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Abstract. To improve the efficiency and usability of adaptive anomaly
detection system, we propose a new framework based on Support Vector
Data Description (SVDD) method. This framework includes two main
techniques: online change detection and unsupervised anomaly detec-
tion. The first one enables automatically obtain model training data by
measuring and distinguishing change caused by intensive attacks from
normal behavior change and then filtering most intensive attacks. The
second retrains model periodically and detects the forthcoming data.
Results of experiments with the KDD’99 network data show that these
techniques can handle intensive attacks effectively and adapt to the con-
cept drift while still detecting attacks. As a result, false positive rate is
reduced from 13.43% to 4.45%.

1 Introduction

Intrusion detection is a necessary complement to traditional intrusion prevention
techniques to guarantee network security. There are two general approaches for
intrusion detection: misuse detection and anomaly detection [1]. Compared with
misuse detection, anomaly detection has the advantage that it can detect new
types of attacks. However, at the same time, it suffers from high false alarm es-
pecially when normal behavior changes over time. In practice, users, networks or
system activities cannot be invariant when environment changes over time. This
phenomenon is called concept drift [2]. To guarantee the accuracy of adapting
to concept drift while still recognizing anomalous activities, adaptive anomaly
detection systems have to retrain and update their models with online or newly
collected data frequently [3].

Unsupervised learning algorithms, which train models with unlabelled data,
are promising for adaptive anomaly detection and have been studied by re-
searchers in recent years [3-6]. In [3], a general adaptive model generation sys-
tem to anomaly detection is presented, which uses a probability-based algorithm
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for building models over noisy data periodically. SmartSifer, an online unsuper-
vised learning algorithm for anomaly detection based on a probabilistic model,
adjusts the model after each input datum [4]. More recently, several different
unsupervised learning algorithms are applied to anomaly detection, including
cluster-based algorithm, k-nearest neighbor based algorithm, LOF approach, and
one-class SVM algorithm [7]. The work most similar to our SVDD-based unsu-
pervised anomaly detection is one-class SVM based anomaly detection. Those
algorithms as well as previous probabilistic based algorithms [3,4] make an im-
portant assumption of attack ratio that attacks can be taken as outliers because
they are rare and qualitatively different from normal data. Therefore, these al-
gorithms can use real time data to constantly update or periodically retrain
their models directly. However,the assumption of attack ratio, i.e. normal data
greatly outnumber the attacks, limits the application of these algorithms in prac-
tice because the number of large-scale DoS attacks and probing attacks has been
increasing alarmingly over the past few years. As a result,the assumption does
not hold when a burst of intensive attacks causes a large number of anomaly
instances in a short time.

In this paper, we present a new framework for adaptive anomaly detection,
which extends traditional unsupervised method and overcomes the limitations
of the assumption of attack ratio. In the framework, we introduce the SVDD
algorithm to anomaly detection. Also, an SVDD-based online change detection
algorithm is presented to distinguish changes caused by intensive attacks from
concept drift. With the aid of change detection algorithm, intensive attacks is
filtered first, and then model retraining is realized safely.

The rest of this paper is organized as follows. In section 2, we describe the
SVDD algorithm and introduce the change point detect algorithm; based on
these algorithms, we then present the SVDD-based adaptive anomaly detection
framework. In section 3, we discusses our experiments with KDD’99 data. We
summarize our conclusions in section 4.

2 SVDD-based Anomaly Detection

SVDD [8] is an unsupervised support vector machine algorithm for outlier de-
tection. The goal of SVDD is to distinguish one class of data, called target data,
from the rest of the feature space. To do this, SVDD learns an optimal hyper-
sphere around target data after mapping the whole dataset to high dimensional
feature space. The hypersphere as descriptive model for target data is used to
classify data into target data or non-target data (also be called outliers). For
SVDD-based anomaly detection we take normal data as target class and all
kind of known and unknown attacks as outliers.

2.1 SVDD

Let {z;} C x be a training dataset of N data points, with x € R Using a
nonlinear transformation @ from y to some high dimensional feature space, we



search for the optimal enclosing hypersphere that is as small as possible while
at the same time, including most of the training data. This can be formulated
as the following optimization problem:

1
min R* + Z_:& (1)

subject to || D(z;) —a < R*+ &, & >0, i=1,...,N |

where a is the center of the hypersphere and R is its radius. Parameter v controls
the tradeoff between the radius of hypershpere and the number of points that it
contains. It is expected that if R and a solve this problem, the decision function
f(x) = sgn(R*— || ¢(x) — a ||?) is determined by location of = in the feature
space. To solve this problem we introduce the Lagrangian:
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Setting to zeros the derivative of L with respect to R, a and &;, leads to
a:ZaiQ(zi), a:i—ﬂi<i, Zaizl . (3)
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We then turn the Lagrangian into the Wolfe dual form with kernel function:
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Throughout this paper we use the Gaussian kernel: K(z;,z;) = exp(—q || z; —
z; ||?) , with width parameter ¢. The optimal o ’s can be obtained after the dual
problem is solved. Few special points with 0 < a; < 1/vN just lie on the surface
of hypershere and are called support vectors . The first equation of (3) means
that a can be expressed as the linear combination of @(z) , and then R can be
computed from any support vector xy:

R% =|| &(xp)—a ||*= K(xk,a:k)—QZoziK(zi,Ik)—I—Z(i,j)aiaJ—K(mi,xj). (5)
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2.2 Change Detection Algorithm

The main idea of our change detection algorithm comes from the change point
detection theory. The objective of change point detection is to determine if the
observed time series is statistically homogeneous, and if not, to find the point
in time when the change happens [9]. In our application, real time data from



sensors are processed into multi-dimensional time series. Compared with tradi-
tional change detection algorithm Cumulative Sum (CUSUM), our SVDD-based
algorithm could be easily applied to multi-dimensional series.

The idea of SVDD-based change detection is simple. SVDD always try to
find an optimal hypersphere for the target class, which is the great majority in
the training data. Thus the region of the hypersphere is a representative of the
probability density function that generates the target class. Hence, comparing
the geometries and location of hyperspheres has the equal effect with comparing
training data that the hypersheres build on.

Fig.1 demonstrates the change detection algorithm. Two adjoining sliding
windows with same size m are placed on the series to produce adjoining subset of
data flow. The two windows are moving forward with fixed increment step simul-
taneously. At time ¢, subset W1 = {&y—p, ..., -1} and Wo = {z, ..., Trym-1}
are obtained by the two windows. If we use them as training data to build SVDD
models independently, we get hypersphere S; defined by center a; and radius
Ry for Wy and hypersphere S defined by center as and radius Ry for Ws. A
unexpected change at time ¢, which means a different distribution of data after
t, may result in different location and geometries of S; and S3. We use a change
detection index I(t) to reflect the dissimilarity between Sy and So:

I(t) =[l ax —az || /(R1 + Ra) (6)

According to 3.1, a1, ag, and || a1 — az || can be computed:

a; = Zau -P(x13), ax= Za2j - D(x25)
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Radii of the hyperspheres can also be computed from their support vectors ac-

cording to (5). It can be found that, although I(¢) is defined in the feature space,

it can be computed in the input space using the kernel function.

Fig. 1. Data series and sliding windows at time ¢. The right arrow indicates the direc-
tion of data generation.

With the continual generation of input data, the two windows are moving
simultaneously with a fixed increment w that is predefined and I(t) is computed
every time. We then get a index curve of I(t), and abrupt changes are easily
detected whenever the index I(t) peaks or is over a threshold A.



There are two parameters, w and m, and a threshold A\ which need to be
considered. Window size m is selected based on several factors. It should not
be too small. Otherwise, it can’t reflect the data distribution, and will get I(t)
unsteady even for purely normal data flow. Nonetheless a too large m is also
infeasible and unnecessary because it will increase the computing complexity.
We are not able to find a universal value of m for any application, but we
can find a proper value for our application by testing different m in normal
data flow until getting steady change index values with a little variance. The
moving increment, w, could range from 1 to m. This depends on the acceptable
degree of detection delay. The index I(t) measures the extent of change. In our
application, we assume sudden a burst of large-scale intensive attacks will cause
abrupt changes in data flow while concept drift raises mild and gradual changes
in data flow. The threshold A is used to detect abrupt change. If one I(¢) in
index curve goes above A, it indicates an ongoing intensive attack.

2.3 Adaptive Anomaly Detection Framework

Based on SVDD algorithm and change detection algorithm, we design an adap-
tive anomaly detection framework, which consists of four main components:
preprocessor, change detector, model generator, and anomaly detector. The pre-
processor transforms the raw network packets from sensors into formatted data,
and then sends these data to the anomaly detector and the change detector. The
anomaly detector uses a SVDD model to classify normal and intrusive data and
raises alarm for ongoing intrusion. The change detector uses change detect algo-
rithm to detect the intensive attacks and prepares training data for the model
generator. The training data are stored in database and they are sent to the
model generator when model update condition is triggered. The model gener-
ator learns a new model with new training data, and feeds model to anomaly
detector periodically.

filtered <
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Fig. 2. Adaptive Anomaly Detection Framework

3 Experiment

We conducted experiments on KDD’99 dataset [10] , which is prepared for net-
work intrusion detection. In the dataset, the network traffic data are connection-
based. Each connection instance, described by 7 symbolic attributes and 34



continuous attributes, corresponds to a TCP/IP connection. The symbolic at-
tributes must be transformed into numeric attribute to adapt to the SVDD
algorithm. And attributes scaling is needed in order to ensure that the effect of
some attributes is not dwarfed by others that have larger scales. The detail of
these data preprocessing methods is described in our previous paper [11].

Experiment 1 (Expl) is designed to evaluate the change detection algorithm
for detecting intensive attacks. We take SYN flood DoS attack as an example.
KDD’99 provides a typical 10 percent subset consisting of 494,020 instances, in
which most instances are attacks. We reserve all of its 97,277 normal instances
and filter most attacks to get a new set C1. In C1, 5 SYN flood attacks are
reserved, which include more than 100,000 instances. Besides SYN flood attacks,
all other kinds of at-tacks are less than 900 in C1.

We first illustrate how the change index can reflect the influence of SYN flood
attacks. Fig. 3 displays the change index values obtained on C1 data flow, where
the sliding windows size m is 3,000 and the increment w for windows is 3,000.
SVDD parameter v is 0.001 and Gaussian kernel parameter ¢ is 0.02.
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Fig. 3. Change index curve generated in C1. Top line gives the SYN flood attack
schedule in C1. The circle symbol indicates the beginning of attack and square symbol
indicates the ending. Corresponding change index is shown by bottom curve

In Fig. 3, when the threshold A is 0.53, all changes caused by SYN flood
attacks are correctly detected, with no false positive. It is natural that not only
the starting of a SYN flood but also the withdrawing of the attack produce
peaks in change index curve. These data falling in the two peaks should be
rejected by the training dataset. In fact, the change detection algorithm not
only can be used to prepare training dataset, but also can act as an intensive
DoS attacks detector if we set a proper parameter, such as w. When detecting
these kinds of DoS attacks, we are most concern with how to detect them as
soon as possible so that we can take some response actions early to reduce the
damage. With a 3,000 increment for windows, the average alarm delay for five



SYN flood attacks is 342 connections. This means that we become aware of an
attack in its first 342 connections. We can use less increment step for window
to get early change alarm. In the set C'l, when w is 500, the average alarm
delay is 105. Theoretically, a smaller w is good for less delay time, but in fact a
very smaller w is unpractical because SVDD’s efficiency problem though online
version of SVDD [12] is employed.

Experiment 2 is designed to test our adaptive anomaly detection system. The
experiment compares the performance of static method with adaptive learning
strategy. On the basis of the Expl, C'1 is filtered and generate a new dataset C?2
in which attack instances are about 1%.

In order to compare the adaptive manner with the static manner, first 20,000
normal records of C2 are extracted to get an initial training dataset. An initial
model is build based on this initial training dataset. Exp2-1 is an experiment for
adaptive manner which updates the model periodically. In this mode, a retrain
period for model training and update is set. First the initial model is used, then
at the end of every period, a new model is trained using data collected in this
period and the old model is replaced with the new generated one. In Exp2-
1, retrain period is set 20,000. Exp2-2 is a static manner experiment without
updating the model. It just uses the initial model to detect the rest of C2 set,
and the model remains unchanged during the detecting process.

Table 1. Results of Exp2-1 and Exp2-2

Experiment Elapsed time (thousand of instances)
20 [ 40 [ 60 ] 80(al)
False positive rate(%)
Exp2-1 4.87 4.33 5.39 4.45
Exp2-2 4.87 6.43 9.52 13.43
Detection rate(%)
Exp2-1 96.33 92.66 88.76 89.27
Exp2-2 96.33 95.17 92.80 92.35

In initial dataset, the parameter v and g are selected through cross validation
to obtain the minimum false positive rate. We set v 0.01 and ¢ 0.5 when false
positive rate is 1.06%. In Exp2-1, the two parameters are unchanged. Table 1
shows the detection rates and false positive rates for Exp2-1 and Exp2-2 over
elapsed time, i.e. more instances are seen. The static model in Exp2-1 is able to
detect 92.35% of the attacks in the dataset C'2 at the end of all data. However, the
false positive rate is increasing with time, and reaches 13.43% at the end, which
indicates the influence of concept drift in C'2. At the time, the adaptive manner
(Exp2-2) continuously adapts to the concept drift and thus improves the false
positive. Consequently, it generates significantly less false positive rate(< 5%)
as well as a comparable detection rate with static model.



4 conclusion

Because of the limitation of application and the difficult of deployment of the
previous adaptive system, in this paper, we present a new framework for adap-
tive anomaly detection based on SVDD. In order to implement the automatic
collection of training data for model update, we design a change detection al-
gorithm to find intensive attacks and to filter them from real time data. Then
detection models are periodically regenerated with online collected training data.
Our system significantly reduces human intervention as well as deployment costs.
Results of experiments with the KDD’99 network data and preliminary analysis
show that it can adapt to the network behavior changes while still detect attacks.
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