
A Parallel O(n27n/8) Time-memory-processor Tradeoff
for Knapsack-like Problems

Li Ken-Li1,2, Li Ren-Fa1, Yang Lei1, Zhou Yan-Tao1

1 School of Computer and Communication, Hunan University,
Changsha, 410082, China

{jt_lrf, jt-yl, jt_zyt}@hnu.cn
2 Department of Computer Science, University of Illinois at Urbana-Champaign,

 Champaign, 61801,USA
kenlili@uiuc.edu

Abstract. A general-purpose parallel three-list four-table algorithm that can
solve a number of knapsack-like NP-complete problems is developed in this
paper. Running on an EREW PRAM model, The proposed parallel algorithm
can solve this kind of problems of size n in O(n29n/20) time, with O(213n/40)
shared memory units and O(2n/10) processors, and thus its time-space-processor
tradeoff is O(n27n/8). The performance analysis and comparisons show that the
proposed algorithms are both time and space efficient, and thus is an improved
result over the past researches. Since it can break greater variables knapsack-
based cryptosystems and watermark, the new algorithm has some cryptanalytic
significance.

1 Introduction

Every NP-complete problem can be solved in O(2n) time by exhaustive search, but
this complexity becomes prohibitive when n exceeds 70 or 80. Assuming that NP P,
we cannot hope to find algorithms whose worst-case complexity is polynomial, but it
is both theoretically interesting and practically important to determine whether sub-
stantially faster algorithms exist. In this paper we describe a parallel algorithm which
can solve the knapsack problem. But owing to the work done by Schoreppel and
Shamir [1], our proposed algorithm actually can solve a fair number of NP-complete
problems including knapsack, partition, exact satisfiability, set covering, hitting set,
disjoint domination in graphs, etc, which can be related by the composition operator
[1]. Although the proposed algorithm is a versatile algorithm, to make this algorithm
more easily be understood, we only take the knapsack problem as the representative
to narrate this algorithm.

≠

Given n positive integers W = (w1, w2, ..., wn) and a positive integer M, the knapsack
problem is the decision problem of a binary n-tuple X = (x1, x2, …, xn) that solves the

equation: ＝ M. This problem was proved to be NP-complete. Solving the

knapsack problem can be seen as a way to study some large problems in number

∑
=

n

i
ii xw

1

theory and, because of its exponential complexity, some public-key cryptosystem are
based on it [2-3]. Branch and Bound algorithms were proposed, but the worst case
complexity is still O(2n) [4]. A major improvement in this area was made by
Horowitz and Sahni [4], who drastically reduced the time needed to solve the knap-
sack problem by conceiving a clear algorithm in O(n2n/2) time and O(2n/2) space. It is
known as the two-list algorithm. Based on this algorithm, Schrowppel and Shamir [1]
reduced the memory requirements with the two-list four-table algorithm which needs
O(2n/4) memory space to solve the problem in still O(n2n/2) time. Using unbalanced
four tables, an adaptive algorithm is presented in [5], which can solve the knapsack-
like problems according to the available computation source. Although the above
algorithm is by far the most efficient algorithm to solve the knapsack problem in
sequential, it can not solve any instances where the size n is great.

With the advent of the parallelism, much effort has been done in order to reduce
the computation time of problems in all research areas [6-14], most of which are
based on CREW (concurrent read exclusive write) PRAM (parallel random access
machine) model. Karnin [6] proposed a parallel algorithm that parallelizes the genera-
tion routine of the two-list four-table algorithm. In his algorithm the knapsack prob-
lem could be solved with O(2n/6) processors and O(2n/6) memory cells in O(2n/2) time.
The algorithm proposed by Amirazizi and Helman [7] runs in O(n2 α n) time,
0 ≤≤α 1/2, by allowing O(2(1-α)n/2) processors to concurrently access a list of this
same size. They also present a more feasible Time-Space-Processor (TSP) model for
evaluation of performance of different algorithms for the solution of knapsack-like
NP-complete problems [7]. Ferreira [8] proposed a parallel algorithm that solves the
knapsack problem of size n in time T = O(n(2n/2)), 0ε ≤≤ ε 1, when P = O((2n/2))
processors S = O(2

ε−1

n/2) memory units are available. Chang et al. [9] presented another
parallel algorithm where the requirement of the sharing memory is O(2n/2) by using
O(2n/8) processors to solve the knapsack problem still in O(2n/2) time. Thereafter,
based on Chang et al.’s parallel algorithm, Lou and Chang [10] successfully parallel-
ize the second stage of the two-list algorithm. Regretfully, it is independently found in
[11] and [12] that the analysis of the complexity of the Chang et al.’s algorithm was
wrong. In addition to pointing out the wrong in literature [9], we also proposed a
CREW-PRAM cost-optimal parallel algorithm [11], and thereafter, a cost-optimal
algorithm without memory conflicts was further presented in [13]. It must be pointed
out that the space complexity is very important when solving the knapsack-like prob-
lems [6,15]. However, because the memories required in both of these two cost-
optimal parallel algorithms are still O(2n/2), it make the available memory cells a bot-
tleneck when using these algorithms to break practical knapsack based cryptosystem.

Therefore, to further reduce the required memory units for the solution of this kind
of NP-complete problems, based on Ferreira’s CREW based parallel three-list algo-
rithm [14], we proposed a new parallel three-list four-table algorithm. The main
properties of the proposed algorithm are as follows:
(i) With this algorithm, we can solve knapsack-like problems in O(n29n/20) time,

O(213n/40) shared memory units when O(2n/10) processors are available. It results
in an O(n27n/8) TSP trade off, which is considerably better than those of all simi-
lar algorithms published so far.

(ii) It can be performed on an EREW (exclusive read exclusive write) PRAM ma-
chine model, and thus is a totally without memory conflicts algorithm. Further-
more, the algorithm is completely practical in the sense that it is easy to program
and it can handle problems which are almost 1.5 times as big as those handled by
previous algorithms.

The rest of this paper is organized as follows. Section 2 explains the parallel three-
list algorithm, on which the proposed algorithm is based. The proposed parallel algo-
rithm is described in Section 3. Then, in Section 4, the performance comparisons
follow. Finally, some concluding remarks are given in Section 5.

2 The parallel three-list algorithm

In 1995, Ferreira presented a parallel three-list algorithm, which is based on a CREW
PRAM model [14]. The number of processor, time complexity, and space require-
ments in it are O(), , ,nβ2)2()2/1(nnO βε −−)2(2/nnO ε 10 << ε , 2/10 εβ −≤≤ ,
respectively. It is viewed as an important breakthrough in the research of knapsack-
like problems for it can solve the knapsack-like problems in a way of both time and
space effective [14]. Because our parallel algorithm is based on this algorithm, we
introduce it. To make it easy be understood, let the number of processors be O(2n/10).

Algorithm 1: The Three-list algorithm
Generation stage
1. Divide W into three parts: W1 = (w1,w2,…,w9n/20),W2 = (w9n/20 + 1,w9n/20 + 2,…,
w18n/20), W3 = (w18n/20 +1, w18n/20 + 2,…, wn).
2. Form all possible subset sums of W1, W2, then sorted them in an nondecreasing
order and store them as A = [A1, A2,…,

20
9

2
nA] and B = [BB1, B2B ,…,

20
9

2
nB], respec-

tively.
3. Form all possible subset sums of W3, and store them as C = [C1,C2,…,

102
nC].

Search stage
1. For all Ci in C where 1021 ni ≤≤
2. Ci execute the binary search over A + B:
3. If a solution is found: then stop, output the solution
4. If a solution cannot be found: then stop: output that there is no solution.

The time and space complexity of this algorithm are)2(2011nnO × and)2(209nO [14].
Based on its serial algorithm, Ferreira’s parallel algorithm is very direct. It runs on

a CREW model. The subset sums in list A and B which hold 2092 n subset sums re-
spectively are stored in the shared memory. And each processor Pi (Pi ≤≤1), which
holds the subset sum Ci, execute a “virtual” binary search on the list A + B to make
sure whether A[j] + B[l] = M – Ci is satisfied, 2092,1 nlj ≤≤ .The parallel three-list
algorithm consists of the following three main steps [14].

Algorithm 2: parallel three-list algorithm

for all Pi where 1021 ni ≤≤ do
1. Generation of the two lists A, B and C
2. Sorting of the two lists
3. Binary search over A + B

end
The time and space needed in this algorithm are)2(209nnO × and O(29n/20) [14].

3 The proposed parallel algorithm

Although Ferreira’s above algorithm is considered as a main breakthrough for the
researches on the knapsack problem, it still have an obvious shortcoming, i.e. the TSP
tradeoff is O(), which is greater than that of the recent parallel algorithms in
[11,14] by a factor n. To overcome this shortcoming, we redesign the two main stages
of the parallel three-list algorithm. In list generation stage, we introduce four tables to
produce two ordered list A and B dynamically. Doing so we can reduce the space
complexity from O(2

nn 2×

9n/20) to O(213n/40). While in list search stage, we replace the ma-
trix search way in [14] with the two-list like search algorithm, which is more simply
and can reduce the time needed by a factor O(n) in search stage.

In our proposed algorithm, each of the two lists stored in shared memory have a
size of O(29n/20), whose elements will be dynamically generated one by one, by using
only O(213n/40) shared memory units. Now consider the two stages of the algorithm.

3.1 The generation stage

Using the selection technique [14], Ferreira’s parallel search algorithm is subtle. For
it reduced the time needed otherwise for direct enumerating on the virtual list A + B
from O(29n/10) to O(n× 29n/20). However, it is a little complicated for it concerns the
search of “virtual” matrix [14]. Now we use the simply two-list like search to fulfill
the list search stage.

Suppose the two ordered list A and B exist before the following algorithm 3 exe-
cutes. We can use the following two-list like search algorithm to make sure that for
any C[k], 1021 nk ≤≤ whether exist A[i] and B[j], 2092,1 nji ≤≤ , such that the
formula A[i] + B[j] + C[k] = M can be satisfied.

Algorithm 3: parallel two-list like search algorithm
The subset sums in list A and B are sorted in increasing and decreasing order
for all processors Pk where 1021 nk ≤≤ do

1. i = 1, j = 1.
2. If A[i] + B[j] = M – C[k], then stop: a solution is found, and write the result

into the shared memory.
3. If A[i] + B[j] < M – C[k], then i = i + 1; else j = j + 1.
4. If i > 29n/20 or j > 29n/20 then stop: there is no solution.

5. Goto Step 2.
End
Lemma 1. Let all elements in list A and B are given, the time needed to perform

the algorithm 3 is at most 2× 29n/20.
Proof. The condition that the loop ends shows that once the variables i or j is

greater than 29n/20, the algorithm terminates. While for each computation step, the
value of one of the above two variables must increase by 1. So it is obvious that the
maximum of the needed time to perform the algorithm 3 is 2× 29n/20.

Compared with the Ferreira’s search algorithm [14], the search time needed here is
reduced by a factor O(n). But the space requirements do not increase.

3.2 The search stage

We discuss how to produce all elements of lists A and B stored in the shared memory.
Note that in list search algorithm 3, each processor accesses the elements of the sorted
lists A and B sequentially, and thus there is no need to store all the possible subset
sums of A and B simultaneously in the shared memory—what we need is the ability to
generate them quickly (on-line, upon request) in sorted order. So if we generate the
two ordered lists dynamically, the needed space will reduced greatly. To implement
this key idea, we explore the thoughts in [1] where four tables are used to dynami-
cally produce the two sorted lists. Use four tables T1, T2, and T3 , T4 to produce the
two sorted lists A and B, where T1 includes all possible subset sums of knapsack en-
tries (w1,w2,…,w9n/40), …, T4 includes all sums of (w27n/40 + 1,w27n/40 + 2,…, w36n/40). let e
= 29n/40, and mark Ti = (ti1, ti2, …, tie), i = 1,2,3,4. We first sort all sums in T1 in an
increasing order. Then use a priority queue Q1 which has a length of O(29n/40). At start,
Q1 stores all pairs of first (T1) and all elements t2i. It can be updated by two operations
deletion and insertion, which enables arbitrary insertions and deletions to be done in
logarithmic time of the length of the queue, and makes the pair with the smallest t1i +
t2j sum accessible in constant time. Through the efficient heap implementations of
priority queues [1], the following algorithm is designed to dynamically produce all
sums of T1 + T2 in an increasing order. For the processes to generate list A and B are
similar, we focus on the procedures on the process to generate list A.

Algorithm 4: algorithm for generating all sums of T1 + T2 dynamically
Tables T1 = (t11, t12, …, t1e), T2 = (t21, t22, …, t2e) are given
(1) sort T1 into increasing order;
(2) insert into Q1 all the pairs (first (T1), t2i) for all t2i∈T2;
(3) Repeat until Q1 becomes empty.

(t1, t2) ← pair with smallest t1 + t2 sum in Q1;
S1 ← (t1 + t2)
if S1 is needed and used for the objectivity of computation;
delete (t1, t2) from Q1;
if the successor t1

1 of t1 in T1 is defined,
insert (t1

1, t2) into Q1;

Lemma 2. One element in T1 + T2 can be produced in O(9n/40) time; while all
29n/20 elements can be dynamically generated in O(n29n/20) time with O(29n/40) shared
memory units.

Proof. According to the theory of heap [1], one time of deletion and insertion on
the heap can be performed with logarithmic time of the size of the heap. Since the
heap constructed in algorithm 4 has a size of 29n/40 and the combinations of T1 + T2
have 29n/20 elements. It validates the results of lemma 2.

To make the search algorithm perform successfully, we must prepare two queues
(heaps) for each processor. As a result, in parallel case, the shared memory must have
more memory units than that needed in sequential case.

Combine the above discussions into a whole; we get the final parallel three-list
four-table algorithm and an overall conclusion on the solution of knapsack-like NP-
complete problems.

Algorithm 5: An EREW based parallel three-list four-table algorithm
for all processors Pk where 1021 nk ≤≤ do
1. generate list C and four tables T1, T2 and T3, T4 and sort T1 and T3 in parallel.
2. construct one min heaps for queue Q1, and one max heaps for queue Q2.
3. perform algorithm 4.
4. perform two-list like search algorithm (algorithm 3).

end
Theorem 1. n-variable knapsack-like problems can be solved on EREW model in

O(n29n/20) time when O(2n/10) processors and O(213n/40) memory units are available.
Proof. Producing list C and tables T2 and T4 can be finished in n and 2n× 25n/40 time,

while tables T1 and T3 can be sorted in 4× 25n/40 time [13]. Each processor will take
2× 29n/40 time to construct two heaps. Following the lemmas 1 and 2, the total needed

time is:)2
40
9()

40
9(222422 20920n9405405 nnn nOnnn ×=××+×+×+ .

The linear factor has little impact on the time complexity and thus is usually omit-
ted [6-9,14]. So the time complexity of the proposed parallel algorithm is O(29n/20).
As for the space complexity, since there are 2n/10 processors, and each of them need
2× 29n/40 for the construction of heaps, the total space requirements is O(213n/40). To
avoid memory conflicts, at first, we copy the knapsack vector W and scalar M for
each processor, which doesn’t affect the overall complexity of the proposed algorithm.
Thereafter, each processor access and update its own heaps, so it is obvious that all
processors have no memory conflicts, and it can be performed on EREW PRAM
machine model.

4 Performance comparisons

For the importance of the space complexity [6,15], we adopt the time-space-processor
tradeoff (TSP tradeoff) [10], as the criterion of evaluation of relevant algorithms.

the TSP tradeoff of Karnin’s parallel algorithm is O(25n/6) [6]. The number of proc-
essor, time complexity, and the TSP tradeoff of Ferreira’s parallel three-list search

algorithm in [14] are O(2), O(), nβ nn)2/1(2 βε −− 2/10 εβ −≤≤ , and O(n2n), respec-

tively. The parallel algorithm [7] runs in O() time, 0nn α2 ≤≤α 1/2, by allowing
O() processors to concurrently access a list of this same size, hence the TSP
tradeoff of this algorithm is also O(n2

2/)1(2 nα−

n). Ferreira’s parallel one-list algorithm [8]
bears O(n2n) TSP tradeoff. The performance of Chang et al.’s parallel algorithm [9] is
T = O(2n/2), P = O(2n/8), and S = O(2n/2), thus results in a TSP tradeoff of O(29n/8). The
parallel algorithm Lou and Chang presented had a same performance as Chang et al.’s
algorithm. In addition, both of the algorithms in [11] and [13] have a TSP tradeoff of
O(2n). From our parallel three-list four-table algorithm, one can get a TSP tradeoff of
O(9n/40× 2n/10× 213n/40× 29n/20) = O(n27n/8).

Among all algorithms that have been published, the TSP tradeoff of Karnin’s algo-
rithm [6] is the lowest, which is O(n25n/6). However, it has an obvious defect that it
can’t reduce the execution time even in parallel. In spite of our proposed algorithm is
not cost optimal, it go further on the overall time and memory performance than
Ferreira’s parallel three-list algorithm did. Moreover, our algorithm is totally without
memory conflicts when different processors access the shared memory.

For the purpose of clarity, the comparisons of the main parallel algorithms pub-
lished by far for solving the knapsack-like problems are depicted in Table 1. It is
obvious that our parallel algorithm outtakes undoubtedly other parallel algorithms in
the overall performance.

Table 1. Comparisons of the parallel algorithms for solving the knapsack-like problems

Algorithm Model Processor Time Memory TSP tradeoff

1 [6] CREW O(2n/6) O(2n/2) O(2n/6) O(25n/6)

2[7] CREW O()2/)1(2 nα− O() nα2 O()2/)1(2 nα− O(2n)
3[14] CREW O() nβ2 O()n)2/1(2 βε −− O() 2/2 nε O(2n)
4[8] CREW O()2/)1(2 nε− O() 2/2 nε O(2n/2) O(2n)
5[9] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8)
6[10] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8)
7[11] CREW O((2n/4)1- ε) O(2n/4(2n/4) ε) O(2n/2) O(2n)
8[13] EREW O((2n/4)1- ε) O(2n/4(2n/4) ε) O(2n/2) O(2n)
Ours EREW O(2n/10) O(29n/20) O(2n/4) O(27n/8)

Notation: 0 ≤≤ ε 1, 0 ≤≤α 1/2, εβ −≤≤ 10 . The linear factor n in algorithms numbered by
1-6 and ours has been ignored for its little impact on the overall performance [6-9,14].

5 Conclusions

A new parallel three-list four-table algorithm for solving the knapsack-like problems
is presented. Through dynamically producing the elements of the two lists which is to
be searched in our two-list like search algorithm, we dramatically reduce the space
requirements from O(29n/20) in three-list algorithm in [14] to O(213n/40). Moreover, the

memory conflicts in [14] are also avoided by leave different memory address segment
for different processors, permitting the algorithm being able to perform on an EREW
machine model. Performance comparisons shows our proposed algorithm greatly
outweighs the parallel algorithms presented by far, and thus it is an improved result
over the past researches. To our knowledge it is the first time that the knapsack-like
problems can be solved without memory conflicts with less than O(2n/2) running time
when the hardware is also much smaller than O(2n/2). Since it can solve problems that
are almost 1.5 times as big as those handled by previous algorithms, it has some im-
portance in research of cryptosystem.

References

1. Schroeppel, R., Shamir, A. A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete
problems. SIAM J. Comput, 1981,10(3):456-464.

2. Chor, B., Rivest, R.L. A knapsack–type public key cryptosystem based on arithmetic in
finite fields. IEEE Trans. Inform. Theory, 1988,34(5):901-909.

3. Zhang, B., Wu, H.J., Feng, D.G, Bao, F. Cyptanalysis of a knapsack based two-lock crypto-
system. ACNS 2004, Lecture Notes in Computer Science, Vol. 3089. Springer-Verlag, Ber-
lin Heidelberg New York (2004) 303-309.

4. Horowitz, E., Sahni, S. Computing partitions with applications to the knapsack problem. J.
ACM, 1974,21(2): 277-292.

5. Li, K.L, Li,Q.H., Dai, G.M. An adaptive algorithm for the knapsack problem. Journal of
Computer Development and Research, 2004,12(7): 1024-1029.

6. Karnin, E.D. A parallel algorithm for the knapsack problem. IEEE Trans, Comput, 1984,
33(5): 404-408.

7. Amirazizi, H.R., Hellman, M.E. Time-Memory-Processor trade-offs, IEEE Transactions on
Information Theory, 1988,34(3):505-512.

8. Ferreira, A.G. A parallel time/hardware tradeoff HT ⋅ = O(2n/2) for the knapsack problem.
IEEE Trans. Comput, 1991,40(2):221-225.

9. Chang, H.K.-C., Chen, J.J.-R., Shyu, S.-J. A parallel algorithm for the knapsack problem
using a generation and searching technique. Parallel Computing, 1994,20(2):233-243.

10.Lou, D.C., Chang, C.C. A parallel two-list algorithm for the knapsack problem. Parallel
Computing, 1997,22(14): 1985-1996.

11.Li, K.L, Li Q.H., Jiang, S.Y. An optimal parallel algorithm for the knapsack problem. Jour-
nal of Software, 2003,14(5): 891-896. (in Chinese)

12.Aanches, C.A., Soma, N.Y., Yanasse, H.H. Comments on parallel algorithms for the knap-
sack problem. Parallel Computing, 2002,28(10): 1501-1505.

13.Li, K.L., Li, Q.H., Li, R.F. Optimal parallel algorithm for the knapsack problem without
memory conflicts. Journal of Computer Science and Technology. 2004,19(6): 760-768

14.Ferreira, A.G, Work and memory efficient parallel algorithms for the knapsack problem.
International Journal of High Speed Computing, 1995,7(4): 595-606.

15.Woeginger G.J. Space and time complexity of exact algorithms: some open problems. In: R.
Downey etc. Proceeding of IWPEC 2004, Lecture Notes in Computer Science, Vol. 3162.
Springer-Verlag, Berlin Heidelberg New York (2004) 281–290.

