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Abstract. We investigate all possible combinations of re-ordering of
read and write instructions and their effects on the correctness of pro-
grams that are designed for sequential consistency. With certain com-
binations of re-orderings, any program that accesses shared memory
through only reads and writes and that is correct assuming sequential
consistency, can be transformed to a new program that does not use any
explicit synchronization, and that remains correct in spite of the instruc-
tion re-ordering. With other combinations of re-ordering, such transfor-
mations do not exist, without resorting to explicit synchronization.

1 Introduction

Designers of concurrent algorithms typically assume sequential consistency, a
consistency model that is formalized by Lamport [11]. Sequential consistency
requires that memory operations of all processors appear to be “executed in some
sequential order, and the operations of each processor appear in this sequence
in the order specified by its program” (program order). Sequential consistency
is intuitive, but disallows many possible hardware and software optimizations.

Adve and Gharachorloo [1] identify several optimization techniques that
cause instructions to be re-ordered so that they appear to execute out of program
order. This is called instruction re-ordering. Write buffers with read bypasses,
overlapping writes, non-blocking reads, and optimizing compilers can lead to all
forms of instruction re-ordering. They also cite many commercial multiproces-
sors that utilize instruction re-ordering, such as the AlphaServer 8200/8400,
Cray T3D/T3E, and SparcCenter 1000/2000 (See Figure 1). Other examples
include the Java Virtual Machine (JVM), IBM PowerPC, Intel Itanium, and
.Net. Instruction re-ordering aims at improving the system’s performance but it
relaxes sequential consistency, making the job of programming multiprocessors
even harder.

Multiprocessor machines that incorporate instruction re-ordering are also
equipped with more powerful instructions than reads and writes, such as read-
modify-write and memory barrier instructions. These synchronization primitives



Architecture write-read |write-write| read-write | read-read
re-ordering|re-ordering|re-ordering|re-ordering
IBM 370 [1] Vv
SPARC TSO [14, 7] Vv V [10]
SPARC PSO [14, 7] Vv Vv Vv [10] v [10]
SPARC RMO [14, 5] Vv Vv Vv Vv
IBM PowerPC [2] Vv Vv Vv Vv
DEC Alpha [3, 5] Vv Vv Vv Vv
JVM [12, 6] v v v v
Intel Itanium[9] Vv Vv Vv Vv
Net [13] v v v v

Fig. 1. Examples of some commercial systems that utilize instruction re-ordering

can be used to enforce orderings on instructions that otherwise might be re-
ordered causing incorrect computation. Using these powerful instructions, how-
ever, is expensive; excessive use can result in inefficient implementations, possibly
defeating the purpose of instruction re-ordering altogether.

Other related studies (see the full version of the paper for a bibliography [8])
provide programming strategies for high performance multiprocessors most of
which rely on the wise usage of synchronization.

2 Summary of Results

We assume that multiprocessors are coherent [4], requiring execution order to
maintain program order of instructions applied to the same memory location. If
a read of one memory location precedes in program order a write to a different
memory location and this read appears after this write in execution order, this is
called read-write re-ordering. Reordering types write-read, write-write, and read-
read are defined similarly. Call a shared memory multiprocessor program whose
shared memory cousists of only atomic locations (that is, variables that support
only read and write instructions) a (read/write) multi-program. The fundamental
question guiding this work is:

Under what conditions is there a general transformation that transforms
any read/write multi-program that is correct under sequential consis-
tency to another read/write multi-program that is still correct in spite
of possible instruction re-ordering?

Such a transformation is called a read/write transformation and constitutes
inserting only additional read and write operations to a given read/write multi-
program, which solves some problem P under sequential consistency, but without
altering its original semantics. Hence, the transformed multi-program is also a
read /write multi-program. The purpose of these additions is to restore program
order and maintain sequential consistency in spite of instruction re-ordering.



Hsingle type H two combinations H three combinations H

read-read +/||read-read, write-write +/||read-read, write-write, write-read x
write-write /|| read-read, read-write X | read-read, write-write, read-write X
read-write /|| read-read, write-read X || read-read, write-read, read-write X
write-read +/||read-write, write-read /||write-write, read-write, write-read /
write-write, write-read /
write-write, read-write /

Fig. 2. Summary of results

Since the semantics of the original program are maintained, the transformed
program still solves problem P.

The results of this investigation are summarized in Figure 2. The possibilities
(represented by /) in Figure 2 indicate the existence of a general read/write
transformation for any sequentially consistent program to a program that is still
correct in spite of the indicated instruction re-ordering combination.

The impossibilities of Figure 2 (represented by X) indicate that there is no
general read/write transformation for the indicated combinations of instruction
re-ordering. That is, any read/write transformation fails to transform at least one
multi-program that is known to be correct for sequential consistency. Such gen-
eral transformations for the indicated combinations of instruction re-orderings
must augment the specified program with explicit synchronization operations.

More precisely, let A be an arbitrary read/write multi-program that solves a
problem P, under sequential consistency. The results of our research are:

1. For any combination of re-ordering types that excludes read-read re-ordering,
there exists a read/write transformation, which transforms A to a read/write
program A’ that solves P in spite of the re-ordering. The transformation is
general; it is correct for any read/write multi-program under any combina-
tion of read-write, write-read, and write-write re-orderings.

2. The exclusion of the read-read re-ordering is sufficient but not necessary.
For any combination of read-read and write-write re-ordering only, such a
read /write transformation still exists.

3. If both read-read and read-write (or both read-read and write-read) re-
ordering combinations are possible, there is no general read/write trans-
formation. Any correct general transformation must use stronger operations
than reads and writes, such as read-modify-write and memory barrier in-
structions, for at least some programs.

3 Conclusion

The transformations we used are simple and general; they can be applied to any
read /write multi-program that is correct for sequential consistency. They are also
optimal for general transformations — these that apply to any multi-program
that is correct for sequential consistency. However, optimality for general trans-
formations does not necessarily imply optimality for individual multi-program



instances. When given a fized instance, it may be possible to apply further
optimizations that exploit information from the given multi-program and the
problem it solves. Such information (from both programs and problems) is un-
available to general transformers.

Our results imply that the IBM PowerPC, DEC Alpha, JVM, and SPARC

TSO, PSO, and RMO (Figure 1) require the use of explicit synchronization in
order to solve certain problems. Hence, one of our future research directions is to
augment the target program with memory barrier instructions and to minimize
the number of such instructions.
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