An incremental compilation approach for
OpenMP applications

Maurizio Giordano and Mario Mango Furnari

Istituto di Cibernetica “E. Caianiello” - C.N.R.
Via Campi Flegrei 34, 80078 Pozzuoli, Naples - ITALY
{m.giordano,m.mangofurnari}@cib.na.cnr.it

Abstract. This work presents a new approach to software development
framework design for parallel programming: the Graphical Parallelizing
Environment' (GPE). It adopts an incremental compilation process for
OpenMP programming based on automatic detection of parallelism and
user interaction for its calibration. GPE is extensible via plug-in modules
providing new capabilities. It is an experimental OpenMP programming
framework targeting shared-memory multiprocessors and clusters of PCs.

1 Introduction

In past years, several techniques were developed in the area of program au-
tomatic parallelization, like data and control dependence analysis [1], symbolic
and interprocedural analysis [3,4]. Several research projects [5,6] dealt with the
development of parallelizing compilers implementing most of these techniques.

Multithreaded applications, that were specifically targeted to shared-memory,
may now use Software DSM to run in distributed settings. There are propos-
als [8,9] to adopt a single programming paradigm, like OpenMP, independently
from where the application will run, that is a multiprocessor, SMP or a cluster.

In this context, a pure automatic compiler-based approach to program par-
allelization has proved to be insufficient, since compilers cannot use information
available only to users. This is even worst if the same parallel program will run
on different multiprocessor architectures, or even on clusters of PCs.

In recent years, an alternative approach was proposed [5, 6] that combines au-
tomatic and manual parallelization: the programmer interacts with the compiler
to supply his knowledge of the application. This additional information helps
the compiler in carrying on the hard task of parallelism analysis and discovery.

We developed a new environment for program parallelization, named Graphi-
cal Parallelizing Environment (GPE). It adopts an incremental approach for the
parallelization of programs based on both parallelism automatic detection (done
by a parallelizing compiler) and the user intervention to drive code restructuring
as well as parallelism annotation before generation of program executables.

The rest of the paper is so organized: section 2 describes the GPE architec-
ture; section 3 gives and overview of the GPE modules for the visualization and
modification of program parallelism; section 4 reports some conclusive remarks.

! GPE software is a result of the POP European project: IST-2001-3307



2 M. Giordano, M. Mango Furnari

OpenMP
program

Wain TooBar

T

GpenWp Directive.
Editing TooiBar

oo 3[c[elE[E];
/ ] Ja——

Program

A |

Pragram
Versipning

Pl

TG Atrtuies v BEE
oty

Visualize

AY
Generate %
Parallel Cade \

Code+ — ! T
nth nuntime

Fig. 1. The GPE architecture

2 GPE program development cycle

According to the GPE approach, OpenMP program parallelization is the result
of a cyclic process in which, at each round, the following activities (see figure 1)
are carried out:

1. OpenMP program editing - first, the programmer writes the FORTRAN source
code with OpenMP annotations.

2. Compilation - the compiler performs data & control dependence analysis and
detects program parallelism accounting also for OpenMP parsed directives.

3. Parallelism visualization - program parallelism and its sources are shown to
users in a Hierarchical Task Graph [2] representation.

4. Parallelism modification - users restructure parallelism annotating the code
with OpenMP directives and transforming loops to extract/tune parallelism.

5. Parallel code generation - OpenMP annotated program tasks are translated
to FORTRAN code plus calls to a multithreaded library [7].

Steps 3 to 4 can be iterated to further tune application parallelism. Each mod-
ification to the source is saved in a program new version and version history is
kept by the GPE versioning module. The multithreaded code produced in step 5
is compiled on the target architecture to generate the executable. Performance
measurements and execution traces can be used in next rounds of the tuning
Parallelism detection and task formation is done by the POP compiler [9]. It
is a source-to-source parallelizer that uses an aggressive approach for dependence
testing. Parallelism detection is synthesized in a compiler internal representation:
the Hierarchical Task Graph (HTGQ) [2]. User-compiler interaction relies on HTG
handling: parallelism visualization/calibrating is based on graph-manipulation.
We think that the HTG could be considered the intermediate program represen-
tation closer to the user conceptual view of the application parallel execution.



An incremental compilation approach for OpenMP applications 3

3 GPE modules

The GPE first design aimed to provide visualization and navigation of the pro-
gram HTG, that synthesizes results of compiler analysis and parallelism discov-
ery. We experienced that OpenMP program parallelization is often an incremen-
tal process involving both compiler techniques and programmer’s restructuring
decisions. The process is time-consuming as it implies hand-coding of many ver-
sions of the same program corresponding to different parallelization strategies.
Therefore, we redesigned the GPE to be an environment supporting the iter-
ative process of OpenMP programming and extensible with new functionalities,
added as plug-ins to the core system. With this new design the GPE has become
a framework in which new capabilities and tools can be quickly developed and
experimented. In what follows we describe the main GPE modules.

Visualization module - The GPE visualization module, named Hierarchical
Task Graph Visualization Tool (HTGViz), displays compiler analysis (paral-
lelism detection) results and provides facilities to navigate and correlate differ-
ent information about the application parallelism discovered by the compiler.
HTGV1z offers three views of the application, that are hereafter described.

The HTG Visualization View is the main interface where HTGs of program
subroutines are drawn. It allows to navigate through the HTG structure across
hierarchy levels by means of a task expanding/collapsing facility. This feature
simplifies HTG navigation when the program size and complexity increases.

The Program Code View illustrates the code in textual format. The interface
shows the correspondence between program statements and HTG nodes during
all user actions, like HTG navigation and directive insertion.

The Vars View shows, for each task node, the list of variables used (read/
written) and their occurrences in the program. This helps the programmer in
detecting variables to privatize or share in OpenMP parallel sections and loops.

Modification modules - The Program transformation module supports the set
of loop transformations more frequently used by POP users during the experience
in OpenMP programming, i.e loop interchange, blocking and coalescing [10].

Transformation capabilities are based on graph-manipulation with the possi-
bility to choose different equivalent patterns. The module implements checks on
transformation applicability and inputs mainly based on data and control depen-
dence analysis. If the compiler detects constraint violations the transformation
is forbidden; otherwise the system allows the programmer to apply it.

The OpenMP editing module is a GPE extension providing an easy-to-use edi-
tor, based on graph manipulation, to assist users in inserting/modifying OpenMP
annotations. The module allows to restructure and overwrite parallelism specifi-
cation in terms of directives during compilation, before parallel code generation.

The editing tool partially automatizes the task of OpenMP directive inser-
tion/modification. It assists the user in generating well-formed directives offering
commands for fast pre-formatted editing operations. Upon directive insertion, a
form-like interface is prompted for the input of clauses and their arguments: it



4 M. Giordano, M. Mango Furnari

displays the variables used (read/written) in the code enveloped by the direc-
tive. This information is useful to set variables as private or shared in the parallel
threads. The tool performs directive applicability checks and syntax control.

The Program versioning module supports the tracking and re-using of in-
termediate versions during program development. Each code modification or
OpenMP editing is saved in a program new version. The module maintains a
history of program versions that can be navigated back and forth.

After the generation of the multithreaded binary and its execution, program-
mers may use runtime performance analysis information to restart application
tuning from an intermediate version. To this aim the versioning module has a
facility to store/reload program versions and history in/from a “project file”.

4 Conclusions

The main novelty of GPE is its design as an extensible environment to support
the incremental development cycle of OpenMP programs. At each round of the
cycle, the user interacts with the compiler to tune the detected parallelism ac-
cording to his knowledge of the application. GPE is extensible since new modules
and tools can be implemented and plugged-in the GPE core to offer new func-
tionalities, like modules supporting new analysis and transformation techniques.
Experiences of GPE usage in parallelizing OpenMP applications from NAS
and SPEC95 benchmarks proved that performance measurements and trace data
analysis are crucial to identify sources of performance drawbacks and to further
improve program parallelization in next compilation steps. The Program ver-
stoning module was developed and integrated in GPE to facilitate this task.

References

1. Banerjee, U.: Dependence analysis for supercomputing. Kluwer Academic Publish-
ers, (1988)

2. Girkar, M., Polychronopoulos, C.D.: The hierarchical task graph as a universal
intermediate representation. Int. J. Parallel Programming 22 (1994) 519-551

3. Hall, M.W., et al.: Interprocedural Compilation on Fortran D. Journal of Parallel
Distrib. Comput. 38(2) (1996) 114-129

4. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis for parallelizing com-
pilers. ACM Trans. on Programming Languages 18 (1996) 477-518.

5. Hall, M.W., et al.: Experience Using the ParaScope Editor. Proc. of Symp. Prin-
ciples and Practice on Parallel Programming (1993)

6. Liao, S., et al.: Suif explorer: An interactive and interprocedural parallelizer. Proc.
of Symp. on Principles and Practice of Parallel Programming (1999)

7. Martorell, X., et al.: A Library Implementation of the Nano-Threads Programming

Model. Proc. of the 2nd Intern. Euro-Par Conf. (1996) 644-649

Omni OpenMP compiler project. http:/phase.hpcc.jp/0Omni/

9. POP Esprit Project IST 2001-3307: Performance Portability of OpenMP.
http://www.cepba.upc.es/pop

10. Wolfe, M.: High performance compilers for parallel computing. Addison—Wesley
Publishing Company (1995)

®



