
Coordinating Distributed Resources for Complex
Scientific Computation1

Huashan Yu, Zhuoqun Xu, Wenkui Ding

School of Electronic Engineering and Computer Science, Peking University, Beijing,
100871, P.R. China

yuhs@ailab.pku.edu.cn, zqxu@pku.edu.cn, ding@ailab.pku.edu.cn

Abstract. There exist a large number of computational resources in the domain
of scientific and engineering computation. They are distributed, heterogeneous
and often too restricted in computability for oneself to satisfy the requirement
of modern scientific problems. To address this challenge, this paper proposes a
component-based architecture for managing and accessing legacy applications
on the computational grid. It automatically schedules legacies with domain
expertise, and coordinates them to serve large-scale scientific computation. A
prototype has been implemented to evaluate the architecture.

1 Introduction

It is well known that there exist a large number of legacy applications in almost every
scientific and engineering domain. They are unchangeable and too valuable to be
given up. Each alone is very restricted in computability, due to both the target
platform’s limitation and the programming complexity. However, some of them are
complementary in function and resolvable problem characteristics, and others are
compatible. It is doubtless that their aggregation is almost powerful enough to solve
every problem reliably and efficiently. The idea of coordinating these legacy
applications and their target platforms with Grid technologies [1, 2] to solve large-
scale and complex scientific problems is straightforward, and the advantages are
obvious. However, despite the technical advances of Grid computing in recent years,
this kind of coordinative computing remains a grand challenge.

We have attempted to devise an application framework AOD for coordinating and
scheduling distributed legacy applications on the computational grid, so as to with. It
is component-based and built on top of OGSA [2], supporting distributed but
complementary legacies to be selected dynamically for solving large-scale complex
scientific problems in a cooperative way. Our ultimate goal is to equip the
computational grid with the mechanisms for coordinating and scheduling legacies
automatically, and hence to create an on-demand computing environment. In this
environment, legacies are augmented with domain expertise and abstracted as
consistent services for performing specific computation on the computational grid.

1 This work was supported by National Natural Science Foundation of China (No. 60303001,

No.60173004)

2 Huashan Yu, Zhuoqun Xu, Wenkui Ding

Every service is automatically implemented with a collection of complementary and
competitive legacies. These services are self-optimizing, self-healing and adaptive to
problem characteristics. A grid application is a set services connected with each other
by directed edges, and AOD provides the mechanisms for executing it on the
computational grid.

The next section presents an approach for automatically managing and accessing
legacy applications on the computational grid, and discusses the mechanisms for
coordinating them to solve large-scale scientific problems. Section 3 introduces a
prototype of AOD. Related works are overviewed in section 4, followed by a
conclusion of this paper.

2 A Grid Environment for Large-Scale Scientific Computation

To manage and access legacy applications on the computational grid, we have
proposed the concept of grid-programming component that provides an approach for
incorporating domain expertise into the grid environment. A grid-programming
component (GP component) is an autonomic and extensible entity exiting on the
computational grid, aggregating a collection of legacies augmented with necessary
domain expertise, and providing a set of functions for developing grid applications.
Every function implies some kind of computation with its domain-customized
interface, and is automatically implemented with the legacies. They are self-healing
for failures occurred on the computational grid, self-optimizing according to problem
characteristics and dynamic statuses of grid resources. We call every function as an
on-demand computing service (OD service) of the grid-programming component.

Every GP component uses a generic configuration framework to specify its
underlying computational resources and the augmented expertise. When it is
registered, the configuration is interpreted by AOD to configure and implement its
OD services on the computational grid. The configuration declares a list of IO ports
and OD services as the GP component’s interface. The IO ports are used by the OD
services to input and output their arguments. Every port input or output one type of
data objects in files, and specifies every transferred file’s syntax and semantic in
domain terms. Generally, an OD service has more than one candidate implementation.
Every candidate is provided by some local platform independently, involving one or
more legacies installed on the platform. Different candidates may differ in efficiency
and resolvable problem characteristics. The configuration not only specifies an
executing scheme of every candidate’s underlying resources, but also details three
kinds of domain expertise for dynamically selecting candidate. One is the annotation
of every candidate’s applicability to problem characteristics. The second is the
methods for querying dynamic statuses of every candidate’s underlying resources.
And the third is the methods for detecting automatically a problem’s characteristics
from its data. With the expertise and the support of Grid middleware like Globus
Toolkit [3], an OD service dynamically selects one optimal candidate to execute and
complete the desired computation when it is invoked.

Based on the concept of GP component, AOD provides a Grid environment for
combining distributed legacy resources dynamically to serve large-scale scientific

Coordinating Distributed Resources for Complex Scientific Computation 3

computation. Every legacy in AOD is encapsulated in some GP component. In grid
applications, a complex problem is divided into several concurrent and relatively
simple sub-problems, and every sub-problem is specified with a reference to some
OD service. These references are connected with directed edges to specify the
problem domain’s concurrency. When the application is submitted to run, AOD will
automatically create a formal sub-problem description for every reference, according
to the application’s arguments and the connected edges. The referred OD services are
invoked concurrently, and each is provided a formal sub-problem description. AOD is
also responsible for transferring data objects and communicating messages for the
invoked OD services on the computational grid.

AOD consists of repository, scheduler and broker, and is built on top of Grid
middleware for OGSA. The repository is responsible for configuring and managing
all registered GP components and their OD services on the computational grid. It also
provides an environment for every OD service to select and schedule its underlying
computational resources. An OD service’s behaviors on any underlying host are
conducted by the local broker instance. The scheduler automatically invokes and
synchronizes concurrent OD services when an application is executing.

3 Implementation and Experiment

Based on Globus Toolkit, we have implemented a prototype for AOD. In this
prototype, the scheduler, the repository and every broker instance exchange have been
assigned a local TCP/IP port respectively, in order to receive messages real-time
messages with GlobusIO, so as to invoke OD services, perform computation and
synchronize concurrent OD services. The local broker instances on every host are
managed with GRAM. When an OD service is invoked, its arguments are transferred
on the computational grid with GridFTP. The prototype provides three XML schemas
for programmers. The first schema is for domain experts to define FC descriptors. The
second one is for developing the configurations of GP components, and the last one is
for developing grid applications. We also have developed a tool for running grid
applications with Internet browsers.

Table 1. Experimental Result of a Demonstrative Example

GP component computing host working directory Start time End time
preProc 162.105.203.100 /home/chen/lyan/test1/ 16:43:41 16:45:39
voiFilt 162.105.203.100 /home/chen/lyan/part1/ 16:45:47 16:46:58
qCom 162.105.203.38 /home/aitest/oil/part2/ 16:45:47 16:48:16
Synth 162.105.80.17 /home/globus/lyan/test2/ 16:48:31 16:55:26

Table 1 is the experimental result of a demonstrative example performed on the
prototype. The example consists of four GP components prePrc, voiFilt, qCom and
Synth, performing some kind of simplified pre-stack migration for oil-prospecting
data processing. Every GP component provides one OD service with the
corresponding legacy application and several additional executables. prePrc accepts
the primal sampling data, and its result is passed to voiFilt and qCom respectively.
Synth creates the final result by synthesizing the results of voiFilt and qCom. The
experimental sampling data is about 2 GB, consisting of two binary data files.

4 Huashan Yu, Zhuoqun Xu, Wenkui Ding

4 Related Works and Conclusion

In recent years, the challenge of developing grid applications has been investigated
extensively. The OGSA is the first effort to standardize Grid functionality and
produce a Grid programming model consistent with trends in the commercial sector.
It integrates Grid and Web services concepts and technologies. In this architecture,
resources are encapsulated to be Grid services [2, 4] with standard interfaces and
behaviors. XCAT [5, 6] and ICENI [7] attempt to build an application component
framework on top of OGSA for distributed computation, and support grid applications
that require the collaboration of different Grid services. Neither OGSA nor XCAT
takes account of complementary or competitive resources in resource scheduling.
ICENI seeks to annotate the programmatic interfaces of Grid services using WEB
Ontology Language, allowing syntactically different but semantically equivalent
services to be autonomously adapted and substituted.

AOD provides the mechanism for scheduling complementary and competitive
resources universally, according to problem characteristics and dynamic resource
statuses. It abstracts distributed and heterogeneous computational resources to be
services that are self-healing for failures occurred on the computational grid and
adaptive to both problem characteristics and dynamic statuses of computational
resources, and supports multiple services to serve complex scientific problems
collaboratively. This kind of resource managing strategy not only improves the
dependability and efficiency of grid computing, but also simplifies the complexity of
developing grid applications. We are going to replace current candidate
implementations of OD services with Grid/Web services, so as to simplify the
complexity of developing GP components.

References

1. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer Applications, 15(3), 2001.

2. I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Open Grid Service Infrastructure
WG, Global Grid Forum, June 22, 2002.

3. Globus Toolkit. http://www.globus.org/toolkit/default.asp
4. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T.

Sandholm, P. Vanderbilt, D. Snelling. Open Grid Services Infrastructure (OGSI) Version
1.0. Global Grid Forum Draft Recommendation, 6/27/2003

5. Dennis Gannon, Sriram Krishnan, Liang Fang, Gopi Kandaswamy, Yogesh Simmhan, and
Aleksander Slominski. On Building Parallel and Grid Applications: Component Technology
and Distributed Services. http://extreme.indiana.edu/labpubs.html

6. Sriram Krishnan and Dennis Gannon. XCAT3: A Framework for CCA Components as
OGSA Services. In Accepted for publication to HIPS 2004, 9th International Workshop on
High-Level Parallel Programming Models and Supportive Environments. IEEE Computer
Society Press, 2004. http://extreme.indiana.edu/labpubs.html

7. J. Hau, W. Lee, and Steven Newhouse, Autonomic Service Adaptation using Ontological
Annotation. In 4th International Workshop on Grid Computing, Grid 2003, Phoenix, USA,
Nov. 2003.

