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Abstract. Routing and wavelength assignment (RWA) is a central issue to 
increase efficiency and reduce cost in Wavelength Division Multiplexing 
(WDM) optical networks. In this paper, we propose an improved scheme of 
wavelength assignment of parallel FFT communication pattern on a class of 
regular optical networks. With our new scheme, the numbers of wavelengths 
required to realize parallel FFT communication pattern with n2  nodes on 
WDM linear arrays, rings, 2-D meshes and 2-D tori are ⎣ ⎦12 2 +−n , 

⎣ ⎦12 3 +−n , ⎣ ⎦12 2),max( +−−knk  and ⎣ ⎦12 3),max( +−−knk  respectively, which 
are about one-third less for linear arrays and meshes, and a half less for rings 
and tori, than the known results. Our results have a clear significance for 
applications because FFT represents a common communication pattern shared 
by a large class of scientific and engineering problems and WDM optical 
networks as a promising technology in networking has an increasing popularity. 
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1 Introduction 

Fast Fourier Transform (FFT) plays an important role in numerous scientific and 
technical applications [1]. While the application fields of FFT are growing rapidly, the 
amount of data to be transformed is also increasing tremendously. Hence, there has 
been a great interest in implementing FFT on parallel computers and some parallel 
computers have been specially designed to perform FFT computations [2]. With the 
increasing computation power of parallel computers, interprocessor communication 
has become an important factor that limits the performance of supercomputing 
systems. Optical communication, in particular, Wavelength Division Multiplexing 
(WDM) technique, has become a promising technology for many emerging 
networking and parallel/distributed computing applications because of its huge 
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bandwidth. Parallel FFT is often implemented on dense interconnection networks 
such as hypercube and shuffle-exchange networks [2], instead of simple connected 
networks such as linear arrays and rings. Since WDM divides the bandwidth of an 
optical fiber into multiple wavelength channels so that multiple devices can transmit 
on distinct wavelengths through the same fiber concurrently [3], these dense networks 
can be simplified to simple regular topologies by realizing connections in parallel FFT 
communication patterns in optical lightpaths. A connection or a lightpath in a WDM 
network is an ordered pair of nodes (x, y) corresponding to that a packet is sent from 
source x to destination y. In this paper, we assume that no wavelength converter 
facility is available in the network. Thus, a connection must use the same wavelength 
throughout its path. Routing and wavelength assignment (RWA) is a key problem for 
increasing the efficiency of wavelength-routed all-optical networks. RWA can be 
described as follows [4]: Given a set of all–optical connections, the problem is to (a) 
find routes from the source nodes to their respective destinations, and (b) assign 
channels to these routes so that the same channel is assigned to all the links of a 
particular route. (c) The goal of RWA is to minimize the number of assigned channels. 
Numerous research studies have been conducted on the RWA problem [3-8]. A 
popular approach to tackle this problem is to apply integer programming technique, 
which, however, does not always lead to efficient solution. In [5], the problem of 
wavelength assignment for realizing parallel FFT communication pattern on a class of 
regular optical WDM networks was addressed and two methods, sequential mapping 
and shift-reversal mapping, were proposed. By sequential mapping, the numbers of 
wavelengths required to realize parallel FFT communication pattern of n2  nodes on 
WDM linear arrays, rings, 2-D meshes and 2-D tori are 12 −n , 12 −n , 1),max(2 −−knk  
and 1),max(2 −−knk  respectively. By shift-reversal mapping, the numbers of 
wavelengths required are )2,23max( 3−× n , 22 −n , )2,23max( 3),max( −−× knk  and 

2),max(2 −−knk  respectively. In this paper, we design a new scheme to realize parallel 
FFT communication pattern on a class of regular optical WDM networks and results 
show that our new scheme significantly improves the known results in [5].  

2 Wavelength Assignment of Parallel FFT Communication Pattern 

2.1 Problem Definition 

The so-called butterfly representation [2] of FFT algorithm is a diagram made up of 
blocks representing identical computational units (butterflies) connected by arrows 
that show the flow of data between the blocks. Assuming that N is the length of the 
sequence to be transformed (N is an integer power of two), then the diagram with 
N(log2N+1) nodes arranged in N rows and log2N+1 columns is made of log2N stages 
of N/2 butterflies each. The butterfly representation clearly shows the great potential 
of FFT for parallel processing. Generally, the FFT is implemented stage by stage, i.e. 
any stage of calculation cannot proceed until all the results of its previous stage have 
been completed. In this paper, we consider one dimensional data sequence of size 



N= n2 . If the butterfly representation is viewed as a process graph, i.e. each row of the 
butterfly is implemented by a process and each arrow by a communication channel, 
the butterfly can map onto a WDM hypercube perfectly those links connecting the 
nodes having an address that differs by only one bit at each stage. However, if a 
WDM hypercube is used, only the ith dimensional links are used with one wavelength 
during the ith stage whereas other (n-1)× 12 −n  links are vacant during this stage, 
which may lead to wasting of wavelength channels.  

As we know, a connection in the hypercube communication pattern is called a 
dimensional i connection [4] if it connects two nodes that differ in the ith bit position, 
where 1 ≤ i ≤ n. In a network of size n2 , the set iDIM  is defined as the set of all 
dimension i connections and nH  is defined as the hypercube communication pattern 

which contains all connections in the hypercube. That is, U
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on n2  processors, the set of all communications during n stages of parallel FFT is 
equivalent to nH , and the set of communications during the ith stage is equivalent to 

iDIM . Clearly, parallel FFT has a regular communication pattern which we denote by 
)2( ≥nFFTn . We model a network as a directed graph G (V, E). Nodes in V are 

switches and edges in E are links. Since the n stages of parallel FFT communications 
should be implemented stage by stage, the number of wavelengths required to realize 

nFFT  on optical WDM networks is the maximum number among the wavelengths 
required by the n stages. Let ),( GGWe ′  denote the number of wavelengths to realize 
communication pattern G′  on network G  by embedding scheme e . Thus, 
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2.2 Linear Arrays 

At first, we introduce the definition of cross mapping on linear arrays. Assume that 
NL and NR are two node arrangements with 2n-1 nodes numbered from left to right in 
ascending order starting from 0. If we put node i of NR between node 2n-2+i and node 
2n-2+i+1 of NL for i=0, 1, 2, …, 2n-2-2, and nodes 2n-2-1 till 2n-1 -1 of NR consecutively 
after node 2n-1-1 of NL. By symmetry, this is equivalent to placing node 2n-2+i+1 of NL 
between node i and node i+1 of NR, and nodes 0 till 2n-2-2 of NL consecutively before 
node 0 of NR. We call the above operation cross operation and denote the obtained 
node arrangement Cross(NL, NR). Assume that nX  is the increasing order of indices 

in binary representations of n2  nodes. For example, 2X =00, 01, 10, 11. We define 
the cross order of a linear arrays with 2n nodes, )1( ≥nCn , as follows: 
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((0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111), (1000, 1001, 1010, 1011, 1100, 
1101, 1110, 1111)) =0000, 0001, 0010, 0011, 0100, 1000, 0101, 1001, 0110, 1010, 
0111, 1011, 1100, 1101, 1110, 1111.  

Assume that the nodes of WDM linear arrays are numbered from left to right in 
ascending order starting from 0, and that the links are numbered from left to right 
starting from 1. If the ith node of Cn for nFFT  is mapped onto the ith processor of 
the WDM network G , we establish the 1-1 mapping from the nodes of nFFT  to the 
nodes of G . We define such an embedding cross mapping on WDM linear arrays. 
Figure 1 shows cross mapping of FFT3 on 8-node linear array. 

 
Fig. 1. Cross mapping on 8-node linear array 

Theorem 1: By cross mapping, the number of wavelengths required to realize 

nFFT  on an n2 -node WDM linear array is ⎣ ⎦12 2 +−n . 
Proof: When n=1 and 2, it is easy to know the results are true. In the following, we 

consider the numbers of wavelengths required during the n stages when 3≥n . 
When 3≥n , the ith node of NL ( 10 −nX ) communicates with the ith node of NR 

( 11 −nX ) during the first stage. Assuming that the number of nodes in NL on the left 

side of the ith link on the linear array is l
il

 by cross mapping, and the number of 

nodes in NR on the left side of the ith link is l
ir , then the number of wavelengths 

required on the ith link during the first stage is l
il - l

ir . It can be calculated that the 
number of wavelengths required during the first stage on the ith link, denoted by 1iw , 
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. Therefore, the number of 

wavelengths required during the first stage is 12 2 +−n . During the second stage, there 
is no communications between the nodes of NL and NR. If the cross operation is not 
implemented, communications within nodes of NL and nodes of NR are equivalent to 
the communications of 1−nFFT  mapped on 12 −n -node linear arrays by sequential 
mapping [5]. So, the number of wavelengths required on the ith link of the two 

12 −n -node linear arrays is i for 121 2 −≤≤ −ni  and in −−12  for 122 12 −≤≤ −− nn i . 
If the cross operation is implemented between these two 12 −n -node linear arrays, the 
relative positions between the nodes within NL and NR are not changed and the 
number of wavelengths required on each link is the sum of wavelengths required on 



the corresponding links which are overlapped between the two 12 −n -node linear 
arrays. Assuming that the number of nodes in NL on the right side of the 
ith )12312( 22 −×≤≤+ −− nn i  link on linear arrays is r

il
 by cross mapping and the 

number of nodes in NR on the left side of the ith link is l
ir , the number of 

wavelengths required on the ith link during the second stage is r
il + l

ir . It can be 
calculated that the number of wavelengths required during the second stage on the ith 

link, denoted by 2iw , is 2iw =  
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Therefore, the number of wavelengths required during the second stage is 22 −n . 
During the jth stage for nj ≤≤3 , the number of wavelengths required is jn−2  

on each of NL and NR before the cross operation [5]. After the cross operation, the 
numbers of wavelengths required during stage from 3 to n are less than 

23 22222 −−− =×≤× nnjn  because the number of wavelengths required on the 
n2 -node linear array is not more than the double of the wavelengths required on each 

of NL and NR in the worst case. Therefore, the maximum number of wavelengths 
required during all stages by cross mapping is ⎣ ⎦12 2 +−n .  

Clearly, realizing nFFT  on an n2 -node WDM linear array by cross mapping 

requires 12 3 −−n  fewer wavelengths than that by shift-reversal mapping mentioned 
in [5] when 4≥n .  

2.3 Rings 

If we exchange node i of NL with node 2n-1-i of NR and exchange node 2n-1-i of NL 
with node i of NR for each i=1, 3, 5,…, 2n-3-1, we call such an operation exchange 
operation and denote the obtained node arrangement Exchange(NL, NR). Assume that 

1−C  is the reversal arrangement of C . For example, if dcbaC ,,,= , then 
abcdC ,,,1 =− . Thus, we define the cross order on rings, denoted by )1( ≥nCRn  as 

follows: 
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1(000,001,010,100,011,101,110,111)-1) =0000, 1000, 0010, 0100, 0011, 0101, 0110, 
1110, 1111, 0111, 1101, 1011, 1100, 1010, 1001, 0001. Assume that the nodes of 
WDM rings are numbered clockwise starting from 0, and the links starting from 1. If 
we map the ith node on nCR  of nFFT  onto the ith processor of WDM rings, we 
establish the 1-1 mapping from the nodes of nFFT  to the nodes of rings. We define 



such an embedding cross mapping on rings.  
Theorem 2: By cross mapping, the number of wavelengths required to realize 

nFFT  on an n2 -node WDM ring is ⎣ ⎦12 3 +−n .  
Proof: It is easy to know the numbers of wavelengths required on the rings for n=1, 

2 and 3 are 1, 1, and 2 respectively. In the following, we consider the numbers of 
wavelengths required during the n stages when 4≥n . 

During the first stage, the ith node of NL communicates with node 2n-1-1-i of NR. 
Exchange operation results that the ith node on the ring communicates with node i+1 
for }1227 ,12523 ,1202{ 14444 −≤≤×−×≤≤×−≤≤∈ −−−−− nnnnn kkkki . As 

those communications take place between the neighborhood nodes, the number of 
wavelengths required is 1. At the same time, the ith node on the ring communicates 
with node 2n-1-i for 1232 33 −×≤≤ −− nn i , which requires 2n-3 wavelengths. 
Therefore, the number of wavelengths required during the first stage is 2n-3+1.  

During the stages from 2 to n, there is no communications passing through the links 
of 2n-1 and 2n if the exchange operation is not implemented. If we ignore these two 
links, the ring can be regarded as two 12 −n -node linear arrays. By the definition of 
cross mapping on rings, realizing the stages from 2 to n can be regarded as realizing 

1−nFFT  on each 12 −n -node linear array by cross mapping before the exchange 

operation, which requires 12 3 +−n  wavelengths by Theorem 1. In the following, we 
prove that the number of wavelengths is still 12 3 +−n  after exchange operation. 

Due to the symmetry of the ring, the numbers of wavelengths required on the links 
clockwise from 327 −× n  to n2  and 1 to 32 −n  are equal with those on the links 
clockwise from 323 −× n  to 325 −× n . So, we only take the links from 327 −× n  to 

n2  and 1 to 32 −n  for example. Before the exchange operation, the maximum 
number of wavelengths required on the ith ( 321 −≤≤ ni , nn i 227 3 ≤≤× − ) link of the 

ring, denoted by iw , satisfies iw  
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operation, the exchange between node i and node in −2  results that the numbers of 
wavelengths required on the links clockwise from in −2  to n2  and from 1 to i 
increase by 1 for each i=1, 3, 5,…, 2n-3-1 in the worst case. So, the number of 
additional wavelengths passing through the ith link caused by the exchange operation, 

denoted by iw∆ , satisfies iw∆  
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Therefore, the maximum number of wavelengths required on the ith links is not more 



than iw + iw∆  
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maximum number of wavelengths required on the links clockwise from 327 −× n  to 
n2  and 1 to 32 −n  is not more than 12 3 +−n . Therefore, the number of wavelengths 

required on WDM rings with n2  nodes is ⎣ ⎦12 3 +−n . From the above discussion, we 

know that the wavelengths required to realize nFFT  in WDM ring with n2  nodes 

by cross mapping is 12 3 −−n  less wavelengths than that by shift-reversal mapping 
when 4≥n .  

We denote sizes of meshes and tori as N= knk −× 22 . For simplicity, the details 
of the definition for the cross mapping on meshes and tori are ignored here.  

Theorem 3: By cross mapping, the numbers of wavelengths required to realize 

nFFT  on a knk −× 22  mesh and torus are ⎣ ⎦12 2),max( +−−knk  and ⎣ ⎦12 3),max( +−−knk  
respectively.  

3 Comparisons 

It can be seen that cross mapping outperforms shift-reversal mapping and 
sequential mapping on the number of wavelengths, as shown in Fig. 2 for linear 
arrays. The analysis can be obtained similarly for other topologies. 
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Fig. 2 Comparisons of wavelengths required on liner arrays 



4 Conclusions 

In this paper, we proposed an improved scheme of wavelength assignment for 
parallel FFT communication pattern on a class of regular optical networks. By the 
improved mapping method, the numbers of wavelengths required to realize parallel 
FFT communication pattern with n2  nodes on WDM linear arrays, rings, 2-D 
meshes and 2-D tori are ⎣ ⎦12 2 +−n , ⎣ ⎦12 3 +−n , ⎣ ⎦12 2),max( +−−knk  and 

⎣ ⎦12 3),max( +−−knk  respectively, which improved the results in [5]. Our results have a 
clear significance for applications because FFT represents a common communication 
pattern shared by a large class of scientific and engineering problems and WDM 
optical networks as a promising technology in networking has an increasing 
popularity. Future work may include other type of optical networks and other RWA 
problems. Another interesting issue is to find the lower bound for this problem and the 
improved schemes which can achieve the lower bound. 
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