
Globus Toolkit Version 4:
Software for Service-Oriented Systems

Ian Foster
(for the Globus Team)

Math & Computer Science Division, Argonne National Lab, Argonne, IL 60439, U.S.A.

Department of Computer Science, University of Chicago, Chicago, IL 60637, U.S.A.

Abstract. The Globus Toolkit (GT) has been developed since the late 1990s to
support the development of service-oriented distributed computing applications
and infrastructures. Core GT components address, within a common
framework, basic issues relating to security, resource access, resource
management, data movement, resource discovery, and so forth. These
components enable a broader “Globus ecosystem” of tools and components that
build on, or interoperate with, core GT functionality to provide a wide range of
useful application-level functions. These tools have in turn been used to
develop a wide range of both “Grid” infrastructures and distributed
applications. I summarize here the principal characteristics of the latest release,
the Web services-based GT4, which provides significant improvements over
previous releases in terms of robustness, performance, usability, documentation,
standards compliance, and functionality.

1 Introduction

Globus is:

− A community of users and developers who collaborate on the use and development
of open source software, and associated documentation, for distributed computing
and resource federation.

− The software itself—the Globus Toolkit: a set of libraries and programs that
address common problems that occur when building distributed system services
and applications.

− The infrastructure that supports this community—code repositories, email lists,
problem tracking system, and so forth: all accessible at globus.org.

The software itself provides a variety of components and capabilities, including
the following:

− A set of service implementations focused on infrastructure management.
− Tools for building new Web services, in Java, C, and Python.
− A powerful standards-based security infrastructure.

2

− Both client APIs (in different languages) and command line programs for
accessing these various services and capabilities.

− Detailed documentation on these various components, their interfaces, and how
they can be used to build applications.

These components in turn enable a rich ecosystem of components and tools that
build on, or interoperate with, GT components—and a wide variety of applications in
many domains. From our experiences and the experiences of others in developing and
using these tools and applications, we identify commonly used design patterns or
solutions, knowledge of which can facilitate the construction of new applications.

In this article, I review briefly the current status of Globus, focusing in particular
on those aspects of the GT4 release that should be of interest to those wishing to work
with the software. I provide references to research articles for those desiring more
details on the underlying concepts and mechanisms.

2 Motivation and Concepts

Globus software is designed to enable applications that federate distributed resources,
whether computers, storage, data, services, networks, or sensors. Initially, work on
Globus was motivated by the demands of “virtual organizations” in science. More
recently, commercial applications have become increasingly important. Commerce
and science often, but not always, have similar concerns.

Federation is typically motivated by a need to access resources or services that
cannot easily be replicated locally. For example:

− A scientist (or business analyst) needs to access data located in different databases
across a scientific collaboration (or enterprise).

− A business (or physics community) needs to allocate computing, storage, and
network resources dynamically to support a time-varying e-commerce (or physics
data analysis) workload.

− An engineer needs to design and operate experiments on remote equipment, linking
and comparing numerical and physical simulations.

− An astronomy experiment needs to replicate a terabyte of data a day to partner sites
around the world.

We find that while every application has unique requirements, a small set of
functions frequently recur: for example, we often need to discover available
resources, configure a computing resource to run an application, move data reliably
from one site to another, monitor system components, control who can do what, and
manage user credentials. Good-quality implementations of these functions can reduce
development costs. Furthermore, if these implementations are widely adopted and/or
implement standards, they can enhance interoperability. Globus software addresses
both goals, using an open source model to encourage both contributions and adoption.

GT4 makes extensive use of Web services mechanisms to define its interfaces and
structure its components. Web services provide flexible, extensible, and widely
adopted XML-based mechanisms for describing, discovering, and invoking network

3

services; in addition, its document-oriented protocols are well suited to the loosely
coupled interactions that many argue are preferable for robust distributed systems.
These mechanisms facilitate the development of service-oriented architectures—
systems and applications structured as communicating services, in which service
interfaces are described, operations invoked, access secured, etc., all in uniform ways.

While end-user applications are typically concerned with domain-specific
operations such as pricing a portfolio or analyzing a gene sequence, computing
ultimately requires the manipulation and management of infrastructure: physical
devices such as computers, storage systems, and instrumentation. Thus, GT4 provides
a set of Grid infrastructure services [12] that implement interfaces for managing
computational, storage, and other resources. In many Globus deployments (e.g.,
TeraGrid, Open Science Grid, LHC Computing Grid, China Grid, APgrid), these
services are deployed to support a range of different application communities, each of
which then executes their own application-specific code that relies on those services.

Java Services in Apache Axis
Plus GT Libraries & Handlers

Your
Java

Service

Fi
le

 T
ra

ns
fe

r
G

R
AM

D
el

eg
at

io
n

In
de

x
Tr

ig
ge

r

R
ep

lic
a

Lo
cn

.

C
om

m
. A

ut
h.

P
re

-W
S

 G
R

A
M

M
yP

ro
xy

D
at

a
A

cc
es

s

Te
le

co
nt

ro
l

G
rid

FT
P

C Services using
GT LibrariesSERVER

CLIENT

Interoperable
WS-I-compliant

SOAP messaging

Your
Java
Client

Your
C

Client

Your
Python
Client

Your
Java
Client

Your
C

Client

Your
Python
Client

X.509 credentials =
common authentication

Python hosting,
GT Libraries

Your
Python
Service

Your
C

Service

Python
Container

C
Container

…
Java

Container

Figure 1: GT4 architecture schematic, showing many (but not all)

components. Shared boxes denote GT4 code; white boxes represent user code

3 Globus Architecture

Figure 1 illustrates various aspects of GT4 architecture. I note first of all the following
three sets of components:

− A set of service implementations (the bottom half of the figure) implement useful
infrastructure services. These services address such concerns as execution
management (GRAM), data access and movement (GridFTP [2], RFT, OGSA-DAI
[4]), replica management (RLS [6], DRS), monitoring and discovery (Index,
Trigger, WebMDS), credential management (MyProxy [16], Delegation,

4

SimpleCA), and instrument management (GTCP). Most are Java Web services but
some (bottom right) are implemented in other languages and use other protocols.

− Three containers can be used to host user-developed services written in Java,
Python, and C, respectively. These containers provide implementations of security,
management, discovery, state management, and other mechanisms frequently
required when building services. They extend open source service hosting
environments with support for a range of useful Web service (WS) specifications,
including WS Resource Framework (WSRF), WS-Notification, and WS-Security.

− A set of client libraries allow client programs in Java, C, and Python to invoke
operations on both GT4 and user-developed services. In many cases, multiple
interfaces provide different levels of control: for example, in the case of GridFTP,
there is not only a simple command-line client (globus-url-copy) but also control
and data channel libraries for use in programs—and the XIO library allowing for
the integration of alternative transports.

It is important to note that GT4 is more than just a set of useful services. The use of
uniform abstractions and mechanisms means that clients can interact with different
services in similar ways, which facilitates the construction of complex, interoperable
systems and encourages code reuse. This uniformity occurs at several levels:

− WS-I-compliant SOAP messaging among Web services and their clients.
− A common security and messaging infrastructure enables interoperability among

different applications and services.
− A powerful and extensible authorization framework supports a range of different

authorization mechanisms.
− The fact that all containers and most services implement common mechanisms for

state representation, access, and subscription facilitates discovery and monitoring.

4 Globus Software Details: How Do I …?

Figure 2 provides another perspective on GT4 structure, showing the major
components provided for basic runtime (on the right) and then (from left to right)
security, execution management, data management, and information services. I
introduce these components by showing how they are used to perform various tasks.

4.1 How Do I Manage Execution?

Let’s say we want to run a task on a computer, or deploy and manage a service that
provides some capability to a community. In both cases, we need to acquire access to
a computer, configure that computer to meet our needs, stage an executable, initiate
execution of a program, and monitor and manage the resulting computation.

The GT4 Grid Resource Allocation and Management (GRAM) service addresses
these issues, providing a Web services interface for initiating, monitoring, and
managing the execution of arbitrary computations on remote computers. Its interface
allows a client to express such things as the type and quantity of resources desired,

5

data to be staged to and from the execution site, the executable and its arguments,
credentials to be used, and job persistence requirements. Other operations enable
clients to monitor the status of both the computational resource and individual tasks,
to subscribe to notifications concerning their status, and control a task’s execution.

Data MgmtSecurity Common
Runtime

Execution
Mgmt

Info
Services

Grid Resource
Allocation &
Management

Index Java
RuntimeGridFTPCredential

Mgmt

Data
Replication

Replica
Location

Community
Authorization

Community
Scheduling
Framework

Python
RuntimeWebMDS

Reliable
File Transfer

Authentication
Authorization Trigger C

Runtime
Workspace

Management

Data Access
& IntegrationDelegation

Grid
Telecontrol

Protocol

Tech
Preview

Figure 2: Primary GT4 components (dashed lines represent “tech previews”)

A GRAM service can be used for many different purposes. The following are some
examples:

− The GriPhyN Virtual Data System (VDS), Ninf-G, and Nimrod-G are all tools that
use GRAM interfaces to dispatch (potentially large numbers of) individual tasks to
computational clusters. For example, Rodriguez et al.’s GADU service [17]
routinely uses VDS to dispatch several million BLAST and BLOCKS runs as it
updates its proteomics knowledge base.

− Various applications use GRAM as a service deployment and management service,
using a GRAM request first to start the service and then to control its resource
consumption and provide for restart in the event of resource or service failure.

− The MPICH-G2 implementation [15] of the Message Passing Interface uses
GRAM to coschedule subtasks across multiple computers. Dong et al. [8] have
used MPICH-G2 to conduct a complete simulation of the human arterial tree.

The following execution management components are also provided within GT4 as
“tech previews,” meaning that they are less thoroughly tested than other components
and more likely to change in the future:

− A Workspace Management Service (WMS) provides for the dynamic allocation of
Unix accounts as a simple form of sandbox. (A variant of this service that provides
for the dynamic allocation of virtual machines exists in prototype form.)

− The Grid TeleControl Protocol (GTCP) service is for managing instrumentation; it
has been used for earthquake engineering facilities and microscopes.

6

4.2 How Do I Access and Move Data?

Globus applications often need to manage, provide access to, and/or integrate large
quantities of data at one or many sites. This “data” problem is broad and complex, and
no single piece of software can “solve” it in any comprehensive sense. However,
several GT4 components implement useful mechanisms that can be used individually
and in conjunction with other components to develop interesting solutions. (A recent
article [3] reports on these tools and on various success stories.)

− The Globus implementation of the GridFTP specification provides libraries and
tools for reliable, secure, high-performance memory-to-memory and disk-to-disk
data movement. It has achieved 27 Gbit/s end-to-end over wide area networks, and
can interoperate with conventional FTP clients and servers. GridFTP provides the
substrate on which are built a wide variety of higher-level tools and applications.

− The Reliable File Transfer (RFT) service provides for the reliable management of
multiple GridFTP transfers. It has been used, for example, to orchestrate the
transfer of one million files from one astronomy archive to another.

− The Replica Location Service (RLS) is a scalable system for maintaining and
providing access to information about the location of replicated files and datasets.
The LIGO experiment uses it to manage more than 40 million file replicas.

− The Data Replication Service (DRS: a tech preview) combines RLS and GridFTP
to provide for the management of data replication.

− The Globus Data Access and Integration (OGSA-DAI) tools developed by the UK
eScience program provides access to relational and XML data.

4.3 How Do I Monitor and Discover Services and Resources?

Monitoring and discovery are two vital functions in a distributed system, particularly
when that system spans multiple locations, as in that context no one person is likely to
have detailed knowledge of all components. Monitoring allows us to detect and
diagnose the many problems that can arise in such contexts, while discovery allows us
to identify resources or services with desired properties. Both tasks require the ability
to collect information from multiple, perhaps distributed, information sources.

In recognition of the importance of these functions, monitoring and discovery
mechanisms are built in to GT4 at a fundamental level, as follows (see Figure 3).

− GT4 provides standardized mechanisms for associating XML-based resource
properties with network entities and for accessing those properties via either pull
(query) or push (subscription). These mechanisms—basically implementations of
the WSRF and WS-Notification specifications—are built into every GT4 service
and container, and can also be incorporated easily into any user-developed service.
Services can be configure to register with their container, and containers with other
containers, thus enabling the creation of hierarchical (or other) organizations.

− GT4 provides two aggregator services that collect recent state information from
registered information sources. As not all information sources support WSRF/WS-
notification interfaces, these aggregators can be configured to collect data from any

7

information source, whether XML-based or otherwise. The two aggregators
implement a registry (Index) and event-driven data filter (Trigger), respectively.

− GT4 provides a range of browser-based interfaces, command line tools, and Web
service interfaces that allow users to query and access the collected information. In
particular, the WebMDS service can be configured via XSLT transformations to
create specialized views of Index data.

GT4 Container

GRAM User

MDS-
Index

GT4 Cont.

RFT

MDS-
Index

GT4 Container

MDS-
Index

GridFTP

adapter

Registration &
WSRF/WSN

Access

Custom protocols
for non-WSRF entities

Clients (e.g., WebMDS)

Automated
registration
in container

WS-
ServiceGroup

Figure 3: GT4 monitoring and discovery infrastructure

These different mechanisms provide a powerful framework for monitoring diverse
collections of distributed components and for obtaining information about
components for purposes of discovery. For example, the Earth System Grid (ESG) [5]
uses these mechanisms to monitor the status of the various services that it uses to
distribute and provide access to more than 100 TB of climate model data.

4.4 How Do I Control Who Can do What?

Security concerns are particularly important and challenging when resources and/or
users span multiple locations. A range of players may want to exert control over who
can do what, including the owners of individual resources, the users who initiate
computations, and the “virtual organizations” established to manage resource sharing.
“Exerting control” may include variously enforcing policy and auditing behavior.
When designing mechanisms to address these requirements, we must work not only to
protect communications but also to limit the impact of breakins at end systems. A
complete security “solution” must always be a system that combines components
concerned with establishing identity, applying policy, tracking actions, etc., to meet
specific security goals. GT4 and related tools provide powerful building blocks that
can be used to construct a range of such systems.

At the lowest level, GT4’s highly standards-based security components implement
credential formats and protocols that address message protection, authentication,
delegation, and authorization. As shown in Figure 4, support is provided for (a) WS-

8

Security-compliant message-level security with X.509 credentials (slow) and (b) with
usernames/passwords (insecure, but WS-I Base Security Profile compliant) and for (c)
transport-level security with X.509 credentials (fast and thus the default).

Figure 4: GT4 security protocols (see text for details). From [19].

In GT4’s default configuration, each user and resource is assumed to have a X.509
public key credential. Protocols are implemented that allow two entities to validate
each other’s credentials, to use those credentials to establish a secure channel for
purposes of message protection, and to create and transport delegated credentials that
allow a remote component to act on a user’s behalf for a limited period of time.

Authorization call outs associated with GT4 services can be used to determine
whether specific requests should be allowed. In particular, the authorization
framework component allows chains of authorization modules with well-defined
interfaces to be associated with various entities, e.g. services, in the container. It also
provides multiple different authorization module implementations, ranging from
traditional Globus gridmap-based authorization to a module that uses the SAML
protocol to query an external service for an authorization decision.

Supporting tools, some in GT4 and some available from other sources, support the
generation, storage, and retrieval of the credentials that GT4 uses for authentication,
and address related issues concerning group membership, authorization policy
enforcement, and the like. These tools can be configured so that users need never
manage their own X.509 credentials.

4.5 How Do I Build New Services?

A wide range of enabling software is included in GT4 to support the development of
components that implement Web services interfaces. This software deals with such
issues as message handling, resource management, and security, thus allowing the
developer to focus their attention on implementing application logic. GT4 also
packages additional GT4-specific components to provide GT4 Web services
containers for deploying and managing services written in Java, C, and Python. As
illustrated in Figure 5, these containers can host a variety of different services:

9

− Implementations of basic WS specifications such as WSDL, SOAP, and WS-
Security support services that make use of these specifications to implement basic
Web services functionality.

− Implementations of other specifications, notably WS-Addressing, WSRF, and WS-
Notification, support services that want to expose and manage state associated with
services, back-end resources, or application activities [11]. (For example, GT4
GRAM and RFT services use these mechanisms to manage state associated with
tens of thousands of computational activities and file transfers, respectively.)

− The Java container is used to host the various GT4 Java Web services mentioned
earlier, such as GRAM, RFT, DRS, Delegation, Index, and Trigger.

− Enhanced registry and management capabilities, notably the representation of
information about services running in a container as WS-Resources, facilitate the
creation of distributed registries and system monitoring tools.

User ApplicationsUser Applications

Custom
Web

Services
WS-Addressing, WSRF,

WS-Notification

Custom
WSRF Web

Services

GT4
WSRF Web

Services

WSDL, SOAP, WS-Security

User Applications

R
eg

is
try

A
dm

in
is

tra
tio

n

G
T4

 C
on

ta
in

er

Figure 5: Capabilities of a GT4 container

In general, the Java container provides the most advanced programming
environment, the C container the highest performance [14], and (Python enthusiasts
would argue) the Python container the nicest language. If developing new services in
Java using GT4, see the tutorial text [18] and its accompanying Web site.

Numerous projects are developing exciting services and applications based on GT4
containers. For example, the Belfast eScience Center has 1.5 million lines of GT4
Java code (converted from GT3, a process that required “relatively few changes in
service code” [13]), implementing a range of applications including a digital video
management system for the BBC, and the China Grid Support Package provides a
rich set of services for eScience and education built on the GT4 Java container.

4.6 How Do I Do More Complicated Things?

GT4 services and libraries do not provide complete solutions to many distributed
computing problems: to do anything more complex than submit a job or move a file,
you must use GT4 software in conjunction with other tools and/or your own code—or
access a (GT-based) service that provides the capabilities that you require [10].

10

In analyzing how people use Globus software, we find that the same patterns tend
to reoccur across different projects and application domains. Thus, we have launched
an effort to document these solutions [1] and how they can be implemented using
components of the Globus ecosystem.

5 Processes, Results, and Evaluation

The Globus Alliance’s software engineering processes have improved steadily over
the past five years. These improvements have been made possible by both increased
software engineering resources (i.e., dedicated engineers) and more aggressive users
available for further testing. These processes now include:

− Extensive unit test suites and the use of test coverage tools to evaluate coverage.
− Frequent automated execution of build and test suites on more than 20 platforms,

via both local systems and the NMI GRIDS Center’s distributed build/test facility.
− Extensive performance test suites used to evaluate various aspects of component

performance, including latency, throughput, scalability, and reliability.
− A cross-GT documentation plan, managed by a dedicated documentation

specialist, to ensure complete coverage and uniform style for all components.
− A well-defined community testing process, which in the case of GT4 included a

six-month alpha and beta-testing program with close to 200 participants.
− An issue tracking system based on bugzilla, used to track both error reports and

feature requests, and the work associated with those issues.

GT4 performance is summarized in a recent report [9]. This report also provides
pointers to more detailed documentation, including reports on the performance of
different Web services containers, including GT4’s Java, C, and Python [14]; the GT4
implementation of GridFTP [2]; and the GT4 replica location service [7].

The UK eScience program has released an external evaluation of GT4 [13]. This
detailed report speaks favorably of the overall quality, usability, and performance of
the GT4 code and its documentation. It notes, for example, that “GT4 installation was
straightforward,” “GT4 services demonstrated significant improvements in
performance and reliability over their GT3 versions,” and “GT4 package descriptions
were of a high quality, well structured, and accurate.”

6 Contributing

A large and diverse Globus community is working hard to improve the scope and
quality of the Globus software. I hope that you, the reader, will feel inspired to
contribute also. There are several ways in which you can do so.

Use the software and report your experiences. Simply using the software and
reporting back on your experiences, positive or negative, can be immensely helpful.
Reports of problems encountered, particularly when well documented, help guide bug

11

fixes and/or prioritize work on new features. Reports of successful deployments and
applications can help justify continued support for the development of the software.

Develop documentation and examples. Despite considerable progress, we remain
in desperate need of code examples and associated documentation that can help other
users to start work with Globus software or related tools. Take the time to document
your successful application, and you will be repaid in gratitude from other users.

Contribute to the development of the software. The list of new features wanted by
users is always far greater than Globus developers can handle. You can contribute bug
fixes, test cases, new modules, or even entirely new components.

7 Futures

We are entering an exciting time for Globus, due to the confluence of the following
factors:

− The completion of GT4 means that Globus now has a solid Web services base on
which to build additional services and capabilities.

− Sustained funding for eScience support will allow us to accelerate efforts aimed at
meeting demands for ever-greater scalability, functionality, usability, and so forth.

− The creation of organizations dedicated to the support needs of industry means that
commercial adoption (and contributions) will accelerate.

− A rapidly growing user community is increasing the quantity and quality of user
feedback, code contributions, and components within the larger Globus ecosystem.

− Revisions to the Globus infrastructure and governance processes will make it
easier for us to engage additional contributors to the software and documentation.

Acknowledgements

I report here on the work of many talented colleagues and collaborators (see
www.globus.org). The core team is based primarily at Argonne National Lab, U.
Chicago, the USC Information Sciences Institute, U. Edinburgh, the Royal Institute of
Technology, the National Center for Supercomputing Applications, and Univa
Corporation. Many others in both academia and industry have contributed to code,
documentation, and testing, or made our work worthwhile by using the code.

Work on Globus has been supported in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,
by the National Science Foundation (NSF) under its NSF Middleware Initiative and
other programs, and by IBM, DARPA, NASA, Microsoft, the UK Engineering and
Physical Sciences Research Council and Department of Trade and Industry, and the
Swedish Research Council.

Foster is also co-founder and Chief Open Source Strategist at Univa Corporation.

12

References

1. Grid Solutions, 2005. www.globus.org/solutions.
2. Allcock, B., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I. and Foster,

I., The Globus Striped GridFTP Framework and Server. SC'2005, 2005.
3. Allcock, W., Chervenak, A., Foster, I., Kesselman, C. and Livny, M., Data Grid Tools:

Enabling Science on Big Distributed Data. SciDAC Conference, 2005.
4. Atkinson, M., Chervenak, A., Kunszt, P., Narang, I., Paton, N., Pearson, D., Shoshani, A.

and Watson, P. Data Access, Integration, and Management. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 2004.

5. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., Cinquini,
L., Drach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Markel, R., Middleton, D.,
Nefedova, V., Pouchard, L., Shoshani, A., Sim, A., Strand, G. and Williams, D. The Earth
System Grid: Supporting the Next Generation of Climate Modeling Research. Proceedings
of the IEEE, 93 (3). 485-495. 2005.

6. Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kesselman,
C., Kunst, P., Ripenu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K. and Tierney,
B., Giggle: A Framework for Constructing Scalable Replica Location Services. SC'02:
High Performance Networking and Computing, 2002.

7. Chervenak, A.L., Palavalli, N., Bharathi, S., Kesselman, C. and Schwartzkopf, R.,
Performance and Scalability of a Replica Location Service. IEEE International Symposium
on High Performance Distributed Computing, 2004.

8. Dong, S., G, K. and Karonis, N. Cross-site computations on the TeraGrid. Computing in
Science & Engineering, 7 (5). 14-23. 2005.

9. Foster, I. Performance of Globus Toolkit Version 4. Globus Alliance, 2005.
www.globus.org/alliance/publications.

10. Foster, I. Service-Oriented Science. Science, 308. 814-817. 2005.
11. Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling, D. and

Tuecke, S. Modeling and Managing State in Distributed Systems: The Role of OGSI and
WSRF. Proceedings of the IEEE, 93 (3). 604-612. 2005.

12. Foster, I. and Tuecke, S. Describing the Elephant: The Different Faces of IT as Service.
ACM Queue, 3 (6). 2005.

13. Harmer, T., Stell, A. and McBride, D. UK Engineering Task Force Globus Toolkit Version
4 Middleware Evaluation, UK Technical Report UKeS_2005-03, 2005.

14. Humphrey, M., Wasson, G., Jackson, K., Boverhof, J., Meder, S., Gawor, J., Lang, S.,
Pickles, S., McKeown, M. and Foster, I. A Comparison of WSRF and WS-Notification
Implementations: Globus Toolkit V4, pyGridWare, WSRF:Lite, and WSRF.NET. 14th
International Symposium on High Performance Distributed Computing. 2005.

15. Karonis, N., Toonen, B. and Foster, I. MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing, 63 (5). 551-
563. 2003.

16. Novotny, J., Tuecke, S. and Welch, V., An Online Credential Repository for the Grid:
MyProxy. 10th IEEE International Symposium on High Performance Distributed
Computing, San Francisco, 2001, IEEE Computer Society Press.

17. Rodriguez, A., Sulakhe, D., Marland, E., Nefedova, V., Maltsev, N., Wilde, M. and Foster,
I., A Grid-Enabled Service for High-Throughput Genome Analysis. Workshop on Case
Studies on Grid Applications, Berlin, Germany, 2004.

18. Sotomayor, B. and Childers, L. Globus Toolkit 4: Programming Java Services. Morgan
Kaufmann, 2005.

19. Welch, V. Globus Toolkit Version 4 Grid Security Infrastructure: A Standards Perspective,
2004. http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf.

