
A New RAID-Disk placement method
for Interactive Media Server

with an Accurate Bit Count Control

Yo-Won Jeong, Seung-Ho Lim, and Kyu-Ho Park

Computer Engineering Research Laboratory,
Korea Advanced Institute of Science and Technology,

Daejon 373-1, Republic of Korea,�
ywjeong, shlim, kpark � @core.kaist.ac.kr

Abstract. In this paper, we propose a RAID-disk placement algorithm of coded
video data and an efficient disk prefetching method to increase the number of
clients who can be serviced interactive operations in the media server. Our place-
ment policy is incorporated with a special bit count control method that is based
on repeated tuning of quantization parameters to adjust the actual bit count to
the target bit count. The encoder using this method can generate coded frames
whose sizes are synchronized with the RAID �������
	��
������� , so that when various
fast-forward levels are accessed we can reduce the seek and rotational latency and
enhance the disk throughput.

1 Introduction

On-demand interactivity means that users can freely interact with the media server be-
cause video streams have extremely large data size, the high data retrieval bandwidth is
required to support the interactivity to many users.

Generally, disk array technology is employed in multimedia server to provide the
high disk bandwidth and satisfy real-time IO requirements [3][4][6]. In the disk array,
disk striping is done by dividing the video data into blocks and storing these blocks into
different disks. While storing these blocks into different disks, the proper placement
algorithm should be considered in disk array to efficiently support the retrieval of such
streams at different interactivity. X. Huang [3] studied the rate staggering method for
scalable video in a disk array based video server. This method can reduce the buffer
space and achieve better load balancing, but their allocation method did not consider
the precise disk stirpe management and scalable encoding technique so that rate stag-
gering method hardly apply to the real disk array. Shenoy [6] used the disk array to
support the interactive operations in multi-resolution video. They present an encoding
technique combined with placement algorithm to efficiently support interactive scan
operation. Their variable-size block placement can reduce additional disk requests, but
its management is very difficult in disk array.

In this paper, we propose an efficient placement algorithm to support the interac-
tivity in media server, and develope the adaptive prefetching algorithm considering the

1 2 3 4 5 6 7

P
P
P
P

BB
BB
BB
BB

BB
BB
BB
BB

I
I
I

I
I
I
I

IP
P
P
P

BB
BB
BB
BB

P
P
P
P

P
P
P
P

BB
BB
BB
BB

BB
BB
BB
BB

BB
BB
BB
BB

I
I
I

I
I
I
I

I

Disk No.

Video i

Video j

Fig. 1. Proposed Placement Algorithm for Interactive Media Server on Disk Array. Let the GOP
structure be

�
IBBPBBPBB �

interactive operation. We have set up real interactive media server using SCSI disk ar-
ray and linux operating system. Our placement policy is incorporated with an special
bitcount control method, called ����������������� �"!$#%�'&(�*),+'-.!/����0 , that repeatedly tunes
quantization parameters to adjust the actual bit counts of video frames to the given tar-
get bit counts. The encoder using this method can generate coded frames whose sizes
are synchronized with the RAID 120*3��54��612�*78� , so that when various fast-forward lev-
els are accessed we can reduce the seek and rotational latency and enhance the disk
throughput of each disk in the RAID system.

The rest of the paper is organized as follows. In Section 2, we present the efficient
placement algorithm and the adaptive prefetching algorithm. The proposed encoding
technique is presented in Section 3. In Section 4, we present performance results of our
placement algorithm and encoding technique.

2 Efficient Placement for Interactive Operation

2.1 Placement Policy on Disk Array

In general, MPEG video stream consists of GOP (Group of Picture)s, and each GOP
is represented as a sequence of I-, P- and B-frames. For example, if a GOP structure
is 9 IBBPBBPBB : , the next-level fast-forward scan could be 9 IPPIPP.. : which is not
include any B-frames, and the next one is 9 II.. : without any P-frames, and so on. Each
sub-sequence for each fast-forward level accessed during a round is required to retrieve
together from disks so that more client’s real-time playbacks are guaranteed.

When server employs disk array to store the video streams, the server interleaves the
storage of each video stream among disks in the array. The amount of data interleaved
on a single disk, denoted as 120*3/�54;�"12�*7(� , is fixed when the disk array is configured. In
that environment, to minimize the seek and rotational latency incurred by the requests,
the same types of frame accessed during a round are in the same disks, and the dif-
ferent types of frame are stored in adjacent disks. However, the video streams made
from conventional encoder do not have fixed frame size which is opposite to the fixed
1�0*3/�54;�<12��7(� . It causes the additional disk requests at different fast-forward levels be-
cause frames are spread over more disks. Therefore, the special encoding technique is
required to apply our placement policy. We will describe it in next section. Using this

special encoder, we can make the size of coded each I-, P- and B-frame is twice, same
and half as the 120*3��54��=1��*7(� . Then, the GOP is stored as each I-, P- and B-frame con-
sumes two, one, half stripes on disk array, and the next GOP is stored in next stripe level
on disk array, and so on, as shown in Figure 1. At normal playback, the server should
be retrieved from all disk array with evenly distributed number of frames. For > -level
fast-forward, the server can skip every > -th disk to play out the video streams because
the required frames to play fast-forward are separated beyond the disk boundaries. No-
tice that we can change the starting disk of the next video content for the load balancing
of disk requests as shown in Figure 1.

2.2 Stream Classification

If streams stored by the above placement policy like Figure 1 have same frame rate,
they have 1�&(-.�@?���0*3/&(0A� because all stripe sizes of the RAID system are fixed. However,
because many tpyes of streams, having big picture size, small picture size, high quality
or low quality, can be stored in one RAID system, the limitation of same bitrate of all
steams is a serious weak point in our placement policy. To relieve this limitation, we
purpose the stream classification as follows;

– Class A, the class of streams having high bitrate: Each I-, P- and B-frame consumes
four, two and one consecutive stripes respectively. We set the ratio of bit count of
I-, P- and B-frame is 4:2:1 because this ratio generally obtains best video quality
[2].

– Class B, the class of streams having middle bitrate: Each I-, P- and B-frame con-
sumes two, one and half consecutive stripes respectively. The ratio of bit count of
I-, P- and B-frame is also 4:2:1. Therefore, the bitrate of this stream is BC&D)�# of the
stream of Class A.

– Class C, the class of streams having low bitrate: One I-frame consumes one stripe,
but P-frames and B-frames cannot be synchronized with the stripe size. The ratio
of bit count of I-, P- and B-frame cannot be same as other class. In this case, we
cannot have gain for the fast-forward operation that I- and P-frames are scaned, but
we still have gain for the fast-forward that only I-frames are accessed.

The placement of each frame in the RAID system is shown in Figure 2. In the stream
of Class C, all I-frames consumes one stripe. For this, the sum total of sizes of P- and
B-frames in one GOP is a multiple of the stripe size as shown in Figure 2-(c). the ratio
of bit count of P- and B-frame has to be closest to 2:1. Therefore, To get the target bit
counts of P- and B-frame, first, solve Equation (1) and (2), and select integer values
closet to above solution satisfying Equation (2).

EGFIH�FKJLE6M@H�MON �QP RS�UT5VXWZY;[(V\T^]ST`_Za@T^b(]Sa2cZa2d (1)

H F
e H M Ngf
(2)

Where
E6F

and
E6M

are the numbers of P- and B-frames in one GOP, and
HhF

and
H�M

are the target bit counts of P- and B-frames. P is the stripe size.

Disk

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

...

...

...

One

Stripe

I

I

I

I

B

B

P

P

B

B

P

P

B

B

P

P

B

B

I

I

I

I

B

B

P

P

B

B

P

P

B

B

P

P

B

B

(a)

Disk

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

...

...

...

One

Stripe

I

I

BB

P

BB

P

BB

P

BB

I

I

BB

P

BB

P

BB

P

BB

I

I

BB

P

BB

P

BB

P

BB

I

I

BB

P

BB

P

BB

P

BB

(b)

I

Disk

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

...

...

...

One

Stripe

I

BBP

PBBP

PBBP

PBB

BBP

PBBP

PBB

I

I

BBP

PBBP

PBBP

PBB

BBP

PBBP

PBB

I

I

BBP

PBBP

PBBP

PBB

BBP

PBBP

PBB

I

I

BBP

PBBP

PBBP

PBB

BBP

PBBP

PBB

(c)

Fig. 2. The position of each frame of a stream: (a) Class A; the GOP structure is�
IBBPBBPBBPBB � . (b) Class B; the GOP structure is

�
IBBPBBPBBPBB � . (c) Class C; the

GOP structure is
�
IBBPBBPBBPBB � or

�
IBBPBBPBB � .

In Figure 2-(c), The GOP structure alternates 9 IBBPBBPBBPBB : and 9 IBBPBBPBB : .
In the 9 IBBPBBPBBPBB : case, Equation (1) can be expressed as

i H F Jkj8H M Nml Pon (3)

If we set stripe size P to be 32KBytes, the solution of Equation (3) and Equation (2) is

H�pF Nrq�fZj e8sutwv�x]�a2VyR H�pM N{z$l e8sutwv�x]Sa2V@n (4)

Therefore, The target bit counts of P- and B-frame, which are the integer values closest
to Equation (4) and satisfying Equation (3) are

H�F|N}q2j s fZj v@x]�a2V~R H�MON{� i zCq v�x]Sa2V@n (5)

Note that the ratio of bit count of I-, P- and B-frame is 4:2.29:1.14. By the same way,
in the 9 IBBPBBPBB : case, The target bit counts of P- and B-frame are

H�F|N}q2�8zZz(f v@x]�a2V~R H�MON{�Zj i8� v�x]Sa2V@n (6)

The ratio of bit count of I-, P- and B-frame is 4:2.4:1.2. In both cases, The bit count
ratios of frames do not large deviate from the ratio of Class A or B.

2.3 Per-Disk Prefetching Method

In general system, when the server retrieves data from disks, consecutive frames are re-
trieved ahead with the currently requested frames to increase disk throughput. We call
these frames are prefetch frames or requests. Because the prefetching requests incur

I I P BB PBB I I . . .

File System

Conventional Buffers

RAID Device Driver

mis−prefetched data

I I PBB BB P BB

(a)

File System

RAID Device Driver

Per−Disk Buffers

I I
P

I
PP P

I I I I
. . .

. . .

I I PBB BB P BB

(b)

Fig. 3. Per-Disk Prefetching and Buffer Management; An example of Class B stream and X2 fast-
forward operation. The light gray and dark gray represents well-prefetched data mis-prefetched
data, respectively.: (a) Conventional prefetching requests, (b) Proposed per-disk prefetching re-
quests

Adjust QPs

Motion estimation

/ compensation
 DCT
 VLC
Quantization

IDCT
 Inverse

Quantization

Stored for

next frame

Compare
Updated

QPs

Input

Frame

Encoded

Frame

R-QVLC

Fig. 4. The conceptual procedure of the R-QVLC scheme.

more data transfer and buffer space, it is important that proper amount of frames are re-
trieved. The conventional prefetching requests are generated across disk array, as shown
in Figure 3-(a) because file system only know about the logically continuous allocation
of video files. It causes prefetching requests make unnecessary data (B-frames) retrieval
for fast-forward plays and would be overhead.

We propose the generation of prefetching requests for per disk, as shown in Figure
3-(b). When current request are retreived from one disk, our file system generates the
prefetching requests to retrieve more data from the 1�&(-.���8�A1/�h��!/0;!/0\B;��3
�8�*1/�,1 . We call
this method 4��23 - �Z�A1/��4;3/��# ��0A��BC��� �6-��20\B;!�� . Because our placement policy separates
the other frame types to other disks, the per-disk prefetching requests do not generate
any unnecessary requests. Note that the per-disk prefetching method can be appliable
to other class streams.

3 Accurate Bit count Control

In order to establish our placement policy, bit counts of all frames can be accurately
controlled. However, conventional bit count control schemes cannot satisfy this require-
ment because of rate-distortion modeling errors and buffer controls for enhancing the
subjective video quality [5]. We propose a method that exactly fixes each bit count of
coded frames into given target bit count.

3.1 Fine Tuning of Tail Amount

Our bit count control method does not modify the process of the conventional encoding
but work as a post-processing process after every one frame is encoded. If the actual

Test Rate Con- Avg. Encoding
sequence trol Method PSNR(dB) Time(s)
Mobile Conventional 27.50 116.6

FTTA 27.13 140.1
Susie Conventional 42.41 127.6

FTTA 42.38 158.9
Table 1. The Average PSNR and Encoding Time

bit count of the coded frame is not equal to the target bit count, we pause the encoding
process and start to adjust quantization parameter (QP)s of macroblock (MB)s. Figure
4 shows the conceptual procedure of proposed bit count control scheme. We will call
this scheme repeated-quantization and variable length coding (R-QVLC). If the actual
bit count is lower (or higher) than the target bit count, we increase (or decrease) QPs of
appropriate MBs, and carry out QVLC in these MBs, and repeat this process. Detailed
algorithm is called #�������0*������� ��!$#w0A&(�*)(&(-�!/�;��0 (�����"+). There are three stages, rate-
decreasing stage, rate-increasing stage and fine-tuning stage. If actual bit count or AB
is bigger than the target bit count or TB, we start the rate-decreasing stage, otherwise,
the rate-increasing stage.

In the rate-decreasing stage, we increase some QPs by 1 and perform the QVLC.
After that, if AB is still bigger, we increase the number of adjusted MBs or BN by 0*���*���
for making AB approach to TB more fast. We repeat this process until AB becomes
equal to or small than TB.

In the rate-increasing stage, the process is similar to the rate-decreasing stage except
that QPs decrease by 1 instead of increase. In this stage, if AB becomes bigger than TB,
we translate the fine-tuning stage.

In the fine-tuning stage, we restore QPs to previous values and, at this time, decrease
BN by B;&D)�# for fixing AB into TB. After that, we goto the rate-increasing stage.

Note that the direction of adjusting MB is the reverse of encoding direction.

4 Performance Evaluation

To evaluate our proposed methods we have developed the prototype interactive media
server with real disk array storage system and prototype MPEG-2 encoder in Linux
operating system. We implement a system for only Class B streams, but these results
can be applied to other class.

First, we describe about the FTTA method. We use the MPEG-2 codec provided by
the MPEG Simulation Group [2]. Encoding system consists of Pentium 4 3GHz CPU
and 1GB main memory. We use ’Mobile’ and ’Susie’ sequences with 100 frames. The
frame size and rate are 720x480 pixels and 30 frames/s respectively. When we encode a
source stream, we set the GOP structure to 9 IBBPBBPBB : and bitrate to 6Mbps. The
default rate control method provided by the MPEG-2 codec is used as the conventional
rate control. When we apply the FTTA, we set the target bitcounts of I-, P-, and B-frame
to 512, 256 and 128Kbits for making constant bitrate of 6Mbps.

0

100

200

300

400

500

7
 16
 25
 34

0

100

200

300

400

500

7
 16
 25
 34

Frame number

B
it

co
un

t (
kb

its
)

0

100

200

300

400

500

7
 16
 25
 34

Frame number

0

100

200

300

400

500

7
 16
 25
 34

Frame number

B
it

co
un

t (
kb

its
)

Frame number

(a) Conventional rate control for "Mobile"
 (b) FTTA for "Mobile"

(c) Conventional rate control for "Susie"
 (d) FTTA for "Susie"

Fig. 5. The generated bit count of each frame

Figure 5 shows the encoding results for the two test sequences. +')�) the generated
bit counts by the proposed method are �/�/� &() to the target bit counts. Average PSNRs
and encoding time are summarized in Table 1. We can see that average PSNR is de-
graded by the FTTA (0.37 dB for ’Mobile’ and 0.03 dB for ’Susie’) because the FTTA
tries to fix bit count into target bit count without considering the rate-distortion char-
acteristics. However, this PSNR degradation shown in Table 1 is acceptable. In Table
1, encoding time increases by the FTTA because the FTTA is post-processing process
after a conventional encoding process. These additional processing times are cost for
accurate bit count control. Next, we have evaluated the placement policy and per-disk
prefetching method. The evaluation environment is as follows. The server system con-
sists of 2.4GHz intel Pentium 4 CPU, 512MB main memory and disk array with seven
SCSI disks, model ST318304FC. The stripe size is set to be 32KB. Each client access-
ing the randomly selected video stream retrieves the frame-sequence with at a normal
playback of 30 frames/s. The performance metric is average service time for one round
playback duration as the number of clients increases. We have experimented with mixed
fast-forward levels by varying the ratio between fast-forward levels. As shown in Fig-
ure 6-(a) and 6-(b), as the number of users increases, our placement policy, denoted as
MSR (Media Synchronized RAID), gives better performance because of reducing the
disk requests. Moreover, the average service time retrieved from disk in our placement
policy with the per-disk prefetching method is much smaller than others which use con-
ventional prefetching method. This is because per-disk prefetching method retrieves

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 S
er

vi
ce

 T
im

e(
m

se
c)

Number of Clients

Conventional
MSR

MSR with Per-Disk Prefetch

(a)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 S
er

vi
ce

 T
im

e(
m

se
c)

Number of Clients

Conventional
MSR

MSR with Per-Disk Prefetch

(b)

Fig. 6. Average Service Time for mixed fast-forward level: (a) X1 : X2 : X4 = 50 : 30 : 20, (b) X1
: X2 : X4 = 70 : 20 : 10

the current frame-sequence together with the near future frame-sequence in same disk
request.

5 Conclusion

In this paper, we have presented an interactive media sever with media synchronized
RAID storage system. We have proposed a placement algorithm and per-disk prefetch-
ing method to effectively support the interactive operation in media server. By doing
this, when various fast-forward levels are accessed, we can reduce the seek and rota-
tional latency and enhance the disk throughput of disks. We also propose a stream clas-
sification scheme for applying our placement algorithm into various types of streams.
Our placement policy can be implemented with the proposed FTTA encoder. Though
this encoder spends more time on encoding and yields small quality degradation, it can
generate the coded video stream which is ���D�����C���/���*�8�/� with the RAID stripe size, so
that we can significantly enhance the disk throughput and the average service time for
each client connection as shown in our experimental results.

References

1. S. Lim, Y. Jeong, K. Park. Interactive Media Server with Media Synchronized RAID Storage
System. In Proceedings of ACM NOSSDAV 2005, June 2005

2. Mpeg software simulation group: encoder/decoder. Version 1.1a, 1996.
3. X. Huang, C. Lin, and M. Chen. Design and performance study of rate staggering storage

for scalable video in a disk-array-based video server. In IEEE Transaction on Consumer
Electronics, 50(4):1119–1129, Nov 2004.

4. R. Katz, G. Gibson, and D. Patterson. Disk system architectures for high performance com-
puting. In Proceedings of the IEEE, 77:1842–1858, Feb 1989.

5. J. Kwon and J. Kim. Adaptive video coding rate control for better perceived picture quality.
Proc. of APCC2003, Sep 2003.

6. P. Shenoy and H. M. Vin. Efficient support for interactive operations in multi-resolution video
servers. ACM Multimedia Systems, 7(3), 1999.

