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Abstract. A general-purpose parallel three-list four-table algorithm that can 
solve a number of knapsack-like NP-complete problems is developed in this 
paper. Running on an EREW PRAM model, The proposed parallel algorithm 
can solve this kind of problems of size n in O(n29n/20) time, with O(213n/40) 
shared memory units and O(2n/10) processors, and thus its time-space-processor 
tradeoff is O(n27n/8). The performance analysis and comparisons show that the 
proposed algorithms are both time and space efficient, and thus is an improved 
result over the past researches. Since it can break greater variables knapsack-
based cryptosystems and watermark, the new algorithm has some cryptanalytic 
significance. 

1   Introduction 

Every NP-complete problem can be solved in O(2n) time by exhaustive search, but 
this complexity becomes prohibitive when n exceeds 70 or 80. Assuming that NP P, 
we cannot hope to find algorithms whose worst-case complexity is polynomial, but it 
is both theoretically interesting and practically important to determine whether sub-
stantially faster algorithms exist. In this paper we describe a parallel algorithm which 
can solve the knapsack problem. But owing to the work done by Schoreppel and 
Shamir [1], our proposed algorithm actually can solve a fair number of NP-complete 
problems including knapsack, partition, exact satisfiability, set covering, hitting set, 
disjoint domination in graphs, etc, which can be related by the composition operator 
[1]. Although the proposed algorithm is a versatile algorithm, to make this algorithm 
more easily be understood, we only take the knapsack problem as the representative 
to narrate this algorithm. 

≠

Given n positive integers W = (w1, w2, ..., wn) and a positive integer M, the knapsack 
problem  is the decision problem of a binary n-tuple X = (x1, x2, …, xn) that solves the 

equation: ＝ M. This problem was proved to be NP-complete. Solving the 

knapsack problem can be seen as a way to study some large problems in number 
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theory and, because of its exponential complexity, some public-key cryptosystem are 
based on it [2-3]. Branch and Bound algorithms were proposed, but the worst case 
complexity is still O(2n) [4]. A major improvement in this area was made by 
Horowitz and Sahni [4], who drastically reduced the time needed to solve the knap-
sack problem by conceiving a clear algorithm in O(n2n/2) time and O(2n/2) space. It is 
known as the two-list algorithm. Based on this algorithm, Schrowppel and Shamir [1] 
reduced the memory requirements with the two-list four-table algorithm which needs 
O(2n/4) memory space to solve the problem in still O(n2n/2) time. Using unbalanced 
four tables, an adaptive algorithm is presented in [5], which can solve the knapsack-
like problems according to the available computation source. Although the above 
algorithm is by far the most efficient algorithm to solve the knapsack problem in 
sequential, it can not solve any instances where the size n is great. 

With the advent of the parallelism, much effort has been done in order to reduce 
the computation time of problems in all research areas [6-14], most of which are 
based on CREW (concurrent read exclusive write) PRAM (parallel random access 
machine) model. Karnin [6] proposed a parallel algorithm that parallelizes the genera-
tion routine of the two-list four-table algorithm. In his algorithm the knapsack prob-
lem could be solved with O(2n/6) processors and O(2n/6) memory cells in O(2n/2) time. 
The algorithm proposed by Amirazizi and Helman [7] runs in O(n2 α n) time, 
0 ≤≤α 1/2, by allowing O(2(1-α )n/2) processors to concurrently access a list of this 
same size. They also present a more feasible Time-Space-Processor (TSP) model for 
evaluation of performance of different algorithms for the solution of knapsack-like 
NP-complete problems [7]. Ferreira [8] proposed a parallel algorithm that solves the 
knapsack problem of size n in time T = O(n(2n/2) ), 0ε ≤≤ ε 1, when P = O((2n/2) ) 
processors S = O(2

ε−1

n/2) memory units are available. Chang et al. [9] presented another 
parallel algorithm where the requirement of the sharing memory is O(2n/2) by using 
O(2n/8) processors to solve the knapsack problem still in O(2n/2) time. Thereafter, 
based on Chang et al.’s parallel algorithm, Lou and Chang [10] successfully parallel-
ize the second stage of the two-list algorithm. Regretfully, it is independently found in 
[11] and [12] that the analysis of the complexity of the Chang et al.’s algorithm was 
wrong. In addition to pointing out the wrong in literature [9], we also proposed a 
CREW-PRAM cost-optimal parallel algorithm [11], and thereafter, a cost-optimal 
algorithm without memory conflicts was further presented in [13]. It must be pointed 
out that the space complexity is very important when solving the knapsack-like prob-
lems [6,15]. However, because the memories required in both of these two cost-
optimal parallel algorithms are still O(2n/2), it make the available memory cells a bot-
tleneck when using these algorithms to break practical knapsack based cryptosystem.  

Therefore, to further reduce the required memory units for the solution of this kind 
of NP-complete problems, based on Ferreira’s CREW based parallel three-list algo-
rithm [14], we proposed a new parallel three-list four-table algorithm. The main 
properties of the proposed algorithm are as follows: 
(i) With this algorithm, we can solve knapsack-like problems in O(n29n/20) time, 

O(213n/40) shared memory units when O(2n/10) processors are available. It results 
in an O(n27n/8) TSP trade off, which is considerably better than those of all simi-
lar algorithms published so far.  



(ii) It can be performed on an EREW (exclusive read exclusive write) PRAM ma-
chine model, and thus is a totally without memory conflicts algorithm. Further-
more, the algorithm is completely practical in the sense that it is easy to program 
and it can handle problems which are almost 1.5 times as big as those handled by 
previous algorithms. 

The rest of this paper is organized as follows. Section 2 explains the parallel three-
list algorithm, on which the proposed algorithm is based. The proposed parallel algo-
rithm is described in Section 3. Then, in Section 4, the performance comparisons 
follow. Finally, some concluding remarks are given in Section 5. 

2   The parallel three-list algorithm 

In 1995, Ferreira presented a parallel three-list algorithm, which is based on a CREW 
PRAM model [14]. The number of processor, time complexity, and space require-
ments in it are O( ), , ,nβ2 )2( )2/1( nnO βε −− )2( 2/nnO ε 10 << ε , 2/10 εβ −≤≤ , 
respectively. It is viewed as an important breakthrough in the research of knapsack-
like problems for it can solve the knapsack-like problems in a way of both time and 
space effective [14]. Because our parallel algorithm is based on this algorithm, we 
introduce it. To make it easy be understood, let the number of processors be O(2n/10). 

Algorithm 1: The Three-list algorithm 
Generation stage 
1. Divide W into three parts: W1 = (w1,w2,…,w9n/20),W2 = (w9n/20 + 1,w9n/20 + 2,…, 
w18n/20), W3 = (w18n/20 +1, w18n/20 + 2,…, wn). 
2. Form all possible subset sums of W1, W2, then sorted them in an nondecreasing 
order and store them as A = [A1, A2,…,

20
9

2
nA ] and B = [BB1, B2B ,…, 

20
9

2
nB ], respec-

tively. 
3. Form all possible subset sums of W3, and store them as C = [C1,C2,…,

102
nC ].  

Search stage     
1.  For all Ci in C where 1021 ni ≤≤  
2.  Ci execute the binary search over A + B:  
3.  If a solution is found: then stop, output the solution 
4.  If a solution cannot be found: then stop: output that there is no solution. 

The time and space complexity of this algorithm are )2( 2011nnO × and )2( 209nO [14]. 
Based on its serial algorithm, Ferreira’s parallel algorithm is very direct. It runs on 

a CREW model. The subset sums in list A and B which hold 2092 n  subset sums re-
spectively are stored in the shared memory. And each processor Pi ( Pi ≤≤1 ), which 
holds the subset sum Ci, execute a “virtual” binary search on the list A + B to make 
sure whether A[j] + B[l] = M – Ci is satisfied, 2092,1 nlj ≤≤ .The parallel three-list 
algorithm consists of the following three main steps [14].  

Algorithm 2: parallel three-list algorithm  



for all Pi where 1021 ni ≤≤  do 
1. Generation of the two lists A, B and C  
2. Sorting of the two lists 
3. Binary search over A + B 

end 
The time and space needed in this algorithm are )2( 209nnO ×  and O(29n/20) [14]. 

3   The proposed parallel algorithm 

Although Ferreira’s above algorithm is considered as a main breakthrough for the 
researches on the knapsack problem, it still have an obvious shortcoming, i.e. the TSP 
tradeoff is O( ), which is greater than that of the recent parallel algorithms in 
[11,14] by a factor n. To overcome this shortcoming, we redesign the two main stages 
of the parallel three-list algorithm. In list generation stage, we introduce four tables to 
produce two ordered list A and B dynamically. Doing so we can reduce the space 
complexity from O(2

nn 2×

9n/20) to O(213n/40). While in list search stage, we replace the ma-
trix search way in [14] with the two-list like search algorithm, which is more simply 
and can reduce the time needed by a factor O(n) in search stage. 

In our proposed algorithm, each of the two lists stored in shared memory have a 
size of O(29n/20), whose elements will be dynamically generated one by one, by using 
only O(213n/40) shared memory units. Now consider the two stages of the algorithm.  

3.1   The generation stage 

Using the selection technique [14], Ferreira’s parallel search algorithm is subtle. For 
it reduced the time needed otherwise for direct enumerating on the virtual list A + B 
from O(29n/10) to O(n× 29n/20). However, it is a little complicated for it concerns the 
search of “virtual” matrix [14]. Now we use the simply two-list like search to fulfill 
the list search stage.  

Suppose the two ordered list A and B exist before the following algorithm 3 exe-
cutes. We can use the following two-list like search algorithm to make sure that for 
any C[k], 1021 nk ≤≤  whether exist A[i] and B[j], 2092,1 nji ≤≤ , such that the 
formula A[i] + B[j] + C[k] = M can be satisfied. 

Algorithm 3: parallel two-list like search algorithm 
The subset sums in list A and B are sorted in increasing and decreasing order 
for all processors Pk where 1021 nk ≤≤  do  

1. i = 1, j = 1. 
2. If A[i] + B[j] = M – C[k], then stop: a solution is found, and write the result 

into the shared memory. 
3. If A[i] + B[j] < M – C[k], then i = i + 1; else j = j + 1. 
4. If i > 29n/20 or j > 29n/20 then stop: there is no solution. 



5. Goto Step 2. 
End 
Lemma 1. Let all elements in list A and B are given, the time needed to perform 

the algorithm 3 is at most 2× 29n/20. 
Proof. The condition that the loop ends shows that once the variables i or j is 

greater than 29n/20, the algorithm terminates. While for each computation step, the 
value of one of the above two variables must increase by 1. So it is obvious that the 
maximum of the needed time to perform the algorithm 3 is 2× 29n/20.  

Compared with the Ferreira’s search algorithm [14], the search time needed here is 
reduced by a factor O(n). But the space requirements do not increase. 

3.2   The search stage 

We discuss how to produce all elements of lists A and B stored in the shared memory. 
Note that in list search algorithm 3, each processor accesses the elements of the sorted 
lists A and B sequentially, and thus there is no need to store all the possible subset 
sums of A and B simultaneously in the shared memory—what we need is the ability to 
generate them quickly (on-line, upon request) in sorted order. So if we generate the 
two ordered lists dynamically, the needed space will reduced greatly. To implement 
this key idea, we explore the thoughts in [1] where four tables are used to dynami-
cally produce the two sorted lists. Use four tables T1, T2, and T3 , T4 to produce the 
two sorted lists A and B, where T1 includes all possible subset sums of knapsack en-
tries (w1,w2,…,w9n/40), …, T4 includes all sums of (w27n/40 + 1,w27n/40 + 2,…, w36n/40). let e 
= 29n/40, and mark Ti = (ti1, ti2, …, tie), i = 1,2,3,4. We first sort all sums in T1 in an 
increasing order. Then use a priority queue Q1 which has a length of O(29n/40). At start, 
Q1 stores all pairs of first (T1) and all elements t2i. It can be updated by two operations 
deletion and insertion, which enables arbitrary insertions and deletions to be done in 
logarithmic time of the length of the queue, and makes the pair with the smallest t1i + 
t2j sum accessible in constant time. Through the efficient heap implementations of 
priority queues [1], the following algorithm is designed to dynamically produce all 
sums of T1 + T2 in an increasing order. For the processes to generate list A and B are 
similar, we focus on the procedures on the process to generate list A. 

Algorithm 4: algorithm for generating all sums of T1 + T2 dynamically   
Tables T1 = (t11, t12, …, t1e), T2 = (t21, t22, …, t2e) are given 
(1) sort T1 into increasing order; 
(2) insert into Q1 all the pairs (first (T1), t2i) for all t2i∈T2; 
(3) Repeat until Q1 becomes empty. 

(t1, t2) ← pair with smallest t1 + t2 sum in Q1; 
S1 ← (t1 + t2)  
if S1 is needed and used for the objectivity of computation; 
delete (t1, t2) from Q1; 
if the successor t1

1 of t1 in T1 is defined, 
insert (t1

1, t2) into Q1; 



Lemma 2. One element in T1 + T2 can be produced in O(9n/40) time; while all 
29n/20 elements can be dynamically generated in O(n29n/20) time with O(29n/40) shared 
memory units. 

Proof. According to the theory of heap [1], one time of deletion and insertion on 
the heap can be performed with logarithmic time of the size of the heap. Since the 
heap constructed in algorithm 4 has a size of 29n/40 and the combinations of T1 + T2 
have 29n/20 elements. It validates the results of lemma 2. 

To make the search algorithm perform successfully, we must prepare two queues 
(heaps) for each processor. As a result, in parallel case, the shared memory must have 
more memory units than that needed in sequential case. 

Combine the above discussions into a whole; we get the final parallel three-list 
four-table algorithm and an overall conclusion on the solution of knapsack-like NP-
complete problems. 

Algorithm 5: An EREW based parallel three-list four-table algorithm  
for all processors Pk where 1021 nk ≤≤  do 
1. generate list C and four tables T1, T2 and T3, T4 and sort T1 and T3 in parallel. 
2. construct one min heaps for queue Q1, and one max heaps for queue Q2. 
3. perform algorithm 4. 
4. perform two-list like search algorithm (algorithm 3). 

end 
Theorem 1. n-variable knapsack-like problems can be solved on EREW model in 

O(n29n/20) time when O(2n/10) processors and O(213n/40) memory units are available. 
Proof. Producing list C and tables T2 and T4 can be finished in n and 2n× 25n/40 time, 

while tables T1 and T3 can be sorted in 4× 25n/40 time [13]. Each processor will take 
2× 29n/40 time to construct two heaps. Following the lemmas 1 and 2, the total needed 

time is: )2
40
9()

40
9(222422 20920n9405405 nnn nOnnn ×=××+×+×+ . 

The linear factor has little impact on the time complexity and thus is usually omit-
ted [6-9,14]. So the time complexity of the proposed parallel algorithm is O(29n/20). 
As for the space complexity, since there are 2n/10 processors, and each of them need 
2× 29n/40 for the construction of heaps, the total space requirements is O(213n/40). To 
avoid memory conflicts, at first, we copy the knapsack vector W and scalar M for 
each processor, which doesn’t affect the overall complexity of the proposed algorithm. 
Thereafter, each processor access and update its own heaps, so it is obvious that all 
processors have no memory conflicts, and it can be performed on EREW PRAM 
machine model. 

4   Performance comparisons  

For the importance of the space complexity [6,15], we adopt the time-space-processor 
tradeoff (TSP tradeoff) [10], as the criterion of evaluation of relevant algorithms. 

the TSP tradeoff of Karnin’s parallel algorithm is O(25n/6) [6]. The number of proc-
essor, time complexity, and the TSP tradeoff of Ferreira’s parallel three-list search 



algorithm in [14] are O(2 ), O( ), nβ nn )2/1(2 βε −− 2/10 εβ −≤≤ , and O(n2n), respec-

tively. The parallel algorithm [7] runs in O( ) time, 0nn α2 ≤≤α 1/2, by allowing 
O( ) processors to concurrently access a list of this same size, hence the TSP 
tradeoff of this algorithm is also O(n2

2/)1(2 nα−

n). Ferreira’s parallel one-list algorithm [8] 
bears O(n2n) TSP tradeoff. The performance of Chang et al.’s parallel algorithm [9] is 
T = O(2n/2), P = O(2n/8), and S = O(2n/2), thus results in a TSP tradeoff of O(29n/8). The 
parallel algorithm Lou and Chang presented had a same performance as Chang et al.’s 
algorithm. In addition, both of the algorithms in [11] and [13] have a TSP tradeoff of 
O(2n). From our parallel three-list four-table algorithm, one can get a TSP tradeoff of 
O(9n/40× 2n/10× 213n/40× 29n/20) = O(n27n/8). 

Among all algorithms that have been published, the TSP tradeoff of Karnin’s algo-
rithm [6] is the lowest, which is O(n25n/6). However, it has an obvious defect that it 
can’t reduce the execution time even in parallel. In spite of our proposed algorithm is 
not cost optimal, it go further on the overall time and memory performance than 
Ferreira’s parallel three-list algorithm did. Moreover, our algorithm is totally without 
memory conflicts when different processors access the shared memory.  

For the purpose of clarity, the comparisons of the main parallel algorithms pub-
lished by far for solving the knapsack-like problems are depicted in Table 1. It is 
obvious that our parallel algorithm outtakes undoubtedly other parallel algorithms in 
the overall performance. 

Table 1. Comparisons of the parallel algorithms for solving the knapsack-like problems 

Algorithm   Model         Processor            Time                       Memory          TSP tradeoff 

1 [6] CREW O(2n/6) O(2n/2) O(2n/6) O(25n/6) 

2[7] CREW O( )2/)1(2 nα− O( ) nα2 O( )2/)1(2 nα− O(2n) 
3[14] CREW O( ) nβ2 O( )n)2/1(2 βε −− O( ) 2/2 nε O(2n) 
4[8] CREW O( )2/)1(2 nε− O( ) 2/2 nε O(2n/2) O(2n) 
5[9] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8) 
6[10] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8) 
7[11] CREW O((2n/4)1- ε ) O(2n/4(2n/4) ε ) O(2n/2) O(2n) 
8[13] EREW O((2n/4)1- ε ) O(2n/4(2n/4) ε ) O(2n/2) O(2n) 
Ours EREW O(2n/10) O(29n/20) O(2n/4) O(27n/8) 

Notation: 0 ≤≤ ε 1, 0 ≤≤α 1/2, εβ −≤≤ 10 . The linear factor n in algorithms numbered by 
1-6 and ours has been ignored for its little impact on the overall performance [6-9,14]. 

5   Conclusions  

A new parallel three-list four-table algorithm for solving the knapsack-like problems 
is presented. Through dynamically producing the elements of the two lists which is to 
be searched in our two-list like search algorithm, we dramatically reduce the space 
requirements from O(29n/20) in three-list algorithm in [14] to O(213n/40). Moreover, the 



memory conflicts in [14] are also avoided by leave different memory address segment 
for different processors, permitting the algorithm being able to perform on an EREW 
machine model. Performance comparisons shows our proposed algorithm greatly 
outweighs the parallel algorithms presented by far, and thus it is an improved result 
over the past researches. To our knowledge it is the first time that the knapsack-like 
problems can be solved without memory conflicts with less than O(2n/2) running time 
when the hardware is also much smaller than O(2n/2). Since it can solve problems that 
are almost 1.5 times as big as those handled by previous algorithms, it has some im-
portance in research of cryptosystem. 
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