
Adding Security to Network via Network Processors 

Hao Yin1, Zhangxi Tan1, Chuang Lin1, Guangxi Zhu2 

1 Department of Computer Science and Technology, Tsinghua University, China, 
{hyin, xtan, clin}@csnet1.cs.tsinghua.edu.cn  

2 Department of Electronic & Information Engineering, Huazhong University of Sci.&Tech, 
China, 

{gxzhu}@mail.hust.edu.cn 

Abstract. With the increasing need of security, cryptographic processing be-
comes a crucial issue for network devices. Traditionally security functions are 
implemented with Application Specific Integrated Circuit (ASIC) or General-
Purposed Processors (GPPs). Network processors (NPs) are emerging as a 
programmable alternative to the conventional solutions to deliver high per-
formance and flexibility at moderate cost. This work compares and analyzes 
architectural characteristics of many widespread cryptographic algorithms on 
Intel IXP2800 network processor. In addition, we investigate several imple-
mentation and optimization principles that can improve the cryptographic per-
formance on NPs. Most of the results reported here should be applicable to 
other network processors since they have similar components and architectures.  

1   Introduction 

Information security is an indispensable concern owing to the growing demands for 
trusted communication and electronic commerce. For example, a collection of appli-
cations such as secure IP (IPSEC) and virtual private networks (VPNs) has been 
widely deployed in nodal processing. However, cryptographic algorithms are all 
computational intensive [1]. To address this problem and add security functions to 
network equipment, such as secure gateway, a straightforward approach to achieve 
comparable performance is to implement them in hardware. Unfortunately, many 
security chips or coprocessors are only designed for a few algorithms, while most 
Internet security standards are written to allow flexible in algorithm selection. In 
addition, cryptographic hardware is not cheap or readily exportable. 

On the other hand, Network processors (NPs) are an emerging class of program-
mable processors used as a building block for implementing packet processing appli-
cations such as switches and routers [2]. They are highly optimized for packet proc-
essing and I/O operations. As demands for communication security grow, crypto-
graphic processing becomes another type of application domain. Currently, there are 
two approaches to add security into NPs: 1) Security functionality is directly built 
into the same silicon as the Network Process. Nevertheless, this method is still in-
flexible in implementation of multiple algorithms. 2) Implement cryptographic ap-

mailto:@csnet1.cs.tsinghua.edu.cn
mailto:@mail.hust.edu.cn


plications on NPs using software, which provides a good trade-off between perform-
ance and flexibility. Compared to other similar approaches, such as software imple-
mentation over general-purposed processors (GPPs), this approach has the following 
advantages: a) NPs utilize system-on-chip (SoC) technology and have better per-
formance-price ratio than GPPs. b) NPs often involve multi-thread and multi-core 
architecture, thus various parallelism can be exploited to boost performance. So, in 
this paper, we focus on software implementation over NPs. 

Clearly, the most challenging work for software implementations is to provide 
some performance guarantees. Most of recent studies [2][3] related with crypto-
graphic issues on NPs assume a symmetric multiprocessor (SMP) or super scalar 
architecture with multi-level caches, which are more similar with GPPs and ignore 
many characteristics like hardware multi-thread, asynchronous I/O in real-life NPs. 
This work aims to conduct studies of architectural properties of several widespread 
cryptographic algorithms on an actual platform - Intel IXP2800 network processor. 
Their implementation and optimization principles have been proposed. The rest of 
this article is organized as follows. In section 2 we briefly review the architecture of 
IXP2800. Then, we detail the selection of cryptographic algorithms and their charac-
teristics in section 3. Next, we propose several optimization principles and illustrate 
the results through benchmarks in section 4. Finally, we summarize this work and 
offer some suggestions for network processor designs. 

2 Architecture of Intel IXP2800 

 
Fig. 1. The hardware architecture of Intel IXP2800 

Closely examining the hardware architecture of IXP2800 shown in Fig. 1 helps to 
elucidate our implementation and optimization. IXP2800 is a 32-bit RISC based 
multi-core system that exploits system-on-chip (SOC) technique for deep packet 
inspection, traffic management and forwarding at high speed. The 700 Mhz XScale 
core is a general purpose processor used for control plane tasks (slow-path process-
ing). The sixteen 1.4 Ghz microengines (MEs) are data plane PEs, which are con-
nected in two clusters. IXP2800 has distributed, shared memory hierarchy which 
supports two types of external memory: RDRAM and QDR SRAM. In addition, the 



processor includes a 16KB on-chip Scratch SRAM shared among all MEs and plenty 
of registers in conjunction with a small amount of local memory per ME. Memory 
access latencies have not kept pace with ME processing speed. For instance, the 
minimum read latency for fastest shared SRAM (Scratch) is 100 ME cycles. To solve 
this problem, IXP architecture uses 8 “zero thread switching overhead” hardware 
threads for interleave operation - one thread does computation while others block 
waiting for memory operations to complete. 

3 Selection of Cryptographic Algorithms  

There are three such application domains for cryptographic processing: Public-key 
ciphers, Private-key ciphers and Hash functions. In this article, public-key ciphers 
are not studied, since many of them are not practically applicable to be implemented 
on fast-path of NP. First, large code storage is required. Besides, public-key ciphers 
are usually used for short sessions and private key managements, while private-key 
ciphers are critical for long session performance. Therefore, we will only focus our 
effort on private-key ciphers and hash functions. The former can be further classified 
into block ciphers and stream ciphers. Of the many algorithms, we select a subset of 
10 algorithms based on their representativeness, popularity and availability. The 
summaries and characteristics of these algorithms are presented in Table 1. 

Table 1. Selection and characteristics of cryptographic algorithms 

4 Optimization and Benchmark 

4.1   Methodology  

To observe architectural characteristics of cryptographic algorithms and utilization 
of internal re-sources, as well as the performance bottlenecks, we conduct our ex-

Type Name Block Size 
(bits) Round Table Size 

(bytes) Special Requirements Description or Applications  

DES [4] 64 16 256  The first commercial -grade 
modern cipher 

AES [5] 128 10 5120  802.11i 
IDEA [6] 64 9 0 Multiply Unit PGP, SSH/SSL 

RC5 [7] 64 16 136 32-bit variable 
rotation engine 

Wireless Transport Layer Security 
in WAP  

RC6 [8] 128 20 176 
Multiply Unit, 32-bit 

variable rotation 
engine 

AES candidate, improved version 
of  RC5 

Block Cipher 

Blowfish [9] 64 16 4168  Norton Utilities 
RC4 [10] - - 256  SSL/TSL, 802.1x  Stream 

Cipher SEAL [11] - 64+2 <4096a  Disk encryption 
MD5 [12] 512 64 0  Hash 

Function  SHA-1 [13] 512 80 0  
Digital Signature 

a The table size of SEAL is variable concerning the output length. Here lists the upper bound. 



periments under Workbench 3.1, which is a cycle-accurate simulator of IXP2800. 
We configure MEs working at 1.4 Ghz, SRAM at 200 Mhz and RDRAM at 400 Mhz. 
All the source codes are compiled using Intel Microengine C compiler 3.1 with op-
timization level -O2 enabled. When encounter operations such as rotation that can 
not be directly expressed using C operators but supported by instructions of IXP, we 
implement them with inline assembly codes. Hence, our optimization principles do 
not focus on specific instructions unique to one target but general features applicable 
to a wide range of NPs. In addition, to test the scalability of parallel optimization we 
exploit up to 8 MEs (64 threads in total) in one ME cluster as described earlier. 

4.2   Instruction Characteristics  

Block and Stream Ciphers

Instruction Mix

167

43

178

56
80

35

450

174

0

50

100

150

200

250

300

350

400

450

AE
S

DE
S

RC
5

RC
6

Bl
ow
fi
sh

ID
EA RC

4
SE
AL

L
i
n
e
s
 
o
f
 
c
o
d
e

etc

complex alu

simple alu

cond. branch

uncond. branch

load imm.

memory op.

Hash Functions Instruction Mix

696

1240

0

200

400

600

800

1000

1200

MD5 SHA-1

L
i
n
e
s
 
o
f
 
c
o
d
e

etc

complex alu

simple alu

cond. branch

uncond. branch

load imm.

memory op.

 
Fig. 2. Raw code sides and instruction mix 

In this section we present the experimental statistics on instruction distribution of 
these algorithms. These metrics are essential information for understanding their 
dynamic properties and developing implementation and optimization principles. 
Figure 2 illustrates the instruction mix profile and code size of all selected algo-
rithms. The following gives indications on their instruction patterns and great differ-
ences: 
u Most block ciphers and stream ciphers need small code storages (less then 200 

lines of code). The only exception is DES because it has several complex bit op-
erations. Hash functions usually need more code storage.  

u The most frequently used instructions are ALU instructions, especially simple 
ALU instructions like add, shift and logic. As a whole, ALU instructions oc-
cupy a significant share of the total instruction mix, which is 79.9% on average  

u Branch instructions are less used in every algorithm. The average percent is 
1.5% (0.8% for unconditional branch and 0.7% for conditional branch). 

u For memory and load immediate instructions, there are significant differences 
among all selected algorithms. Stream ciphers and some block ciphers (AES 



and Blowfish) tend to have a relative high percentage of memory instructions 
(exceeding 15%) than Hash functions. The average percent of memory instruc-
tions of the 10 algorithms is only 4%. 

4.3   Optimization Principles and Benchmarks  

We describe our optimization and benchmarks in two subsections. The first one 
focuses on general implementation and optimization principles for single thread 
within one ME. The second one considers multi-thread and performs scalability tests 
with multiple MEs. 

Optimizations for single thread 
Generic implementation and optimization rules  

These rules are NP-independent and most of them are suitable for optimizations 
on GPPs. Their goal is to minimize the overall computation complexity and down-
cast expensive operations.  
u Take full advantage of rich register resource and distributed memory hierarchy: 

To minimize access latencies, some frequently used tables should be placed into 
registers and per-ME local memories as much as possible.  

u Avoid using complex instructions: Instructions like multiplication which con-
sume more than one cycle of time should be avoided.  

u Pre-calculate part of algorithms: Aside from table initialization and key sched-
uling mentioned earlier, immediate data used in inner loops can also be pre-
loaded.  

u Unroll loops: This can prevent the flush of pipeline and save extra clock cycles. 
Besides, unrolling loops can reduce calculations concerning iteration variables 
and make addressing in arrays more efficiently.  

NP-dependent memory optimizations  
These principles make use of special optimized memory and I/O units on NPs to 

increase ME utilization rate and stretch the computation capacity to the outmost. 
u Align memory operations: Access to data size smaller than those supported by 

the hardware incurs overhead (i.e. table access in RC4 and DES). Thus, to 
achieve optimal performance tables should be aligned at hardware boundaries. 

u Memory burst read and write: On most NPs, memory burst operations can be 
directly issued at instruction level. IXP2800 allows 32 bytes Scratch/SRAM or 
64 bytes RDRAM burst reference within one instruction. Employing this, mem-
ory instructions will be further reduced. In our benchmark, reading plaintext 
and writing back ciphertext are all burst at their block size. 

u Latency hiding and I/O parallelization: This makes use of asynchronous mem-
ory operations to ‘hide’ long memory access latencies and improve the ME 
utilization rate. The core idea is to continue calculations while ‘waiting’ for ref-
erences to be completed. Further, with the mechanism of complete signals and 
command queues, multiple memory references can be issued simultaneously. 



Throughput of single thread

0

150

300

450

600

750

900

1050

1200

1350

AES DES RC5 RC6 Blowfish IDEA RC4 SEAL MD5 SHA-1

T
hr

ou
gh

pu
t 

(M
bp

s)

Unoptimized code

Generic optimization

Generic + NP-dependent memory optimization

 
Fig. 3. Single thread performance with different optimization principles 

Fig. 3 presents single thread throughputs of selected algorithms applying different 
optimization principles. Related internal statistics of ME are given in Fig. 4. As is 
evident from the plot, Hash functions have the best performance (MD5 1219 Mb/s) 
followed by stream ciphers and block ciphers. DES achieves the lowest throughput 
(32.2 Mb/s after optimization) because it works at bit level while 32-bit IXP2800 has 
a weak support on bit instructions. 

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

U G N U G N U G N U G N U G N U G N U G N U G N U G N U G N

AE S D ES RC5 RC6 Blo wfish IDEA RC 4 S EAL M D5 S HA-1

In
te

rn
al

 s
ta

tis
tic

s 
of

 M
E

Ac tive A bo rted S talle d idle U:Uno ptimiz ed   G :G ene ric    N:G ene ric + NP

 
Fig. 4. Internal Statistics of ME 

The effect of pipeline optimizations seems quite limited. This is because of the short 
pipeline architecture of NPs and low percentage of branch instructions (<2%) in 
cryptographic algorithms. The execution statistics also prove this. Most stream and 
block ciphers suffer from low ME utilization rate (‘active’ in Fig. 4), but generic 
optimizations do not take long memory reference latencies into account. On the other 
hand, NP-dependent memory optimizations effectively ‘hide’ them and increase ME 
utilization rate significantly, especially for algorithms which have a relative high 
percentage of memory operations. For instance, SEAL receives 438% performance 
The effect of pipeline optimizations seems quite limited. This is because of the short 
pipeline architecture of NPs and low percentage of branch instructions (<2%) in 
cryptographic algorithms. The execution statistics also prove this. Most stream and 
block ciphers suffer from low ME utilization rate (‘active’ in Fig. 4), but generic 
optimizations do not take long memory reference latencies into account. On the other 
hand, NP-dependent memory optimizations effectively ‘hide’ them and increase ME 
utilization rate significantly, especially for algorithms which have a relative high 



percentage of memory operations. For instance, SEAL receives 438% performance 
boost after applying memory optimizations. Even though Hash functions have less 
than 1% memory instructions, memory optimizations still yield more speedup than 
generic optimizations. From Fig. 4, we also observe that all algorithms except AES, 
Blowfish and SEAL get a near 100% ME utilization rate after memory optimizations. 
Hence, ME computing power is still their bottleneck. On the contrary, not the mem-
ory bandwidth but long access latency limits the throughput of AES, Blowfish and 
SEAL. Because, none of tested algorithms has its ME ‘stalled’ owing to fullness of 
target memory queues or ME command queues. 
 
Scalability test 

An obvious way to improve the cryptographic applications on NPs is to use paral-
lelism. Three types of parallelism can be used: flow-level, block-level and intra-block 
parallelism. We select flow-level and block-level parallelism to see how well the 
overall throughput scale using multiple threads and MEs of IXP2800. All block 
ciphers are implemented in Cipher Block Chaining (CBC) mode. When encrypted 
with CBC mode, block read/write operations can be paralleled, which are handled by 
single thread using I/O parallelization. Thus, we assign one hardware thread to one 
flow and no thread communication is required. Fig. 5 presents the overall through-
puts of the selected algorithms with our multi-ME and multi-thread implementation.  

 

Th
ro

ug
hp

ut
 (M

bp
s)

 

Fig. 5. Throughput of selected algorithms with varying number of threads and MEs 

5 Summary  

This study selects ten widely used cryptographic algorithms and analyze their in-
struction architectures on Intel IXP2800 network processor. We suggest several 



hardware improvements can be made on current NPs to help ‘software’ implementa-
tions on data path PEs: 
u Increase cache size on PEs to hold large tables and lessen the pressure on 

shared memory and bus. 
u Enlarge the size of memory queue and command queue to reduce the ‘stalled’ 

possibility of PE. 
u Improve communications among different PEs to help intra-block parallelism.  
u Adopt a new memory system to shorten the access latency. 

We believe that in combination of these improvements the proposed implementa-
tion and optimization principles could go a long way to improving cryptographic 
processing performance on network processors. 

Acknowledgment 
This research was supported by Intel IXA University Research Plan (No. 9077), the 
Natural Science Foundation of China (No.90104002, 60173012 and 60372019), the 
Projects of Development Plan of the State Key Fundamental Research 
(No.G1999032707) and the Projects of Development Plan of the State High Technol-
ogy Research (No. 2001AA112080). 

References 

1.  M. Merkow, J. Breithaupt, The Complete Guide to Internet Security, AMACOM, 2000 
2. Haiyong Xie, Li Zhou, Laxmi Bhuyan, “Architectural Analysis of Cryptographic Applica-

tions for Network Processors”, IEEE First Workshop on Network Processors, with HPCA-8, 
Boston, February 2002. 

3. Praveen Dongara and T. N. Vijaykumar, “Accelerating Private-key cryptography via Multi-
threading on Sym-metric Multiprocessors”, Proc. of the IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS), pages 58-69, March 2003. 

4. US Government. Data Encryption Standard (DES), Triple DES, and Skipjack Algorithms. 
http://csrc.nist.gov/cryptval/des.htm. 

5. Advanced Encryption Standard (AES) Development Effort, US Government, 
http://csrc.nist.gov/encryption/aes/ 

6.  X. Lai, On the Design and Security of Block Ciphers, Hartung-Gorre Veerlag, 1992 
7.  R.L. Rivest, “The RC5 Encryption Algorithm”, Proc. of the Second International Work-

shop on Fast Software Encryption, Springer-Verlag, pp. 86-96, 1995 
8. R. Rivest, M. Robshaw, R. Sidney, Y. Yin, The RC6 block cipher, RSA Security, 

http://csrc.nist.gov/encryption/aes/round2/AESAlgs/RC6. 
9.  B. Schneier, “Description of a New Variable-Length Key, 64-Bit Block Cipher”, Proc. of 

the Cambridge Security Workshop, Springer-Verlag, pp. 191-204, 1994. 
10. B. Schneier, Applied Crytography, 2nd Edition, John Wiley & Sons, 1996. 
11. P. Rogaway and D. Coppersmith, “A Software-Optimized Encryption Algorithm”, Proc. of 

the Cambridge Security Workshop, Springer-Verlag, pp. 56-63, 1994 
12. R. Rivest,The MD5 Message-Digest Algorithm, RFC 1321, April 1992 
13. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook of Applied 

Cryptography, CRC Press 1996 

http://csrc.nist.gov/cryptval/des.htm
http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/RC6

