Cabot: On the Ontology for the Middleware Sup-
port of Context-Aware Pervasive Applications
Chang Xd, S.C. Cheunlg Cindy Ld", K.C. Leund and Jun Wéi

!Department of Computer Science, Hong Kong UniveiitScience and Technology
Clear Water Bay, Kowloon, Hong Kong
Ychangxu, scc, cindylo, lkchiu}@cs.ust.hk

Technology Center of Software Engineering, Institot Software, Chinese Academy of Science
2wj@otcaix.iscas.ac.cn

Abstract. Middleware support is a major topic in pervasigenputing. Existing
studies mainly address the issues in the orgaaizaif and the collaboration
amongst devices and services, but pay little atierib the design support of con-
text-aware pervasive applications. Most of thesgliegtions are required to be
adaptable to dynamic environments and self-manaljediever, most context-
aware pervasive applications nowadays have to camryedious tasks of gather-
ing, classifying and processing messy context médion due to lack of the nec-
essary middleware support. To address this problamropose a novel approach
based on ontology technology, and apply it in @abotproject. Our approach de-
fines a context ontology catered for the pervasomaputing environment. The on-
tology acts as the context information agreemendragst all computing compo-
nents to support applications with flexible contgathering and classifying capa-
bilities. This allows a domain ontology databasé¢oconstructed for storing the
semantics relationship of concepts used in thegsére computing environment.
The ontology database supports applications with context processing capabili-
ties. With the aid of ontology technologyabotfurther helps alleviate the impact
of the naming problem, and support advanced usarespwitching. A case study
is given to show hovCabotassists developers in designing context-awareaperv
sive applications.

1 Introduction

A pervasive computing environment encompasses @rsjpe of computation and com-
munication devices that seamlessly augment humaugtits and activities [1]. Due to
the non-trivial context management inherent in psive computing, a suitable software
infrastructure is needed to assist the developroEbntext-aware pervasive applica-
tions. We refer theontext of a computation task to as the circumstancegwat®ons in
which the task takes place. Most context-awaregsive applications are required to be
adaptable to highly dynamic environments and selfiged. Therefore, the design of
such applications is a challenging research issue.

At present, developers of context-aware pervagiy@i@ations need to write tedious
and repetitive codes to handle context managemdmth concerns the following three
functions:



« Context gathering: Gather proper context information from relevantteat sources
in a flexible way rather than specifying them egjplly. When an application is inter-
ested in object movement, the middleware shouldiide to select proper sensors to
collect context information about object movement.

« Context classifying: Classify context information into different cateigs in an ap-
plication-specific way. An application may hopeawalyze a certain scenario where
the subject is “human being”, the action is “entent the area is “office 4208”. The
common context classification is only based on exntype (e.g. sound, location,
temperature, etc.), which cannot meet such reqeintsn

» Context processing: Support applications with stronger context proicegsapabili-
ties, e.g. context reasoning (knowing “car” is &dass of “vehicle” helps an appli-
cation interested in vehicle movement collect ceintaformation about cars) and
context filtering (filtering certain context infortion for privacy purpose).

Existing studies on the middleware support maiulgrass the issues in the organiza-
tion of and the collaboration amongst devices aglises in the pervasive computing
environment, but pay little attention to the desgupport of context-aware pervasive
applications. None of proposed middleware infragtries likeGaia [1], EasyLiving
[2], i-Land [3], Aura [4] and Interactive Workspacels] can effectively assist applica-
tion developers to handle all the above tasks.

Other studies focusing on context-awareness iB[[E] mainly analyze some useful
features of context information and propose sonipflieframeworks, yet still leaving
the context processing duties to clients.

In this paper, we propose a novel approach basenhtmhogy technology, and apply
it in our Cabot project. Three important concepts, namely, contaxblogy, context
pattern and context matching will be defined. Usgge context patterns to subscribe
their interested context information, while the dielvare uses these context patterns to
execute context matching for users. Context pattedps implement flexible context
gathering and classifying, and also contributesrthancing applications with stronger
context processing capabilities.

The remainder of this paper is organized as folldvex. 2 introduces related work in
recent years; Sec. 3 presents @abot project — a software infrastructure supporting
context-aware pervasive applications built on amggltechnology; Sec. 4 further talks
about some relevant issues abGabot Sec. 5 is a case study; and the last section con-
cludes our contributions and explores future work.

2 Redated Work

Existing studies on context-awareness are mostigexmed with either the frameworks
that support the abstraction of context informatinthe context models that support
data queries. Some typical works includes Coolt@amject [7], Sentient Computing
project [8] and Owl context service [9]. Their posed context models generally lack
formal bases; some of them even ignore the tempgpEcts of context information.

Published research projects in the middleware sudpo pervasive computing in-
cludeGaia, EasyLiving i-Land, Aura andinteractive Workspaces



Gaiais a middleware project focusing on general-purguseasive environment. It
makes use of active spaces [1] to encapsulatewalldvel devices and services to pro-
vide a uniform interface such that developers déizeiand control the pervasive com-
puting environment more easilfwra is similar toGaia, but uses a different approach.
Aura has a context observer to monitor environmentahgbs that would triggekura
to perform pre-defined actions. Each environmemasaged by a distinétura system,
and multipleAura systems can cooperate to perform tasks.

i-Land works in a special environment that consists &fyaaWall anInteracTable
and aCommChair[3]. DynaWallis a wall-size touch screen, whileteracTableis a
display on tableCommChairis a chair with computer network support. All d=s can
interact with each other and serve for presentatemd discussiongnteractive Work-
spaceds another project sharing the same objectiveb ilitand. It mainly focuses on
the collaboration between a PDA and large screejegtors.

EasyLivingis a computer-centric system focusing on the gwemvironment. A typi-
cal living environment has projectors, wirelessb@ards, mice, finger-print recogniz-
ers, cameras, etc. Cameras can capture events hotlse, and the images will be used
for recognizing people and tracing their locations.

These projects work on the management of computsgurces, while€Cabot fo-
cuses on how to flexibly gather and classify conteformation and make further proc-
essing including context reasoning and contexrfitig.

3 Cabot System Architecture

In Cabots point of view, a complete pervasive computingiemnment is composed of
Application Layer, Middleware Layer and Sensor Lraffgg. 1).

Application Layer
‘ Default Framework + Application Logic ‘

User Space Context Pattern
APTs APTs

Privacy
APIs

Middleware Layer

Privacy

‘ Context ‘ ‘ Application ‘ ! Servicos

Dispatcher Agent . S
Context Application Pattern Concept
Collector Management Matching Reasoning

Sensor Layer
Sensor

Agent

Fig. 1. TheCabotsystem architecture

Context-aware pervasive applications run at thelidpfion Layer. This layer has
complete client support in terms APIs. Applications can use context patté&mls to



manage (subscribe, update or remove) their ownegbmtatterns. OtheAPls include
user spacéPls and privacyAPIs. They are related to user space management and pr
vacy services respectively. An application framedwisrprovided for application devel-
opment. Usually, users do not have to pay attentidhe details of communication with
the middleware. They only need to focus on appbecalogics, that is, make clear what
their interested context information is and hovhémdle it.

The Middleware Layer is the kernel part. This laymplements five fundamental
functionalities: (a)application management to be in charge of all registered applica-
tions, (b)context pattern management to be responsible for context pattern manipula-
tions, (c)context pattern matching to be invoked automatically when the middleware
receives any incoming context information, @ntext semantics reasoning to infer
the semantic relations between concepts for reagprand (e)third-party service
management to allow the middleware to integrate external eabffiltering services
(e.g. privacy services) such that further contexicpssing can be facilitated. The pri-
vacy services currently provided allows to modifyt@ hide some certain kinds of con-
text information based on user identities and i@éprivacy policies.

A concept related to the Sensor Layer is activéyerfictive entities can be physical
devices, software components or human beings. Pleepdically or non-periodically
send context information to the middleware. Phys@evices collect sensed context
information (e.g., Tom enters into office 4208)ftaare components generate derived
context information (e.g., Cindy is busy); and huantzeings supply profiled context
information (e.g., Cedric is supervised by ProfeQhg). We regard each “qualified”
active entity as a sensor agent. By “qualified”, mean that each active entity can ex-
change context information with the middleware blase a pre-defined context ontol-

ogy.

4 Main Cabot Features

4.1 Context Ontology and Context Pattern

Most middleware infrastructures have limitationssispporting applications to flexibly
subscribe context information. Usually, contextsaription is based on context type. It
may be inconvenient when users want to gather dméegt information mentioned in
Sec. 1. Due to lack of the necessary support, usere to gather all relevant context
information, and do analysis by themselves. Thisgases the network traffic in context
transmission and the analysis workload in conteat@ssing.

Our approach is based on ontology technology. Vdpgse context ontology, an on-
tology document catered for the pervasive compuéingronment. The context ontol-
ogy acts as the context information agreement tehwall applications, sensor agents
and the middleware should conform in pervasive ading. Fig. 2 illustrates some ma-
jor concepts (classes) and relations (propertief)é context ontology.

An environment context is defined by instantiating each ontology concé&jghen
only part of ontology concepts is instantiatedsitalled acontext pattern. Applica-
tions subscribe their interested environment cdatéx the middleware by means of
context patterns.



0b jectProperty

hasTime

Class|—subClassor onProperty
Context

‘ toClass—m|  Class onProperty

— Time
subClassOf —m{_ Restriction

subClassOf onProperty  toClass—pm| Class —subClassOf

Site
ObjectProperty 0b jectProperty
hasEvent hasSi te toClass—w] _ Class

toClass—— | Thing |«
onProperty toCTass— [ Class
Event
sub\lelss(}l‘— ) —subClassof

onProperty subClassOf subClassOf onProperty

0b jectProperty

(ObjectProperty ) Restriction | [ Restriction (ObjectProperty )
I I

onProperty onProperty

category action

toClass

(objectProperty )  (ObjectProperty )

subject object

toClass

toClas

Fig. 2. The context ontology

4.2 Context Matching and Concept Semantics Reasoning

Cabot performs context matching between received enwient contexts and sub-
scribed context patterns. Both of them are trartsthitstored and processed XML
documents in practice. So an efficient tool for agingXML documents and an expres-
sive language for describing matching rules areimemt. We utilizexlinkit to perform
context matching. It is a software framework foecking the consistency of distributed
XML documents. It comprises a rule language basedirsh ®rder Logic FOL) and
XPath notation [6]. For each incoming environment cohtedinkit checks whether it
can be matched for any context pattern storeddrp#itern repository according to pre-
defined matching rules. The matching rules aretaritike this:

<forall var="context" in="/Context">

<not><exists var="pattern" in="/Repository/hasBat/Pattern">
</exists></not>

<[forall>

The omitted part is the kernel matching criteriattiban be classified into three
modes: exact matching mode, equivalent matchingenaod plug-in matching mode.

If we require that a matching is recognized whecoacept has exactly the same
value in both the environment context and the cdrgattern, it is calle@xact match-
ing mode. In theequivalent matching mode, the semantics relation between two con-
cepts is identified to check equivalence. For examphen “weather” and “climate” or
“enter” and “come into" appear in pairs, a matchimgecognized. Thplug-in match-
ing mode further allows a context pattern to concern riat@mtext information. When a
more specific concept (say “car”) encounters a ngweeral concept (say “vehicle”),
this mode accepts it. The context matching exarnmpkég. 3 adopts all the three match-
ing modes.



<7xml version="1.0" standalone="no" 7> =?urml version="1.0" standalone="no" 7>

- <Context> - «<Pattern>
- <hasTimez» - =hasTime>
— =Time> - «<Time>
<year>2004</year> <yearx-1</year>
<month=2</month= <month=-1</month=
=day=28</day= <day=-1</day>
<hour=22</ours =hour=-1</hour=>
minutes=0</minutes <minute=-1</minute:
<second>B</seconds envlr"onmen‘r <seconds=-l</second> Con'l-ex‘l-
</Time:=» </ Timex=
=/hasTime:= =/hasTime>
— <hasSite> CO”TCXT - <hassite> Paﬂ'er'n
- <Site> - «<Sitex
<areazoffice</area> <areaxoffice</areax
</p1> </pL1F
<p2>4208</p2> <p2=4208</p2>
=/Site= ZXGCT mOTChlng mode =/Site=
=/hasSites </hasSite>

- <hasevent> plug-in matching mode - <hazEvent>

— <Event> <Ewvent=

#ory=move Q< /category=

biect=Tom</subjgdtes
-

<z = PR/ 8 </subjectid> j = i
£Lctionzenter</acti aficrn=come into</aconz
<0 00 ot Ol

<ohjectld>B87654321 </objectld: <objectld>-1</objectld>
o </Euents

s >equ:valen‘r matching mode, /25>
=/Contexts </Pattern=

Fig. 3. A context matching example

When all concepts between an environment context ancontext pattern are
matched,Cabotasserts this environment context to be “qualifiéat’ this context pat-
tern.

The use oklinkit's built-in comparison operators is not enoughdapporting con-
text matching. So an operator special for conceptasitics reasoning is required in
Cabotimplementation. This operator acts as the interfsfca concept semantics reason-
ing subsystem built on a pervasive computing doroainlogy database.

The domain ontology database stores much knowletgeemantics relations be-
tween concepts used in the pervasive computing@mwient. For example, “weather”
is similarto “climate”, and “car” is a subclasd “vehicle”. Based on the domain ontol-
ogy, the reasoning subsystem infers the semargiesion between two concepts as
equivalent, subsumed, including, inter secting or digoint.

The inferred semantics relation is the foundatiboantext matching. Let a concept
in the environment context log, and the counterpart in the context patteris,be
» Exact matching: ¢, andc, are said to be matched when they are exactlyaimes
« Equivalent matching: ¢; andc, are said to be matched when they are exactly the

same, or have an equivalent relation;

« Plug-in matching: ¢, andc, are said to be matched when they are exactlyahes
or have an equivalent or subsumed relation.

Some knowledge on concept semantics relations, (elgsk” is similar to “table”)
helps implement some special tasks (e.g., mongdtie abnormal movement of table-
like things). Another usage of the ontology reasgns to alleviate the naming problem
across different sensor agents. For example, hakmagvn that “light” is similar to
“lighting/ray/beam”, a light-detecting applicati@man behave better when facing differ-
ent naming standards. In order to have applicatoeanced with some certain reason-
ing capability, Cabot needs to incorporate the corresponding ontolodptae to the
targeted application scenario.



4.3 User Space Switching and Application Framework

Available resources in pervasive computing areiried to change. This could affect
applications unexpectedlfabot allows switching of user spaces to help applicetio
adapt themselves to the changeable environmenh & space represents a space
that contains context information relevant to tbatext patterns of this user space.

Cabot also provides a default application framework.sTframework utilizes the
Cabot APIs to set up an asynchronous and context-drivenragnoging model that
adopts context subscription and callback handietology.

5 A Case Study

Fig. 4 illustrates a computing environmen

Room A is a printing room, Room B is i ||rctrez.per © el (O
computer barn, and Room C is anoth || & & & Workstation 2 g

Mainframe

computer barn. Any user to Room B ¢ ||ag FE 08 e i
- . —
Room C will pass the Gate first. Space? RaomB Room ¢

Space 3

An administrator, Peter, responsible fc Lesens:

Temperature sensor

equipment maintenance usually stays ® soumsensor

Humidity sensor Printer 11| Room &

Room A, supplying printer paper whe! @ ises Printor 1

(F) Printer status sensor Pramae

necessary and monitoring the coming USE & movement sensor

Corridor

Sometime, he goes to Room A and Room © tevationsenser I®_ @é s
to check whether everything is going well. E ==|_T@ space 7
Suppose that temperature and sound ci

text information is required to evaluate the

PC status in Room B. But for Room C, ad-

ditional humidity and light context information éso needed. Peter hopes to know the

current equipment status once entering Room B @nR€, and no matter in which
room he is resident, continuous monitoring of @iatand coming users is expected.
We assume that all required sensors have beerlédstaoperly (Fig. 4). The fol-

lowing is the application design solution that coisgs three user spaces (Fig. 4):

¢ Space 1. (Gate + Room A) Activating condition: Peter lea®som B or Room C.
Context patterns: (1) printer (area: Room A, subjpdnter), and (2) people (area:
Gate, category: movement, subject: people, actoter).

e Space 2: (Gate + Room A + Room B) Activating condition: Eetnters Room B.
Extra context patterns (to Space 1): (1) tempeeafarea: Room B, category: tem-
perature, subject: PC), and (2) sound (area: Ropcatggory: sound, subject: PC).

e Space 3: (Gate + Room A + Room C) Activating condition: &eénters Room C.
Extra context patterns (to Space 1): (1) tempeeatarea: Room C, category: tem-
perature, subject: computer), (2) sound (area: R@ntategory: sound, subject:
computer), (3) humidity (area: Room C, categorymitity, subject: air), and (4)
brightness (area: Room C, category: light, subfastrescent lamp).

Cabot supports this application with two distinct capiileis: (1) context reasoning

(e.g. “someone comes into ...” = “somebody enters .(2);context subscription with

plug-in matching (e.g. “computer” = “PC” + “works$tan” + “mainframe” in Space 3).

Fig. 4. A practical case



6 Conclusionsand Future Work

In this paper, we have overviewed several existinddleware infrastructures for perva-
sive computing. Their supports of context managdraes inadequate. To address this
problem, we develofabotwith the use of ontology technology.

A useful concept, context pattern, is introducet iBabotto facilitate the context
gathering, classifying and processing. In ordealteviate the naming problem and to
enhance the expressiveness of context patt€ralsot supports three flexible context
matching modesCabotalso allows the automatic and manual switchingvbeh user
spaces to help realize adaptable context-awarepies/applications.

At present, Cabot is still at a prototype stagewNenctionalities and features (e.g.
context trigger and context deriving) will be inporated into the future releases of
Cabot

Reference

[1] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Camigbell,
Nahrstedt, Gaia: A Middleware Infrastructure to Enable vc&paces, in
IEEE Pervasive Computingp. 74-83, Oct-Dec 2002.

[2] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer, Eaang:
Technologies for Intelligent Environments, presented at Handheld an
Ubiquitous Computing (HUC), Bristol, England, 2000.

[3] P. Tandler, Software Infrastructure for Ubiquitous Computimyifen-
ments: Supporting Synchronous Collaboration with Heterogeneous De-
vices, at Ubicomp 2001: Ubiquitous Computing, Atlanta, Georgia, 2001.

[4] J. P. Sousa and D. Garlan, Aura: An Architectural FramevariJser
Mobility in Ubiquitous Computing Environments, presented at IEEE Con-
ference on Software Architecture, Montreal, 2002.

[5] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd, Integrating Informa-
tion Appliances into an Interactive WorkspateiE Computer Graphics
& Applications vol. 20, 2000.

[6] C. Nentwich, W. Emmerich, A. Finkelstein, Consistency Managénvéh
Repair Actions, in théroc. of the 25th International Conference on Soft-
ware Engineering (ICSE’03)ortland, Oregon, USA, May 2003.

[7] T. Kindberg, et al, People, Places, Things: Web PresencéhdéoReal
World, Technical Report HPL-2000-16lewlett-Packard Labs, 2000.

[8] A. Harter, et al, The Anatomy of a Context-Aware ApplicationiVobile
Computing and Networkingages 59-68, 1999.

[9] M. Ebling, G.D.H. Hunt, H. Lei, Issues for Context ServicesHervasive
Computing, inMiddleware 2001 Workshop on Middleware for Mobile
Computing Heidelberg, 2001.



