
Cabot: On the Ontology for the Middleware Sup-
port of Context-Aware Pervasive Applications

Chang Xu1, S.C. Cheung1, Cindy Lo1, K.C. Leung1 and Jun Wei2

1Department of Computer Science, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
1{changxu, scc, cindylo, lkchiu}@cs.ust.hk

2Technology Center of Software Engineering, Institute of Software, Chinese Academy of Science

2wj@otcaix.iscas.ac.cn

Abstract. Middleware support is a major topic in pervasive computing. Existing
studies mainly address the issues in the organization of and the collaboration
amongst devices and services, but pay little attention to the design support of con-
text-aware pervasive applications. Most of these applications are required to be
adaptable to dynamic environments and self-managed. However, most context-
aware pervasive applications nowadays have to carry out tedious tasks of gather-
ing, classifying and processing messy context information due to lack of the nec-
essary middleware support. To address this problem, we propose a novel approach
based on ontology technology, and apply it in our Cabot project. Our approach de-
fines a context ontology catered for the pervasive computing environment. The on-
tology acts as the context information agreement amongst all computing compo-
nents to support applications with flexible context gathering and classifying capa-
bilities. This allows a domain ontology database to be constructed for storing the
semantics relationship of concepts used in the pervasive computing environment.
The ontology database supports applications with rich context processing capabili-
ties. With the aid of ontology technology, Cabot further helps alleviate the impact
of the naming problem, and support advanced user space switching. A case study
is given to show how Cabot assists developers in designing context-aware perva-
sive applications.

1 Introduction

A pervasive computing environment encompasses a spectrum of computation and com-
munication devices that seamlessly augment human thoughts and activities [1]. Due to
the non-trivial context management inherent in pervasive computing, a suitable software
infrastructure is needed to assist the development of context-aware pervasive applica-
tions. We refer the context of a computation task to as the circumstances or situations in
which the task takes place. Most context-aware pervasive applications are required to be
adaptable to highly dynamic environments and self-managed. Therefore, the design of
such applications is a challenging research issue.

At present, developers of context-aware pervasive applications need to write tedious
and repetitive codes to handle context management, which concerns the following three
functions:

• Context gathering: Gather proper context information from relevant context sources
in a flexible way rather than specifying them explicitly. When an application is inter-
ested in object movement, the middleware should be able to select proper sensors to
collect context information about object movement.

• Context classifying: Classify context information into different categories in an ap-
plication-specific way. An application may hope to analyze a certain scenario where
the subject is “human being”, the action is “enter” and the area is “office 4208”. The
common context classification is only based on context type (e.g. sound, location,
temperature, etc.), which cannot meet such requirements.

• Context processing: Support applications with stronger context processing capabili-
ties, e.g. context reasoning (knowing “car” is a subclass of “vehicle” helps an appli-
cation interested in vehicle movement collect context information about cars) and
context filtering (filtering certain context information for privacy purpose).

Existing studies on the middleware support mainly address the issues in the organiza-

tion of and the collaboration amongst devices and services in the pervasive computing
environment, but pay little attention to the design support of context-aware pervasive
applications. None of proposed middleware infrastructures like Gaia [1], EasyLiving
[2], i-Land [3], Aura [4] and Interactive Workspaces [5] can effectively assist applica-
tion developers to handle all the above tasks.

Other studies focusing on context-awareness in [7][8][9] mainly analyze some useful
features of context information and propose some helpful frameworks, yet still leaving
the context processing duties to clients.

In this paper, we propose a novel approach based on ontology technology, and apply
it in our Cabot project. Three important concepts, namely, context ontology, context
pattern and context matching will be defined. Users use context patterns to subscribe
their interested context information, while the middleware uses these context patterns to
execute context matching for users. Context pattern helps implement flexible context
gathering and classifying, and also contributes to enhancing applications with stronger
context processing capabilities.

The remainder of this paper is organized as follows: Sec. 2 introduces related work in
recent years; Sec. 3 presents the Cabot project – a software infrastructure supporting
context-aware pervasive applications built on ontology technology; Sec. 4 further talks
about some relevant issues about Cabot; Sec. 5 is a case study; and the last section con-
cludes our contributions and explores future work.

2 Related Work

Existing studies on context-awareness are mostly concerned with either the frameworks
that support the abstraction of context information or the context models that support
data queries. Some typical works includes Cooltown project [7], Sentient Computing
project [8] and Owl context service [9]. Their proposed context models generally lack
formal bases; some of them even ignore the temporal aspects of context information.

Published research projects in the middleware support for pervasive computing in-
clude Gaia, EasyLiving, i-Land, Aura and Interactive Workspaces.

Gaia is a middleware project focusing on general-purpose pervasive environment. It
makes use of active spaces [1] to encapsulate all low-level devices and services to pro-
vide a uniform interface such that developers can utilize and control the pervasive com-
puting environment more easily. Aura is similar to Gaia, but uses a different approach.
Aura has a context observer to monitor environmental changes that would trigger Aura
to perform pre-defined actions. Each environment is managed by a distinct Aura system,
and multiple Aura systems can cooperate to perform tasks.

i-Land works in a special environment that consists of a DynaWall, an InteracTable
and a CommChair [3]. DynaWall is a wall-size touch screen, while InteracTable is a
display on table. CommChair is a chair with computer network support. All devices can
interact with each other and serve for presentations and discussions. Interactive Work-
spaces is another project sharing the same objectives with i-Land. It mainly focuses on
the collaboration between a PDA and large screen projectors.

EasyLiving is a computer-centric system focusing on the living environment. A typi-
cal living environment has projectors, wireless keyboards, mice, finger-print recogniz-
ers, cameras, etc. Cameras can capture events in the house, and the images will be used
for recognizing people and tracing their locations.

These projects work on the management of computing resources, while Cabot fo-
cuses on how to flexibly gather and classify context information and make further proc-
essing including context reasoning and context filtering.

3 Cabot System Architecture

In Cabot’s point of view, a complete pervasive computing environment is composed of
Application Layer, Middleware Layer and Sensor Layer (Fig. 1).

����������� 	�
��

��������� 	�
��

�����������

���������

�������
���������

�������
����������

�����������
�����

�������

�������

��������

���������

������ 	�
��

������������� �������

���� �����
����

������� �������
����

������

����

������� ��������� ����������� 	����

������
�����

������

��������

�������
!��������

Fig. 1. The Cabot system architecture

Context-aware pervasive applications run at the Application Layer. This layer has
complete client support in terms of APIs. Applications can use context pattern APIs to

manage (subscribe, update or remove) their own context patterns. Other APIs include
user space APIs and privacy APIs. They are related to user space management and pri-
vacy services respectively. An application framework is provided for application devel-
opment. Usually, users do not have to pay attention to the details of communication with
the middleware. They only need to focus on application logics, that is, make clear what
their interested context information is and how to handle it.

The Middleware Layer is the kernel part. This layer implements five fundamental
functionalities: (a) application management to be in charge of all registered applica-
tions, (b) context pattern management to be responsible for context pattern manipula-
tions, (c) context pattern matching to be invoked automatically when the middleware
receives any incoming context information, (d) context semantics reasoning to infer
the semantic relations between concepts for reasoning, and (e) third-party service
management to allow the middleware to integrate external context filtering services
(e.g. privacy services) such that further context processing can be facilitated. The pri-
vacy services currently provided allows to modify or to hide some certain kinds of con-
text information based on user identities and relevant privacy policies.

A concept related to the Sensor Layer is active entity. Active entities can be physical
devices, software components or human beings. They periodically or non-periodically
send context information to the middleware. Physical devices collect sensed context
information (e.g., Tom enters into office 4208); software components generate derived
context information (e.g., Cindy is busy); and human beings supply profiled context
information (e.g., Cedric is supervised by Prof. Cheung). We regard each “qualified”
active entity as a sensor agent. By “qualified”, we mean that each active entity can ex-
change context information with the middleware based on a pre-defined context ontol-
ogy.

4 Main Cabot Features

4.1 Context Ontology and Context Pattern

Most middleware infrastructures have limitations in supporting applications to flexibly
subscribe context information. Usually, context subscription is based on context type. It
may be inconvenient when users want to gather the context information mentioned in
Sec. 1. Due to lack of the necessary support, users have to gather all relevant context
information, and do analysis by themselves. This increases the network traffic in context
transmission and the analysis workload in context processing.

Our approach is based on ontology technology. We propose context ontology, an on-
tology document catered for the pervasive computing environment. The context ontol-
ogy acts as the context information agreement to which all applications, sensor agents
and the middleware should conform in pervasive computing. Fig. 2 illustrates some ma-
jor concepts (classes) and relations (properties) in the context ontology.

An environment context is defined by instantiating each ontology concept. When
only part of ontology concepts is instantiated, it is called a context pattern. Applica-
tions subscribe their interested environment contexts to the middleware by means of
context patterns.

Fig. 2. The context ontology

4.2 Context Matching and Concept Semantics Reasoning

Cabot performs context matching between received environment contexts and sub-
scribed context patterns. Both of them are transmitted, stored and processed in XML
documents in practice. So an efficient tool for managing XML documents and an expres-
sive language for describing matching rules are imminent. We utilize xlinkit to perform
context matching. It is a software framework for checking the consistency of distributed
XML documents. It comprises a rule language based on First Order Logic (FOL) and
XPath notation [6]. For each incoming environment context, xlinkit checks whether it
can be matched for any context pattern stored in the pattern repository according to pre-
defined matching rules. The matching rules are written like this:

<forall var="context" in="/Context">
 <not><exists var="pattern" in="/Repository/hasPattern/Pattern">

 </exists></not>
</forall>
The omitted part is the kernel matching criteria that can be classified into three

modes: exact matching mode, equivalent matching mode and plug-in matching mode.
If we require that a matching is recognized when a concept has exactly the same

value in both the environment context and the context pattern, it is called exact match-
ing mode. In the equivalent matching mode, the semantics relation between two con-
cepts is identified to check equivalence. For example, when “weather” and “climate” or
“enter” and “come into" appear in pairs, a matching is recognized. The plug-in match-
ing mode further allows a context pattern to concern richer context information. When a
more specific concept (say “car”) encounters a more general concept (say “vehicle”),
this mode accepts it. The context matching example in Fig. 3 adopts all the three match-
ing modes.

Fig. 3. A context matching example

When all concepts between an environment context and a context pattern are
matched, Cabot asserts this environment context to be “qualified” for this context pat-
tern.

The use of xlinkit’s built-in comparison operators is not enough for supporting con-
text matching. So an operator special for concept semantics reasoning is required in
Cabot implementation. This operator acts as the interface of a concept semantics reason-
ing subsystem built on a pervasive computing domain ontology database.

The domain ontology database stores much knowledge on semantics relations be-
tween concepts used in the pervasive computing environment. For example, “weather”
is similar to “climate”, and “car” is a subclass of “vehicle”. Based on the domain ontol-
ogy, the reasoning subsystem infers the semantics relation between two concepts as
equivalent, subsumed, including, intersecting or disjoint.

The inferred semantics relation is the foundation of context matching. Let a concept
in the environment context be c1, and the counterpart in the context pattern be c2:
• Exact matching: c1 and c2 are said to be matched when they are exactly the same;
• Equivalent matching: c1 and c2 are said to be matched when they are exactly the

same, or have an equivalent relation;
• Plug-in matching: c1 and c2 are said to be matched when they are exactly the same,

or have an equivalent or subsumed relation.
Some knowledge on concept semantics relations (e.g., “desk” is similar to “table”)

helps implement some special tasks (e.g., monitoring the abnormal movement of table-
like things). Another usage of the ontology reasoning is to alleviate the naming problem
across different sensor agents. For example, having known that “light” is similar to
“lighting/ray/beam”, a light-detecting application can behave better when facing differ-
ent naming standards. In order to have applications enhanced with some certain reason-
ing capability, Cabot needs to incorporate the corresponding ontology related to the
targeted application scenario.

�����������	

������	

������	

�
�����	

��

�	�
�
����	����	

�����
����	�
�
����	����	

�������	�
�
����	����	

4.3 User Space Switching and Application Framework

Available resources in pervasive computing are inclined to change. This could affect
applications unexpectedly. Cabot allows switching of user spaces to help applications
adapt themselves to the changeable environment. Each user space represents a space
that contains context information relevant to the context patterns of this user space.

Cabot also provides a default application framework. This framework utilizes the
Cabot APIs to set up an asynchronous and context-driven programming model that
adopts context subscription and callback handling technology.

5 A Case Study

Fig. 4 illustrates a computing environment.
Room A is a printing room, Room B is a
computer barn, and Room C is another
computer barn. Any user to Room B or
Room C will pass the Gate first.

An administrator, Peter, responsible for
equipment maintenance usually stays in
Room A, supplying printer paper when
necessary and monitoring the coming users.
Sometime, he goes to Room A and Room B
to check whether everything is going well.

Suppose that temperature and sound con-
text information is required to evaluate the
PC status in Room B. But for Room C, ad-
ditional humidity and light context information is also needed. Peter hopes to know the
current equipment status once entering Room B or Room C, and no matter in which
room he is resident, continuous monitoring of printers and coming users is expected.

We assume that all required sensors have been installed properly (Fig. 4). The fol-
lowing is the application design solution that comprises three user spaces (Fig. 4):
• Space 1: (Gate + Room A) Activating condition: Peter leaves Room B or Room C.

Context patterns: (1) printer (area: Room A, subject: printer), and (2) people (area:
Gate, category: movement, subject: people, action: enter).

• Space 2: (Gate + Room A + Room B) Activating condition: Peter enters Room B.
Extra context patterns (to Space 1): (1) temperature (area: Room B, category: tem-
perature, subject: PC), and (2) sound (area: Room B, category: sound, subject: PC).

• Space 3: (Gate + Room A + Room C) Activating condition: Peter enters Room C.
Extra context patterns (to Space 1): (1) temperature (area: Room C, category: tem-
perature, subject: computer), (2) sound (area: Room C, category: sound, subject:
computer), (3) humidity (area: Room C, category: humidity, subject: air), and (4)
brightness (area: Room C, category: light, subject: fluorescent lamp).
Cabot supports this application with two distinct capabilities: (1) context reasoning

(e.g. “someone comes into …” = “somebody enters …”); (2) context subscription with
plug-in matching (e.g. “computer” = “PC” + “workstation” + “mainframe” in Space 3).

Fig. 4. A practical case

6 Conclusions and Future Work

In this paper, we have overviewed several existing middleware infrastructures for perva-
sive computing. Their supports of context management are inadequate. To address this
problem, we develop Cabot with the use of ontology technology.

A useful concept, context pattern, is introduced into Cabot to facilitate the context
gathering, classifying and processing. In order to alleviate the naming problem and to
enhance the expressiveness of context patterns, Cabot supports three flexible context
matching modes. Cabot also allows the automatic and manual switching between user
spaces to help realize adaptable context-aware pervasive applications.

At present, Cabot is still at a prototype stage. New functionalities and features (e.g.
context trigger and context deriving) will be incorporated into the future releases of
Cabot.

Reference

[1] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, K.
Nahrstedt, Gaia: A Middleware Infrastructure to Enable Active Spaces, in
IEEE Pervasive Computing, pp. 74-83, Oct-Dec 2002.

[2] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer, EasyLiving:
Technologies for Intelligent Environments, presented at Handheld and
Ubiquitous Computing (HUC), Bristol, England, 2000.

[3] P. Tandler, Software Infrastructure for Ubiquitous Computing Environ-
ments: Supporting Synchronous Collaboration with Heterogeneous De-
vices, at Ubicomp 2001: Ubiquitous Computing, Atlanta, Georgia, 2001.

[4] J. P. Sousa and D. Garlan, Aura: An Architectural Framework for User
Mobility in Ubiquitous Computing Environments, presented at IEEE Con-
ference on Software Architecture, Montreal, 2002.

[5] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd, Integrating Informa-
tion Appliances into an Interactive Workspace, IEEE Computer Graphics
& Applications, vol. 20, 2000.

[6] C. Nentwich, W. Emmerich, A. Finkelstein, Consistency Management with
Repair Actions, in the Proc. of the 25th International Conference on Soft-
ware Engineering (ICSE’03), Portland, Oregon, USA, May 2003.

[7] T. Kindberg, et al, People, Places, Things: Web Presence for the Real
World, Technical Report HPL-2000-16, Hewlett-Packard Labs, 2000.

[8] A. Harter, et al, The Anatomy of a Context-Aware Application, in Mobile
Computing and Networking, pages 59-68, 1999.

[9] M. Ebling, G.D.H. Hunt, H. Lei, Issues for Context Services for Pervasive
Computing, in Middleware 2001 Workshop on Middleware for Mobile
Computing, Heidelberg, 2001.

