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Abstract. This paper describes the optimization of a sensor network by a 
novel Genetic Algorithm (GA) that we call King Mutation C2. For a given 
distribution of sensors, the goal of the system is to determine the optimal 
combination of sensors that can detect and/or locate the objects.  An optimal 
combination is the one that minimizes the power consumption of the entire 
sensor network and gives the best accuracy of location of desired objects. The 
system constructs a GA with the appropriate internal structure for the 
optimization problem at hand, and King Mutation C2 finds the quasi-optimal 
combination of sensors that can detect and/or locate the objects. The study is 
performed for the sensor network optimization problem with five objects to 
detect/track and the results obtained by a canonical GA and King Mutation 
C2 are compared. 

1 Introduction 

During the last four decades there has been a growing interest in algorithms that 
rely on analogies to natural phenomena. One type of such algorithms is the 
Genetic Algorithms (GAs) that imitate the principles of natural evolution [9, 7]. 
GA has been widely used for combinatorial optimization, structural design, 
scheduling and other engineering problems [8, 13]. 

In this paper we are approaching the problem of optimization of a sensor 
network by Genetic Algorithms from a practical standpoint: we are interested in 
obtaining the quasi-optimal solutions fast. The sensor network is comprised of 
randomly distributed unattended ground sensors that are remotely deployed and 
after deployment their location is known. Objects in a space are monitored by 
limited numbers of those low cost - low power sensors.  The advantages of using 
several of those sensors outweigh the expected performance degradation since a 
system of several inexpensive sensors in the same area offers a redundancy that 
provides acceptable performance. The complete system consists of modules that 
perform self-organization, object tracking, track fusion, ID fusion, communication, 
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etc. [4]. This paper focuses on the optimization of sensor selection performed by 
genetic algorithms in the Self-Organization module.  

2 Optimization of a Sensor Network 

We are performing optimization of a sensor network. The network is comprised of 
remotely deployed unattended ground sensors that can be used for object 
detection, tracking and identification. A sensor can be used for tracking an object, 
if this object resides in the sensor’s field-of-view (FOV) and if the sensor is 
turned on. The sensor network adapts its structure in order to achieve the goals 
specified by a human. Sensor selection is often performed in order to minimize 
the power consumption of the sensor network, by choosing the sensors that need 
to be turned on or off at a given moment in time.  

The goal of optimization is to find sensors for tracking all the objects identified 
in network objective (that can be seen as the optimization goal) in a way that 
optimizes certain metrics.  In case of object tracking two metrics should be 
optimized: the accuracy of object tracking and the power utilization of the sensor 
network.  This multi-objective optimization is performed by Genetic Algorithms.  
For each object identified in network objective, optimization has to find m sensors 
needed for accurate tracking of objects.  The value of m depends on the physical 
characteristics of the sensors used. 

Our problem falls in the category of combinatorial optimization problems: the 
system has to choose tuples of sensors that need to be on.   There is a need of one 
tuple per object and the same sensor can be used for multiple objects as long as 
these objects are within its FOV. If we have k objects and we need m sensors per 
object, 1 to k m-tuples are needed.  The size of the search space is described by:  
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where ni  is number of sensors that can detect object i. The search space is 
exponentially increasing with the number of sensors and objects, discontinuous, 
with non-ordered (feature type) parameters.  

3 Internal GA Structure for Sensor Network Optimization 

In our design each individual of the Genetic Algorithm population is comprised of 
several genes. Each of the genes contains on sensor’s identification. All the 
sensors, which are chosen by GA to be active at a given moment, have their 
identification coded in the genes. There is a unique identification associated with 
each sensor and the genes use a binary encoding for identification. 



The GA’s internal structure (i.e. number of genes) depends on Network 
Objective. Whenever this objective changes, the number of genes of the GA also 
changes. Network Objective includes a list of suspected objects and required 
operations associated with them. If the operation is to locate the object, there are 
as many genes as necessary for location, for example in case of acoustic bearing 
sensors this number is three (Fig1). 

 

 

Fig. 1. Internal structure of GA for location 

When performing object tracking we encounter a multi-objective optimization 
problem.  The fitness function of GA takes into account both objectives: 
maximization of the location accuracy (i.e. minimization of the position tracking 
error) and minimization of the network power consumption.  The fitness function 
has the following form: 
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where Ei (i=1,2,…, n) are the estimated position errors for i-th object and Pj 
(j=1,2,…, m) are the power consumption of j-th sensor, k is the number of objects, 
l is the total number of selected sensors and  w1 and w2 are weights.  The last term 
is a penalty added for each of position errors exceeding a predefined threshold.  
This penalty increases significantly the range of population fitness and thus 
improves GA convergence but solutions that exceed the penalty are still valid. For 
estimating the position errors (Ei), we are using the GDOP error [6]. The smaller 
the GDOP error of a sensor triplet, the better the position accuracy of the object 
will be achieved.  

4 Genetic Algorithm with Special Reproduction Operators 

The difficulties inherent in GA design are to determine the stopping criterion, the 
proper GA population size, probabilities of crossover and mutation. The difficulty 



in determining the stopping criterion comes from the fact, that GA convergence is 
problem dependent [6,8,15,17]. Wolpert et al. [15] presented a number of "no free 
lunch" (NFL) theorems and established that for any algorithm, any elevated 
performance over one class of problems is exactly paid for in performance over 
another class. Our goal is to obtain a quasi-optimal solution in the shortest 
possible time for the sensor network optimization problem.  We make no claims 
in this paper to the generality of the GA developed and its speed of convergence 
for other problems. 

4.1 Genetic Algorithm with King Strategy 

The King Genetic Algorithm that we developed has been inspired by the 
reproduction process of the bees.  There are three kinds of bees: the queen, worker 
bees, and drones. If mated with drones, the queen’s eggs will become worker bees, 
otherwise they will become drones. In bees’ colonies the queen plays the most 
important role in generating the offspring: only she can lay eggs. Inspired by this 
phenomenon, a novel GA that we call King GA, was proposed [14]. In King GA, 
a special individual, the best individual in the population, is always selected in the 
reproduction process to be one of the parents. This reproduction process is shown 
in Fig. 2a.  
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Fig. 2. : The reproduction in a) King GA; b) King Mutation. 

4.2 Special Mutation Operator 

In Genetic Algorithms, mutation was first introduced as an auxiliary operator to 
ensure population diversity.  Many papers [1,6] pointed out the importance of 



mutation, but the mutation methods proposed were very similar, the difference 
merely being the value of the mutation rate, or whether the rate was constant or 
adaptive.  Our previous experiments with GAs [5] showed that when mutation 
performs a strong enough search, crossover is not necessary for finding the 
optimum of multi-modal functions with non-ordered parameters.  Therefore we 
proposed King Mutation, a version of King GA in which only mutation takes 
place.  The reproduction process of King Mutation is shown in Figure 2b. 

Mutation in GAs is the process by which one or more genes in an individual 
are modified. Generally, each gene is chosen for mutation with a probability of 
mutation Pm that is determined in the initialization step of the genetic algorithm.  
In the new mutation operator that we are proposing, called Mutation C2, exactly 
two chromosomes of an individual are randomly selected to be mutated. Any 
number of genes in a chromosome may undergo mutation. Each gene in a 
chromosome to be mutated is mutated with probability Pm. King Mutation 
algorithm with only the mutation of type Mutation C2 is called King MutationC2.  

King GA with Mutation C2 is similar to Evolutionary Strategies [16], ES(1+λ). 
In ES(1+λ) algorithm, there is only one parent which is the best individual in the 
population; the parent generates λ children; in the next reproduction process, the 
best individual from the parent and its λ children is selected as the new parent to 
generate children. So King GA with Mutation C2 is very similar to ES(1+λ), but 
the mutation method is quite different.  In ES(1+λ), the main reproduction 
operator is Gaussian mutation, in which a random value from a Gaussian 
distribution is added to each element of an individual’s vector to create a new 
offspring.  

There are some GA studies [2,10,12] which are similar to the GA we proposed 
here. Jones’ Crossover Hill-climbing algorithm proposed in [10] is similar to King 
GA.  He compared several algorithms such as Standard GA, Bit-flipping Hill-
climbing, and Crossover Hill-climbing.  Crossover Hill-climbing algorithm with 
only one step (CH-1S) obtained the best result. Both CH-1S and King Mutation 
C2 have no crossover; they both employ only mutation operators and their 
mutations are quite different from the traditional mutation method.  Another 
similarity is that in both algorithms, the best individual in the population is used 
for generating offspring.   However the mutations performed in King GA with 
Mutation C2 and in CH-1S are dissimilar; another difference is the population size: 
CH-1S has a population of 2 individuals only and King GA has a larger 
population.   

5 Experiment Descriptions 

In an attempt to examine the quality of the GA proposed, we performed a set of 
experiments that compared the performance of King Mutation C2 and canonical 
GA on optimization of a sensor network for five objects.  In the experiments 
performed we used an area of 25 by 25 kilometers with 81 sensors uniformly 



distributed.  Each sensor’s FOV is a circle with a radius of 5 kilometers and there 
are about 20 sensors that can detect each object.  For each of the experiments 
performed the Percentage of Total Search Space (PTSS) covered by GA was 
computed using the following equation: 

Percentage Total Search Space = 100 * FFE / SSn %                     (3) 

where SSn  is the whole search space for n objects and the number of sensors 
identified above. FFE is the actual number of fitness function evaluations 
performed by GA.   

Effectiveness is used to compare the performance of different GAs. For each 
set of the experiments performed with the same values of n and P the 
Effectiveness was computed as: 

Effectiveness = Number of Optimal Runs / Total Number of Runs          (4) 

The experiments with different population size are listed on Table 1. For 
canonical GA, the crossover rate is set to 0.9 and the mutation rate is set to 
1/IndividualLength; for King Mutation C2, the crossover rate is 0 and the 
mutation rate is set to 1/ChromosomeLength. We performed experiments with 
population sizes: 5, 10, 20, 50, and 100.  For each population size a canonical GA 
and King Mutation C2 was run 30 times and the results in Table 1 are the average 
of those runs.   Both methods have the same stopping criterion, the algorithms 
stop iteration if there is no improvement in the fitness function after a certain 
number of consecutive generations (This number is 5000 in our experiment). 

 Table 1: Experiment results for 5 objects 

  GA Method Generation# Fitness PTSS Effectiveness 

P=5 King Mutation C2 5505 -551.35 5.76E-12 0.80 

  GA 8565 -889.86 8.95E-12 0.00 

P=10 King Mutation C2 6147 -530.54 1.29E-11 0.95 

  GA 10151 -672.98 2.12E-11 0.00 

P=20 King Mutation C2 5857 -529.34 2.45E-11 1.00 

  GA 11453 -642.60 4.79E-11 0.15 

P=50 King Mutation C2 5345 -529.34 5.59E-11 1.00 

  GA 11228 -562.07 1.17E-10 0.20 

P=100 King Mutation C2 5281 -529.34 1.10E-10 1.00 

  GA 10142 -548.54 2.12E-10 0.20 
P: Population size; 
Generation#: Number of generations. 

 
 Canonical GA results are pretty poor for small population sizes.  With 

increasing population size, the fitness achieved by canonical GA becomes closer 



to the optimum. The best effectiveness achieved by canonical GA is for the largest 
population (100 individuals) and is only 0.2 meaning that it is very difficult for 
the canonical GA to perform optimization for a sensor network with five objects.  

Results of King Mutation C2 are much superior to those of a canonical GA: it 
can obtain quasi-optimal solutions with high probability, the effectiveness being 
0.8 and 0.95 for populations of size 5 and 10 respectively. Its effectiveness 
becomes 1 for population sizes of 20 or larger.  

Consistently for each population size, King Mutation C2 gave a better result 
than the canonical GA: a much higher effectiveness and a higher fitness value.  
King Mutation C2 also covered  roughly two times smaller search space (PTSS) 
than the canonical GA in each case.  Small PTSS is very important in real-world 
applications since it  leads to the reduction of the computation time, allowing for a 
real time application of the algorithm. 

5 Conclusion 

This paper describes a system performing self-organization of a sensor network.  
The goal of the system is to choose sensors necessary to perform object detection 
or tracking while minimizing the power consumption of the entire network.  In 
this paper, special emphasis is placed on the optimization performed by genetic 
algorithms. 

The exponential grow of the search space (with the increasing number of 
sensors and objects) makes the problem intractable for most optimization 
techniques in a reasonable time frame.  Genetic Algorithms are chosen for the task, 
given their high robustness in complex search spaces. In case of multi-objective 
optimization problems, such as object tracking, convergence is much more 
difficult to achieve.  With the increasing number of objects, Effectiveness of 
canonical GAs is rapidly decreasing. The increase of GA search space makes the 
genetic search of the standard genetic algorithm inefficient and consequently the 
computation time needed for convergence becomes very large.  This makes it 
necessary to improve the canonical genetic algorithm to speed up the convergence 
of the algorithm when the number of objects increases.  

We proposed a novel Genetic Algorithm with King selection strategy that 
somewhat imitates the reproduction process of bees.  The new King selection 
strategy, especially when coupled with a new mutation operator (Mutation C2) 
significantly improves the performance of GA for the optimization of sensor 
network. The new algorithm is very robust, giving good results for a wide range 
of population sizes.  This is in contrast with traditional GAs where it is very 
difficult to set the value of population size, crossover and mutation rates. 
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