kilometers with 81 sensors uniformly

distributed. Each sensor’s FOV is a circle with a radius of 5 kilometers and there
are about 20 sensors that can detect each object. For each of the experiments
performed the Percentage of Total Search Space (PTSS) covered by GA was
computed using the following equation:

Percentage Total Search Space = 100 * FFE / SSn % (3)

where SSn is the whole search space for n objects and the number of sensors
identified above. FFE is the actual number of fitness function evaluations
performed by GA.

Effectiveness is used to compare the performance of different GAs. For each
set of the experiments performed with the same values of n and P the
Effectiveness was computed as:

Effectiveness = Number of Optimal Runs / Total Number of Runs (4)

The experiments with different population size are listed on Table 1. For
canonical GA, the crossover rate is set to 0.9 and the mutation rate is set to
1/IndividualLength; for King Mutation C2, the crossover rate is 0 and the
mutation rate is set to 1/ChromosomeLength. We performed experiments with
population sizes: 5, 10, 20, 50, and 100. For each population size a canonical GA
and King Mutation C2 was run 30 times and the results in Table 1 are the average
of those runs. Both methods have the same stopping criterion, the algorithms
stop iteration if there is no improvement in the fitness function after a certain
number of consecutive generations (This number is 5000 in our experiment).

 Table 1: Experiment results for 5 objects

 GA Method Generation# Fitness PTSS Effectiveness

P=5 King Mutation C2 5505 -551.35 5.76E-12 0.80

 GA 8565 -889.86 8.95E-12 0.00

P=10 King Mutation C2 6147 -530.54 1.29E-11 0.95

 GA 10151 -672.98 2.12E-11 0.00

P=20 King Mutation C2 5857 -529.34 2.45E-11 1.00

 GA 11453 -642.60 4.79E-11 0.15

P=50 King Mutation C2 5345 -529.34 5.59E-11 1.00

 GA 11228 -562.07 1.17E-10 0.20

P=100 King Mutation C2 5281 -529.34 1.10E-10 1.00

 GA 10142 -548.54 2.12E-10 0.20
P: Population size;
Generation#: Number of generations.

 Canonical GA results are pretty poor for small population sizes. With

increasing population size, the fitness achieved by canonical GA becomes closer

to the optimum. The best effectiveness achieved by canonical GA is for the largest
population (100 individuals) and is only 0.2 meaning that it is very difficult for
the canonical GA to perform optimization for a sensor network with five objects.

Results of King Mutation C2 are much superior to those of a canonical GA: it
can obtain quasi-optimal solutions with high probability, the effectiveness being
0.8 and 0.95 for populations of size 5 and 10 respectively. Its effectiveness
becomes 1 for population sizes of 20 or larger.

Consistently for each population size, King Mutation C2 gave a better result
than the canonical GA: a much higher effectiveness and a higher fitness value.
King Mutation C2 also covered roughly two times smaller search space (PTSS)
than the canonical GA in each case. Small PTSS is very important in real-world
applications since it leads to the reduction of the computation time, allowing for a
real time application of the algorithm.

5 Conclusion

This paper describes a system performing self-organization of a sensor network.
The goal of the system is to choose sensors necessary to perform object detection
or tracking while minimizing the power consumption of the entire network. In
this paper, special emphasis is placed on the optimization performed by genetic
algorithms.

The exponential grow of the search space (with the increasing number of
sensors and objects) makes the problem intractable for most optimization
techniques in a reasonable time frame. Genetic Algorithms are chosen for the task,
given their high robustness in complex search spaces. In case of multi-objective
optimization problems, such as object tracking, convergence is much more
difficult to achieve. With the increasing number of objects, Effectiveness of
canonical GAs is rapidly decreasing. The increase of GA search space makes the
genetic search of the standard genetic algorithm inefficient and consequently the
computation time needed for convergence becomes very large. This makes it
necessary to improve the canonical genetic algorithm to speed up the convergence
of the algorithm when the number of objects increases.

We proposed a novel Genetic Algorithm with King selection strategy that
somewhat imitates the reproduction process of bees. The new King selection
strategy, especially when coupled with a new mutation operator (Mutation C2)
significantly improves the performance of GA for the optimization of sensor
network. The new algorithm is very robust, giving good results for a wide range
of population sizes. This is in contrast with traditional GAs where it is very
difficult to set the value of population size, crossover and mutation rates.

References

1. H. Aguirre, K. Tanaka, “Parallel Varying Mutation Genetic Algorithms”, Proceedings
of the Congress on Evolutionary Computation, Hawaii, USA, May 2002.

2. S. Areibi, “An Integrated Genetic Algorithm With Dynamic Hill Climbing for VLSI
Circuit Partitioning”, Genetic and Evolutionary Computation Conference (GECCO-
2000), Las Vegas, Nevada, July 2000, IEEE

3. T. Blickle, L. Thiele, “A Comparison of Selection Schemes used in Genetic
Algorithms”, Swiss Federal Institute of Technology. TIK-Report 1995.

4. L. Buczak, H. Wang, H. Darabi, M.A. Jafari, “Genetic Algorithm Convergence Study
for Sensor Network Optimization”, Information Sciences. Pages 267-282. Volume
133, Issues 3-4. 2001.4.

5. L. Buczak, H. Wang, “Optimization of Fitness Functions with Non-Ordered
Parameters by Genetic Algorithms”, Congress on Evolutionary Computation ’2001,
Korea.2001.5

6. K. Deb, S. Agrawal, “Understanding Interactions Among Genetic Algorithm
Parameters”, Foundations of Genetic Algorithms5, W. Banzhaf, C. Reeves (eds.),
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1999.

7. K. De Jong. “Genetic algorithms are not function optimizers”. Foundations of Genetic
Algorithms 2, pages 5--17, San Mateo, CA, 1993. Morgan Kaufmann.

8. D.B. Fogel, Evolutionary Computation – Toward a New Philosophy of Machine
Intelligence, IEEE Press, 1995.

9. J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975

10. Terry Jones, “Crossover, Macromutation, and Population-based Search”, Proceedings
of the Sixth International Conference on Genetic Algorithms. July 15-19, 1995

11. Kadar, “Optimum Geometry Selection For Sensor Fusion”, Signal Processing, Sensor
Fusion and Target Recognition VII, I. Kadar (ed.), SPIE Vol. 3374, pp.13-15, The
International Society for Optical Engineering, Bellingham, 1998.

12. Bing Li, Weisun Jiang, “A Novel Stochastic Optimization Algorithm”, IEEE
Transactions on System, Man, and Cybernetics, ---Part B: Cybernetics, Vol. 30.
No.1, February 2000.

13. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-
Verlag, 1996.

14. H. Wang, A. Buczak, H. Wang, “A Novel Genetic Algorithm with King Strategy”,
ANNIE 2003, St. Louis, USA. 2003.11

15. D. H. Wolpert and W. G. MacReady. “No free lunch theorems for optimization”. IEEE
Transactions on Evolutionary Computation, April 1996.

16. Hans-Paul Schwefel, Evolution and Optimum Seeking. A Wiley-Interscience
Publication. John Wiley & Sons, Inc. 1994.

17. M. Srinivas, L.M. Patnaik, “Adaptive Probabilities of Crossover and Mutation in
Genetic Algorithms”, IEEE Transactions on Systems, Man and Cybernetics. Vol. 24,
No.4, pp. 656-667, April 1994.

